|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/rsa.h> | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/engine.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/ex_data.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/thread.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; | 
|  |  | 
|  | RSA *RSA_new(void) { return RSA_new_method(NULL); } | 
|  |  | 
|  | RSA *RSA_new_method(const ENGINE *engine) { | 
|  | RSA *rsa = OPENSSL_malloc(sizeof(RSA)); | 
|  | if (rsa == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(rsa, 0, sizeof(RSA)); | 
|  |  | 
|  | if (engine) { | 
|  | rsa->meth = ENGINE_get_RSA_method(engine); | 
|  | } | 
|  |  | 
|  | if (rsa->meth == NULL) { | 
|  | rsa->meth = (RSA_METHOD*) &RSA_default_method; | 
|  | } | 
|  | METHOD_ref(rsa->meth); | 
|  |  | 
|  | rsa->references = 1; | 
|  | rsa->flags = rsa->meth->flags; | 
|  | CRYPTO_MUTEX_init(&rsa->lock); | 
|  | CRYPTO_new_ex_data(&rsa->ex_data); | 
|  |  | 
|  | if (rsa->meth->init && !rsa->meth->init(rsa)) { | 
|  | CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data); | 
|  | CRYPTO_MUTEX_cleanup(&rsa->lock); | 
|  | METHOD_unref(rsa->meth); | 
|  | OPENSSL_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | void RSA_additional_prime_free(RSA_additional_prime *ap) { | 
|  | if (ap == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | BN_clear_free(ap->prime); | 
|  | BN_clear_free(ap->exp); | 
|  | BN_clear_free(ap->coeff); | 
|  | BN_clear_free(ap->r); | 
|  | BN_MONT_CTX_free(ap->mont); | 
|  | OPENSSL_free(ap); | 
|  | } | 
|  |  | 
|  | void RSA_free(RSA *rsa) { | 
|  | unsigned u; | 
|  |  | 
|  | if (rsa == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rsa->meth->finish) { | 
|  | rsa->meth->finish(rsa); | 
|  | } | 
|  | METHOD_unref(rsa->meth); | 
|  |  | 
|  | CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data); | 
|  |  | 
|  | BN_clear_free(rsa->n); | 
|  | BN_clear_free(rsa->e); | 
|  | BN_clear_free(rsa->d); | 
|  | BN_clear_free(rsa->p); | 
|  | BN_clear_free(rsa->q); | 
|  | BN_clear_free(rsa->dmp1); | 
|  | BN_clear_free(rsa->dmq1); | 
|  | BN_clear_free(rsa->iqmp); | 
|  | BN_MONT_CTX_free(rsa->mont_n); | 
|  | BN_MONT_CTX_free(rsa->mont_p); | 
|  | BN_MONT_CTX_free(rsa->mont_q); | 
|  | for (u = 0; u < rsa->num_blindings; u++) { | 
|  | BN_BLINDING_free(rsa->blindings[u]); | 
|  | } | 
|  | OPENSSL_free(rsa->blindings); | 
|  | OPENSSL_free(rsa->blindings_inuse); | 
|  | if (rsa->additional_primes != NULL) { | 
|  | sk_RSA_additional_prime_pop_free(rsa->additional_primes, | 
|  | RSA_additional_prime_free); | 
|  | } | 
|  | CRYPTO_MUTEX_cleanup(&rsa->lock); | 
|  | OPENSSL_free(rsa); | 
|  | } | 
|  |  | 
|  | int RSA_up_ref(RSA *rsa) { | 
|  | CRYPTO_refcount_inc(&rsa->references); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, | 
|  | const BIGNUM **out_d) { | 
|  | if (out_n != NULL) { | 
|  | *out_n = rsa->n; | 
|  | } | 
|  | if (out_e != NULL) { | 
|  | *out_e = rsa->e; | 
|  | } | 
|  | if (out_d != NULL) { | 
|  | *out_d = rsa->d; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, | 
|  | const BIGNUM **out_q) { | 
|  | if (out_p != NULL) { | 
|  | *out_p = rsa->p; | 
|  | } | 
|  | if (out_q != NULL) { | 
|  | *out_q = rsa->q; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, | 
|  | const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { | 
|  | if (out_dmp1 != NULL) { | 
|  | *out_dmp1 = rsa->dmp1; | 
|  | } | 
|  | if (out_dmq1 != NULL) { | 
|  | *out_dmq1 = rsa->dmq1; | 
|  | } | 
|  | if (out_iqmp != NULL) { | 
|  | *out_iqmp = rsa->iqmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) { | 
|  | if (rsa->meth->keygen) { | 
|  | return rsa->meth->keygen(rsa, bits, e_value, cb); | 
|  | } | 
|  |  | 
|  | return rsa_default_keygen(rsa, bits, e_value, cb); | 
|  | } | 
|  |  | 
|  | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int num_primes, | 
|  | BIGNUM *e_value, BN_GENCB *cb) { | 
|  | if (rsa->meth->multi_prime_keygen) { | 
|  | return rsa->meth->multi_prime_keygen(rsa, bits, num_primes, e_value, cb); | 
|  | } | 
|  |  | 
|  | return rsa_default_multi_prime_keygen(rsa, bits, num_primes, e_value, cb); | 
|  | } | 
|  |  | 
|  | int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
|  | const uint8_t *in, size_t in_len, int padding) { | 
|  | if (rsa->meth->encrypt) { | 
|  | return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | return rsa_default_encrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
|  | int padding) { | 
|  | size_t out_len; | 
|  |  | 
|  | if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (out_len > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | return out_len; | 
|  | } | 
|  |  | 
|  | int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
|  | const uint8_t *in, size_t in_len, int padding) { | 
|  | if (rsa->meth->sign_raw) { | 
|  | return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
|  | int padding) { | 
|  | size_t out_len; | 
|  |  | 
|  | if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (out_len > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | return out_len; | 
|  | } | 
|  |  | 
|  | int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
|  | const uint8_t *in, size_t in_len, int padding) { | 
|  | if (rsa->meth->decrypt) { | 
|  | return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
|  | int padding) { | 
|  | size_t out_len; | 
|  |  | 
|  | if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (out_len > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | return out_len; | 
|  | } | 
|  |  | 
|  | int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, | 
|  | int padding) { | 
|  | size_t out_len; | 
|  |  | 
|  | if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (out_len > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | return out_len; | 
|  | } | 
|  |  | 
|  | unsigned RSA_size(const RSA *rsa) { | 
|  | if (rsa->meth->size) { | 
|  | return rsa->meth->size(rsa); | 
|  | } | 
|  |  | 
|  | return rsa_default_size(rsa); | 
|  | } | 
|  |  | 
|  | int RSA_is_opaque(const RSA *rsa) { | 
|  | return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); | 
|  | } | 
|  |  | 
|  | int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { | 
|  | int index; | 
|  | if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func, | 
|  | free_func)) { | 
|  | return -1; | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | int RSA_set_ex_data(RSA *d, int idx, void *arg) { | 
|  | return CRYPTO_set_ex_data(&d->ex_data, idx, arg); | 
|  | } | 
|  |  | 
|  | void *RSA_get_ex_data(const RSA *d, int idx) { | 
|  | return CRYPTO_get_ex_data(&d->ex_data, idx); | 
|  | } | 
|  |  | 
|  | /* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's | 
|  | * the length of an MD5 and SHA1 hash. */ | 
|  | static const unsigned SSL_SIG_LENGTH = 36; | 
|  |  | 
|  | /* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is | 
|  | * to be signed with PKCS#1. */ | 
|  | struct pkcs1_sig_prefix { | 
|  | /* nid identifies the hash function. */ | 
|  | int nid; | 
|  | /* len is the number of bytes of |bytes| which are valid. */ | 
|  | uint8_t len; | 
|  | /* bytes contains the DER bytes. */ | 
|  | uint8_t bytes[19]; | 
|  | }; | 
|  |  | 
|  | /* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with | 
|  | * different hash functions. */ | 
|  | static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { | 
|  | { | 
|  | NID_md5, | 
|  | 18, | 
|  | {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, | 
|  | 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, | 
|  | }, | 
|  | { | 
|  | NID_sha1, | 
|  | 15, | 
|  | {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, | 
|  | 0x00, 0x04, 0x14}, | 
|  | }, | 
|  | { | 
|  | NID_sha224, | 
|  | 19, | 
|  | {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, | 
|  | }, | 
|  | { | 
|  | NID_sha256, | 
|  | 19, | 
|  | {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, | 
|  | }, | 
|  | { | 
|  | NID_sha384, | 
|  | 19, | 
|  | {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, | 
|  | }, | 
|  | { | 
|  | NID_sha512, | 
|  | 19, | 
|  | {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, | 
|  | }, | 
|  | { | 
|  | NID_undef, 0, {0}, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, | 
|  | int *is_alloced, int hash_nid, const uint8_t *msg, | 
|  | size_t msg_len) { | 
|  | unsigned i; | 
|  |  | 
|  | if (hash_nid == NID_md5_sha1) { | 
|  | /* Special case: SSL signature, just check the length. */ | 
|  | if (msg_len != SSL_SIG_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_msg = (uint8_t*) msg; | 
|  | *out_msg_len = SSL_SIG_LENGTH; | 
|  | *is_alloced = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { | 
|  | const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; | 
|  | if (sig_prefix->nid != hash_nid) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const uint8_t* prefix = sig_prefix->bytes; | 
|  | unsigned prefix_len = sig_prefix->len; | 
|  | unsigned signed_msg_len; | 
|  | uint8_t *signed_msg; | 
|  |  | 
|  | signed_msg_len = prefix_len + msg_len; | 
|  | if (signed_msg_len < prefix_len) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | signed_msg = OPENSSL_malloc(signed_msg_len); | 
|  | if (!signed_msg) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(signed_msg, prefix, prefix_len); | 
|  | OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len); | 
|  |  | 
|  | *out_msg = signed_msg; | 
|  | *out_msg_len = signed_msg_len; | 
|  | *is_alloced = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out, | 
|  | unsigned *out_len, RSA *rsa) { | 
|  | const unsigned rsa_size = RSA_size(rsa); | 
|  | int ret = 0; | 
|  | uint8_t *signed_msg; | 
|  | size_t signed_msg_len; | 
|  | int signed_msg_is_alloced = 0; | 
|  | size_t size_t_out_len; | 
|  |  | 
|  | if (rsa->meth->sign) { | 
|  | return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa); | 
|  | } | 
|  |  | 
|  | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, | 
|  | &signed_msg_is_alloced, hash_nid, in, in_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rsa_size < RSA_PKCS1_PADDING_SIZE || | 
|  | signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg, | 
|  | signed_msg_len, RSA_PKCS1_PADDING)) { | 
|  | *out_len = size_t_out_len; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | finish: | 
|  | if (signed_msg_is_alloced) { | 
|  | OPENSSL_free(signed_msg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, | 
|  | const uint8_t *sig, size_t sig_len, RSA *rsa) { | 
|  | if (rsa->n == NULL || rsa->e == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const size_t rsa_size = RSA_size(rsa); | 
|  | uint8_t *buf = NULL; | 
|  | int ret = 0; | 
|  | uint8_t *signed_msg = NULL; | 
|  | size_t signed_msg_len, len; | 
|  | int signed_msg_is_alloced = 0; | 
|  |  | 
|  | if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | buf = OPENSSL_malloc(rsa_size); | 
|  | if (!buf) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len, | 
|  | RSA_PKCS1_PADDING)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, | 
|  | &signed_msg_is_alloced, hash_nid, msg, msg_len)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | out: | 
|  | OPENSSL_free(buf); | 
|  | if (signed_msg_is_alloced) { | 
|  | OPENSSL_free(signed_msg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void bn_free_and_null(BIGNUM **bn) { | 
|  | BN_free(*bn); | 
|  | *bn = NULL; | 
|  | } | 
|  |  | 
|  | int RSA_check_key(const RSA *key) { | 
|  | BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q; | 
|  | BN_CTX *ctx; | 
|  | int ok = 0, has_crt_values; | 
|  |  | 
|  | if (RSA_is_opaque(key)) { | 
|  | /* Opaque keys can't be checked. */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((key->p != NULL) != (key->q != NULL)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!key->n || !key->e) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!key->d || !key->p) { | 
|  | /* For a public key, or without p and q, there's nothing that can be | 
|  | * checked. */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_init(&n); | 
|  | BN_init(&pm1); | 
|  | BN_init(&qm1); | 
|  | BN_init(&lcm); | 
|  | BN_init(&gcd); | 
|  | BN_init(&de); | 
|  | BN_init(&dmp1); | 
|  | BN_init(&dmq1); | 
|  | BN_init(&iqmp_times_q); | 
|  |  | 
|  | if (!BN_mul(&n, key->p, key->q, ctx) || | 
|  | /* lcm = lcm(prime-1, for all primes) */ | 
|  | !BN_sub(&pm1, key->p, BN_value_one()) || | 
|  | !BN_sub(&qm1, key->q, BN_value_one()) || | 
|  | !BN_mul(&lcm, &pm1, &qm1, ctx) || | 
|  | !BN_gcd(&gcd, &pm1, &qm1, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | size_t num_additional_primes = 0; | 
|  | if (key->additional_primes != NULL) { | 
|  | num_additional_primes = sk_RSA_additional_prime_num(key->additional_primes); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < num_additional_primes; i++) { | 
|  | const RSA_additional_prime *ap = | 
|  | sk_RSA_additional_prime_value(key->additional_primes, i); | 
|  | if (!BN_mul(&n, &n, ap->prime, ctx) || | 
|  | !BN_sub(&pm1, ap->prime, BN_value_one()) || | 
|  | !BN_mul(&lcm, &lcm, &pm1, ctx) || | 
|  | !BN_gcd(&gcd, &gcd, &pm1, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) || | 
|  | !BN_gcd(&gcd, &pm1, &qm1, ctx) || | 
|  | /* de = d*e mod lcm(prime-1, for all primes). */ | 
|  | !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (BN_cmp(&n, key->n) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!BN_is_one(&de)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | has_crt_values = key->dmp1 != NULL; | 
|  | if (has_crt_values != (key->dmq1 != NULL) || | 
|  | has_crt_values != (key->iqmp != NULL)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (has_crt_values && num_additional_primes == 0) { | 
|  | if (/* dmp1 = d mod (p-1) */ | 
|  | !BN_mod(&dmp1, key->d, &pm1, ctx) || | 
|  | /* dmq1 = d mod (q-1) */ | 
|  | !BN_mod(&dmq1, key->d, &qm1, ctx) || | 
|  | /* iqmp = q^-1 mod p */ | 
|  | !BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (BN_cmp(&dmp1, key->dmp1) != 0 || | 
|  | BN_cmp(&dmq1, key->dmq1) != 0 || | 
|  | BN_cmp(key->iqmp, key->p) >= 0 || | 
|  | !BN_is_one(&iqmp_times_q)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | out: | 
|  | BN_free(&n); | 
|  | BN_free(&pm1); | 
|  | BN_free(&qm1); | 
|  | BN_free(&lcm); | 
|  | BN_free(&gcd); | 
|  | BN_free(&de); | 
|  | BN_free(&dmp1); | 
|  | BN_free(&dmq1); | 
|  | BN_free(&iqmp_times_q); | 
|  | BN_CTX_free(ctx); | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int RSA_recover_crt_params(RSA *rsa) { | 
|  | BN_CTX *ctx; | 
|  | BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q; | 
|  | int ok = 0; | 
|  |  | 
|  | if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_PARAMS_ALREADY_GIVEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rsa->additional_primes != NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This uses the algorithm from section 9B of the RSA paper: | 
|  | * http://people.csail.mit.edu/rivest/Rsapaper.pdf */ | 
|  |  | 
|  | ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | totient = BN_CTX_get(ctx); | 
|  | rem = BN_CTX_get(ctx); | 
|  | multiple = BN_CTX_get(ctx); | 
|  | p_plus_q = BN_CTX_get(ctx); | 
|  | p_minus_q = BN_CTX_get(ctx); | 
|  |  | 
|  | if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL || | 
|  | p_minus_q == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* ed-1 is a small multiple of φ(n). */ | 
|  | if (!BN_mul(totient, rsa->e, rsa->d, ctx) || | 
|  | !BN_sub_word(totient, 1) || | 
|  | /* φ(n) = | 
|  | * pq - p - q + 1 = | 
|  | * n - (p + q) + 1 | 
|  | * | 
|  | * Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very | 
|  | * close. But, when we calculate the quotient, we'll be truncating it | 
|  | * because we discard the remainder. Thus (ed-1)/multiple will be >= n, | 
|  | * which the totient cannot be. So we add one to the estimate. | 
|  | * | 
|  | * Consider ed-1 as: | 
|  | * | 
|  | * multiple * (n - (p+q) + 1) = | 
|  | * multiple*n - multiple*(p+q) + multiple | 
|  | * | 
|  | * When we divide by n, the first term becomes multiple and, since | 
|  | * multiple and p+q is tiny compared to n, the second and third terms can | 
|  | * be ignored. Thus I claim that subtracting one from the estimate is | 
|  | * sufficient. */ | 
|  | !BN_div(multiple, NULL, totient, rsa->n, ctx) || | 
|  | !BN_add_word(multiple, 1) || | 
|  | !BN_div(totient, rem, totient, multiple, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!BN_is_zero(rem)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | rsa->p = BN_new(); | 
|  | rsa->q = BN_new(); | 
|  | rsa->dmp1 = BN_new(); | 
|  | rsa->dmq1 = BN_new(); | 
|  | rsa->iqmp = BN_new(); | 
|  | if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 == | 
|  | NULL || rsa->iqmp == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* φ(n) = n - (p + q) + 1 => | 
|  | * n - totient + 1 = p + q */ | 
|  | if (!BN_sub(p_plus_q, rsa->n, totient) || | 
|  | !BN_add_word(p_plus_q, 1) || | 
|  | /* p - q = sqrt((p+q)^2 - 4n) */ | 
|  | !BN_sqr(rem, p_plus_q, ctx) || | 
|  | !BN_lshift(multiple, rsa->n, 2) || | 
|  | !BN_sub(rem, rem, multiple) || | 
|  | !BN_sqrt(p_minus_q, rem, ctx) || | 
|  | /* q is 1/2 (p+q)-(p-q) */ | 
|  | !BN_sub(rsa->q, p_plus_q, p_minus_q) || | 
|  | !BN_rshift1(rsa->q, rsa->q) || | 
|  | !BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) || | 
|  | !BN_mul(multiple, rsa->p, rsa->q, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BN_cmp(multiple, rsa->n) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!BN_sub(rem, rsa->p, BN_value_one()) || | 
|  | !BN_mod(rsa->dmp1, rsa->d, rem, ctx) || | 
|  | !BN_sub(rem, rsa->q, BN_value_one()) || | 
|  | !BN_mod(rsa->dmq1, rsa->d, rem, ctx) || | 
|  | !BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(ctx); | 
|  | if (!ok) { | 
|  | bn_free_and_null(&rsa->p); | 
|  | bn_free_and_null(&rsa->q); | 
|  | bn_free_and_null(&rsa->dmp1); | 
|  | bn_free_and_null(&rsa->dmq1); | 
|  | bn_free_and_null(&rsa->iqmp); | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | if (rsa->meth->private_transform) { | 
|  | return rsa->meth->private_transform(rsa, out, in, len); | 
|  | } | 
|  |  | 
|  | return rsa_default_private_transform(rsa, out, in, len); | 
|  | } | 
|  |  | 
|  | int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { | 
|  | return 1; | 
|  | } |