|  | /* ==================================================================== | 
|  | * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== */ | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/aes.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/cpu.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../internal.h" | 
|  | #include "../modes/internal.h" | 
|  |  | 
|  | #if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) | 
|  | #include <openssl/arm_arch.h> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) /* Unreachable code. */ | 
|  |  | 
|  | typedef struct { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks; | 
|  | block128_f block; | 
|  | union { | 
|  | cbc128_f cbc; | 
|  | ctr128_f ctr; | 
|  | } stream; | 
|  | } EVP_AES_KEY; | 
|  |  | 
|  | typedef struct { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks;        /* AES key schedule to use */ | 
|  | int key_set; /* Set if key initialised */ | 
|  | int iv_set;  /* Set if an iv is set */ | 
|  | GCM128_CONTEXT gcm; | 
|  | uint8_t *iv; /* Temporary IV store */ | 
|  | int ivlen;         /* IV length */ | 
|  | int taglen; | 
|  | int iv_gen;      /* It is OK to generate IVs */ | 
|  | ctr128_f ctr; | 
|  | } EVP_AES_GCM_CTX; | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) | 
|  | #define VPAES | 
|  | static char vpaes_capable(void) { | 
|  | return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0; | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_X86_64) | 
|  | #define BSAES | 
|  | static char bsaes_capable(void) { | 
|  | return vpaes_capable(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #elif !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) | 
|  |  | 
|  | #if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7 | 
|  | #define BSAES | 
|  | static char bsaes_capable(void) { | 
|  | return CRYPTO_is_NEON_capable(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define HWAES | 
|  | static int hwaes_capable(void) { | 
|  | return CRYPTO_is_ARMv8_AES_capable(); | 
|  | } | 
|  |  | 
|  | #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_PPC64LE) | 
|  |  | 
|  | #define HWAES | 
|  | static int hwaes_capable(void) { | 
|  | return CRYPTO_is_PPC64LE_vcrypto_capable(); | 
|  | } | 
|  |  | 
|  | #endif  /* OPENSSL_PPC64LE */ | 
|  |  | 
|  |  | 
|  | #if defined(BSAES) | 
|  | /* On platforms where BSAES gets defined (just above), then these functions are | 
|  | * provided by asm. */ | 
|  | void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t ivec[16], int enc); | 
|  | void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, const uint8_t ivec[16]); | 
|  | #else | 
|  | static char bsaes_capable(void) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* On other platforms, bsaes_capable() will always return false and so the | 
|  | * following will never be called. */ | 
|  | static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t ivec[16], int enc) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, | 
|  | size_t len, const AES_KEY *key, | 
|  | const uint8_t ivec[16]) { | 
|  | abort(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(VPAES) | 
|  | /* On platforms where VPAES gets defined (just above), then these functions are | 
|  | * provided by asm. */ | 
|  | int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); | 
|  | int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); | 
|  |  | 
|  | void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  | void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  |  | 
|  | void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t *ivec, int enc); | 
|  | #else | 
|  | static char vpaes_capable(void) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* On other platforms, vpaes_capable() will always return false and so the | 
|  | * following will never be called. */ | 
|  | static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, | 
|  | AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, | 
|  | AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t *ivec, int enc) { | 
|  | abort(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HWAES) | 
|  | int aes_hw_set_encrypt_key(const uint8_t *user_key, const int bits, | 
|  | AES_KEY *key); | 
|  | int aes_hw_set_decrypt_key(const uint8_t *user_key, const int bits, | 
|  | AES_KEY *key); | 
|  | void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  | void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  | void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t *ivec, const int enc); | 
|  | void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, const uint8_t ivec[16]); | 
|  | #else | 
|  | /* If HWAES isn't defined then we provide dummy functions for each of the hwaes | 
|  | * functions. */ | 
|  | static int hwaes_capable(void) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, | 
|  | AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, | 
|  | AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void aes_hw_encrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void aes_hw_decrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t *ivec, int enc) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, | 
|  | size_t len, const AES_KEY *key, | 
|  | const uint8_t ivec[16]) { | 
|  | abort(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) | 
|  | int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); | 
|  | int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); | 
|  |  | 
|  | void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  | void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); | 
|  |  | 
|  | void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, int enc); | 
|  | void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, | 
|  | const AES_KEY *key, uint8_t *ivec, int enc); | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* On other platforms, aesni_capable() will always return false and so the | 
|  | * following will never be called. */ | 
|  | static void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static int aesni_set_encrypt_key(const uint8_t *userKey, int bits, | 
|  | AES_KEY *key) { | 
|  | abort(); | 
|  | } | 
|  | static void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, | 
|  | size_t blocks, const void *key, | 
|  | const uint8_t *ivec) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
|  | const uint8_t *iv, int enc) { | 
|  | int ret, mode; | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; | 
|  | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { | 
|  | if (hwaes_capable()) { | 
|  | ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)aes_hw_decrypt; | 
|  | dat->stream.cbc = NULL; | 
|  | if (mode == EVP_CIPH_CBC_MODE) { | 
|  | dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; | 
|  | } | 
|  | } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { | 
|  | ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)AES_decrypt; | 
|  | dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; | 
|  | } else if (vpaes_capable()) { | 
|  | ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)vpaes_decrypt; | 
|  | dat->stream.cbc = | 
|  | mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; | 
|  | } else { | 
|  | ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)AES_decrypt; | 
|  | dat->stream.cbc = | 
|  | mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; | 
|  | } | 
|  | } else if (hwaes_capable()) { | 
|  | ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)aes_hw_encrypt; | 
|  | dat->stream.cbc = NULL; | 
|  | if (mode == EVP_CIPH_CBC_MODE) { | 
|  | dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; | 
|  | } else if (mode == EVP_CIPH_CTR_MODE) { | 
|  | dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks; | 
|  | } | 
|  | } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { | 
|  | ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)AES_encrypt; | 
|  | dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; | 
|  | } else if (vpaes_capable()) { | 
|  | ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)vpaes_encrypt; | 
|  | dat->stream.cbc = | 
|  | mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; | 
|  | } else { | 
|  | ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
|  | dat->block = (block128_f)AES_encrypt; | 
|  | dat->stream.cbc = | 
|  | mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | if (dat->stream.cbc) { | 
|  | (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); | 
|  | } else if (ctx->encrypt) { | 
|  | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); | 
|  | } else { | 
|  | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | size_t bl = ctx->cipher->block_size; | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | if (len < bl) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | len -= bl; | 
|  | for (size_t i = 0; i <= len; i += bl) { | 
|  | (*dat->block)(in + i, out + i, &dat->ks); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | if (dat->stream.ctr) { | 
|  | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, | 
|  | &ctx->num, dat->stream.ctr); | 
|  | } else { | 
|  | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, | 
|  | dat->block); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static char aesni_capable(void); | 
|  |  | 
|  | static ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, | 
|  | block128_f *out_block, const uint8_t *key, | 
|  | size_t key_len) { | 
|  | if (aesni_capable()) { | 
|  | aesni_set_encrypt_key(key, key_len * 8, aes_key); | 
|  | if (gcm_ctx != NULL) { | 
|  | CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt); | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = (block128_f) aesni_encrypt; | 
|  | } | 
|  | return (ctr128_f)aesni_ctr32_encrypt_blocks; | 
|  | } | 
|  |  | 
|  | if (hwaes_capable()) { | 
|  | aes_hw_set_encrypt_key(key, key_len * 8, aes_key); | 
|  | if (gcm_ctx != NULL) { | 
|  | CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt); | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = (block128_f) aes_hw_encrypt; | 
|  | } | 
|  | return (ctr128_f)aes_hw_ctr32_encrypt_blocks; | 
|  | } | 
|  |  | 
|  | if (bsaes_capable()) { | 
|  | AES_set_encrypt_key(key, key_len * 8, aes_key); | 
|  | if (gcm_ctx != NULL) { | 
|  | CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = (block128_f) AES_encrypt; | 
|  | } | 
|  | return (ctr128_f)bsaes_ctr32_encrypt_blocks; | 
|  | } | 
|  |  | 
|  | if (vpaes_capable()) { | 
|  | vpaes_set_encrypt_key(key, key_len * 8, aes_key); | 
|  | if (out_block) { | 
|  | *out_block = (block128_f) vpaes_encrypt; | 
|  | } | 
|  | if (gcm_ctx != NULL) { | 
|  | CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | AES_set_encrypt_key(key, key_len * 8, aes_key); | 
|  | if (gcm_ctx != NULL) { | 
|  | CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = (block128_f) AES_encrypt; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
|  | const uint8_t *iv, int enc) { | 
|  | EVP_AES_GCM_CTX *gctx = ctx->cipher_data; | 
|  | if (!iv && !key) { | 
|  | return 1; | 
|  | } | 
|  | if (key) { | 
|  | gctx->ctr = | 
|  | aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len); | 
|  | /* If we have an iv can set it directly, otherwise use saved IV. */ | 
|  | if (iv == NULL && gctx->iv_set) { | 
|  | iv = gctx->iv; | 
|  | } | 
|  | if (iv) { | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); | 
|  | gctx->iv_set = 1; | 
|  | } | 
|  | gctx->key_set = 1; | 
|  | } else { | 
|  | /* If key set use IV, otherwise copy */ | 
|  | if (gctx->key_set) { | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); | 
|  | } else { | 
|  | OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); | 
|  | } | 
|  | gctx->iv_set = 1; | 
|  | gctx->iv_gen = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { | 
|  | EVP_AES_GCM_CTX *gctx = c->cipher_data; | 
|  | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); | 
|  | if (gctx->iv != c->iv) { | 
|  | OPENSSL_free(gctx->iv); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* increment counter (64-bit int) by 1 */ | 
|  | static void ctr64_inc(uint8_t *counter) { | 
|  | int n = 8; | 
|  | uint8_t c; | 
|  |  | 
|  | do { | 
|  | --n; | 
|  | c = counter[n]; | 
|  | ++c; | 
|  | counter[n] = c; | 
|  | if (c) { | 
|  | return; | 
|  | } | 
|  | } while (n); | 
|  | } | 
|  |  | 
|  | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { | 
|  | EVP_AES_GCM_CTX *gctx = c->cipher_data; | 
|  | switch (type) { | 
|  | case EVP_CTRL_INIT: | 
|  | gctx->key_set = 0; | 
|  | gctx->iv_set = 0; | 
|  | gctx->ivlen = c->cipher->iv_len; | 
|  | gctx->iv = c->iv; | 
|  | gctx->taglen = -1; | 
|  | gctx->iv_gen = 0; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_SET_IVLEN: | 
|  | if (arg <= 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for IV if needed */ | 
|  | if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { | 
|  | if (gctx->iv != c->iv) { | 
|  | OPENSSL_free(gctx->iv); | 
|  | } | 
|  | gctx->iv = OPENSSL_malloc(arg); | 
|  | if (!gctx->iv) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | gctx->ivlen = arg; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_SET_TAG: | 
|  | if (arg <= 0 || arg > 16 || c->encrypt) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(c->buf, ptr, arg); | 
|  | gctx->taglen = arg; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_GET_TAG: | 
|  | if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(ptr, c->buf, arg); | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_SET_IV_FIXED: | 
|  | /* Special case: -1 length restores whole IV */ | 
|  | if (arg == -1) { | 
|  | OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); | 
|  | gctx->iv_gen = 1; | 
|  | return 1; | 
|  | } | 
|  | /* Fixed field must be at least 4 bytes and invocation field | 
|  | * at least 8. */ | 
|  | if (arg < 4 || (gctx->ivlen - arg) < 8) { | 
|  | return 0; | 
|  | } | 
|  | if (arg) { | 
|  | OPENSSL_memcpy(gctx->iv, ptr, arg); | 
|  | } | 
|  | if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { | 
|  | return 0; | 
|  | } | 
|  | gctx->iv_gen = 1; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_IV_GEN: | 
|  | if (gctx->iv_gen == 0 || gctx->key_set == 0) { | 
|  | return 0; | 
|  | } | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); | 
|  | if (arg <= 0 || arg > gctx->ivlen) { | 
|  | arg = gctx->ivlen; | 
|  | } | 
|  | OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); | 
|  | /* Invocation field will be at least 8 bytes in size and | 
|  | * so no need to check wrap around or increment more than | 
|  | * last 8 bytes. */ | 
|  | ctr64_inc(gctx->iv + gctx->ivlen - 8); | 
|  | gctx->iv_set = 1; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_GCM_SET_IV_INV: | 
|  | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); | 
|  | gctx->iv_set = 1; | 
|  | return 1; | 
|  |  | 
|  | case EVP_CTRL_COPY: { | 
|  | EVP_CIPHER_CTX *out = ptr; | 
|  | EVP_AES_GCM_CTX *gctx_out = out->cipher_data; | 
|  | if (gctx->iv == c->iv) { | 
|  | gctx_out->iv = out->iv; | 
|  | } else { | 
|  | gctx_out->iv = OPENSSL_malloc(gctx->ivlen); | 
|  | if (!gctx_out->iv) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | EVP_AES_GCM_CTX *gctx = ctx->cipher_data; | 
|  |  | 
|  | /* If not set up, return error */ | 
|  | if (!gctx->key_set) { | 
|  | return -1; | 
|  | } | 
|  | if (!gctx->iv_set) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (in) { | 
|  | if (out == NULL) { | 
|  | if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { | 
|  | return -1; | 
|  | } | 
|  | } else if (ctx->encrypt) { | 
|  | if (gctx->ctr) { | 
|  | if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, | 
|  | gctx->ctr)) { | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (gctx->ctr) { | 
|  | if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, | 
|  | gctx->ctr)) { | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return len; | 
|  | } else { | 
|  | if (!ctx->encrypt) { | 
|  | if (gctx->taglen < 0 || | 
|  | !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { | 
|  | return -1; | 
|  | } | 
|  | gctx->iv_set = 0; | 
|  | return 0; | 
|  | } | 
|  | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); | 
|  | gctx->taglen = 16; | 
|  | /* Don't reuse the IV */ | 
|  | gctx->iv_set = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const EVP_CIPHER aes_128_cbc = { | 
|  | NID_aes_128_cbc,     16 /* block_size */, 16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_128_ctr = { | 
|  | NID_aes_128_ctr,     1 /* block_size */,  16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_128_ecb = { | 
|  | NID_aes_128_ecb,     16 /* block_size */, 16 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_128_ofb = { | 
|  | NID_aes_128_ofb128,  1 /* block_size */,  16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ofb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_128_gcm = { | 
|  | NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  |  | 
|  | static const EVP_CIPHER aes_192_cbc = { | 
|  | NID_aes_192_cbc,     16 /* block_size */, 24 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_192_ctr = { | 
|  | NID_aes_192_ctr,     1 /* block_size */,  24 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_192_ecb = { | 
|  | NID_aes_192_ecb,     16 /* block_size */, 24 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_192_gcm = { | 
|  | NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  |  | 
|  | static const EVP_CIPHER aes_256_cbc = { | 
|  | NID_aes_256_cbc,     16 /* block_size */, 32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_256_ctr = { | 
|  | NID_aes_256_ctr,     1 /* block_size */,  32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_256_ecb = { | 
|  | NID_aes_256_ecb,     16 /* block_size */, 32 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_256_ofb = { | 
|  | NID_aes_256_ofb128,  1 /* block_size */,  32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, | 
|  | NULL /* app_data */, aes_init_key,        aes_ofb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aes_256_gcm = { | 
|  | NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) | 
|  |  | 
|  | /* AES-NI section. */ | 
|  |  | 
|  | static char aesni_capable(void) { | 
|  | return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0; | 
|  | } | 
|  |  | 
|  | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
|  | const uint8_t *iv, int enc) { | 
|  | int ret, mode; | 
|  | EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
|  |  | 
|  | mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; | 
|  | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { | 
|  | ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); | 
|  | dat->block = (block128_f)aesni_decrypt; | 
|  | dat->stream.cbc = | 
|  | mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; | 
|  | } else { | 
|  | ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); | 
|  | dat->block = (block128_f)aesni_encrypt; | 
|  | if (mode == EVP_CIPH_CBC_MODE) { | 
|  | dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; | 
|  | } else if (mode == EVP_CIPH_CTR_MODE) { | 
|  | dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; | 
|  | } else { | 
|  | dat->stream.cbc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | size_t bl = ctx->cipher->block_size; | 
|  |  | 
|  | if (len < bl) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
|  | const uint8_t *iv, int enc) { | 
|  | EVP_AES_GCM_CTX *gctx = ctx->cipher_data; | 
|  | if (!iv && !key) { | 
|  | return 1; | 
|  | } | 
|  | if (key) { | 
|  | aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); | 
|  | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); | 
|  | gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; | 
|  | /* If we have an iv can set it directly, otherwise use | 
|  | * saved IV. */ | 
|  | if (iv == NULL && gctx->iv_set) { | 
|  | iv = gctx->iv; | 
|  | } | 
|  | if (iv) { | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); | 
|  | gctx->iv_set = 1; | 
|  | } | 
|  | gctx->key_set = 1; | 
|  | } else { | 
|  | /* If key set use IV, otherwise copy */ | 
|  | if (gctx->key_set) { | 
|  | CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); | 
|  | } else { | 
|  | OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); | 
|  | } | 
|  | gctx->iv_set = 1; | 
|  | gctx->iv_gen = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_CIPHER aesni_128_cbc = { | 
|  | NID_aes_128_cbc,     16 /* block_size */, 16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_128_ctr = { | 
|  | NID_aes_128_ctr,     1 /* block_size */,  16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_128_ecb = { | 
|  | NID_aes_128_ecb,     16 /* block_size */, 16 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_128_ofb = { | 
|  | NID_aes_128_ofb128,  1 /* block_size */,  16 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aes_ofb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_128_gcm = { | 
|  | NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  |  | 
|  | static const EVP_CIPHER aesni_192_cbc = { | 
|  | NID_aes_192_cbc,     16 /* block_size */, 24 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_192_ctr = { | 
|  | NID_aes_192_ctr,     1 /* block_size */,  24 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_192_ecb = { | 
|  | NID_aes_192_ecb,     16 /* block_size */, 24 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_192_gcm = { | 
|  | NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  |  | 
|  | static const EVP_CIPHER aesni_256_cbc = { | 
|  | NID_aes_256_cbc,     16 /* block_size */, 32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_cbc_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_256_ctr = { | 
|  | NID_aes_256_ctr,     1 /* block_size */,  32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aes_ctr_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_256_ecb = { | 
|  | NID_aes_256_ecb,     16 /* block_size */, 32 /* key_size */, | 
|  | 0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aesni_ecb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_256_ofb = { | 
|  | NID_aes_256_ofb128,  1 /* block_size */,  32 /* key_size */, | 
|  | 16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, | 
|  | NULL /* app_data */, aesni_init_key,      aes_ofb_cipher, | 
|  | NULL /* cleanup */,  NULL /* ctrl */}; | 
|  |  | 
|  | static const EVP_CIPHER aesni_256_gcm = { | 
|  | NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, | 
|  | sizeof(EVP_AES_GCM_CTX), | 
|  | EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | | 
|  | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY | | 
|  | EVP_CIPH_FLAG_AEAD_CIPHER, | 
|  | NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, | 
|  | aes_gcm_ctrl}; | 
|  |  | 
|  | #define EVP_CIPHER_FUNCTION(keybits, mode)             \ | 
|  | const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ | 
|  | if (aesni_capable()) {                             \ | 
|  | return &aesni_##keybits##_##mode;                \ | 
|  | } else {                                           \ | 
|  | return &aes_##keybits##_##mode;                  \ | 
|  | }                                                  \ | 
|  | } | 
|  |  | 
|  | #else  /* ^^^  OPENSSL_X86_64 || OPENSSL_X86 */ | 
|  |  | 
|  | static char aesni_capable(void) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define EVP_CIPHER_FUNCTION(keybits, mode)             \ | 
|  | const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ | 
|  | return &aes_##keybits##_##mode;                    \ | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | EVP_CIPHER_FUNCTION(128, cbc) | 
|  | EVP_CIPHER_FUNCTION(128, ctr) | 
|  | EVP_CIPHER_FUNCTION(128, ecb) | 
|  | EVP_CIPHER_FUNCTION(128, ofb) | 
|  | EVP_CIPHER_FUNCTION(128, gcm) | 
|  |  | 
|  | EVP_CIPHER_FUNCTION(192, cbc) | 
|  | EVP_CIPHER_FUNCTION(192, ctr) | 
|  | EVP_CIPHER_FUNCTION(192, ecb) | 
|  | EVP_CIPHER_FUNCTION(192, gcm) | 
|  |  | 
|  | EVP_CIPHER_FUNCTION(256, cbc) | 
|  | EVP_CIPHER_FUNCTION(256, ctr) | 
|  | EVP_CIPHER_FUNCTION(256, ecb) | 
|  | EVP_CIPHER_FUNCTION(256, ofb) | 
|  | EVP_CIPHER_FUNCTION(256, gcm) | 
|  |  | 
|  |  | 
|  | #define EVP_AEAD_AES_GCM_TAG_LEN 16 | 
|  |  | 
|  | struct aead_aes_gcm_ctx { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks; | 
|  | GCM128_CONTEXT gcm; | 
|  | ctr128_f ctr; | 
|  | uint8_t tag_len; | 
|  | }; | 
|  |  | 
|  | static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | struct aead_aes_gcm_ctx *gcm_ctx; | 
|  | const size_t key_bits = key_len * 8; | 
|  |  | 
|  | if (key_bits != 128 && key_bits != 256) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0; /* EVP_AEAD_CTX_init should catch this. */ | 
|  | } | 
|  |  | 
|  | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
|  | tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
|  | } | 
|  |  | 
|  | if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx)); | 
|  | if (gcm_ctx == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | gcm_ctx->ctr = | 
|  | aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len); | 
|  | gcm_ctx->tag_len = tag_len; | 
|  | ctx->aead_state = gcm_ctx; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { | 
|  | struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; | 
|  | OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx)); | 
|  | OPENSSL_free(gcm_ctx); | 
|  | } | 
|  |  | 
|  | static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; | 
|  | GCM128_CONTEXT gcm; | 
|  |  | 
|  | if (in_len + gcm_ctx->tag_len < in_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_len < in_len + gcm_ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const AES_KEY *key = &gcm_ctx->ks.ks; | 
|  |  | 
|  | OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); | 
|  | CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); | 
|  |  | 
|  | if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (gcm_ctx->ctr) { | 
|  | if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, | 
|  | gcm_ctx->ctr)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); | 
|  | *out_len = in_len + gcm_ctx->tag_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; | 
|  | uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; | 
|  | size_t plaintext_len; | 
|  | GCM128_CONTEXT gcm; | 
|  |  | 
|  | if (in_len < gcm_ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | plaintext_len = in_len - gcm_ctx->tag_len; | 
|  |  | 
|  | if (max_out_len < plaintext_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const AES_KEY *key = &gcm_ctx->ks.ks; | 
|  |  | 
|  | OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); | 
|  | CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); | 
|  |  | 
|  | if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (gcm_ctx->ctr) { | 
|  | if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, | 
|  | in_len - gcm_ctx->tag_len, gcm_ctx->ctr)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len - gcm_ctx->tag_len)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); | 
|  | if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_len = plaintext_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_gcm = { | 
|  | 16,                       /* key len */ | 
|  | 12,                       /* nonce len */ | 
|  | EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ | 
|  | EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ | 
|  | aead_aes_gcm_init, | 
|  | NULL, /* init_with_direction */ | 
|  | aead_aes_gcm_cleanup, | 
|  | aead_aes_gcm_seal, | 
|  | aead_aes_gcm_open, | 
|  | NULL,                     /* get_iv */ | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_256_gcm = { | 
|  | 32,                       /* key len */ | 
|  | 12,                       /* nonce len */ | 
|  | EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ | 
|  | EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ | 
|  | aead_aes_gcm_init, | 
|  | NULL, /* init_with_direction */ | 
|  | aead_aes_gcm_cleanup, | 
|  | aead_aes_gcm_seal, | 
|  | aead_aes_gcm_open, | 
|  | NULL,                     /* get_iv */ | 
|  | }; | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; } | 
|  |  | 
|  |  | 
|  | #define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH | 
|  | #define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12 | 
|  |  | 
|  | struct aead_aes_ctr_hmac_sha256_ctx { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks; | 
|  | ctr128_f ctr; | 
|  | block128_f block; | 
|  | SHA256_CTX inner_init_state; | 
|  | SHA256_CTX outer_init_state; | 
|  | uint8_t tag_len; | 
|  | }; | 
|  |  | 
|  | static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer, | 
|  | const uint8_t hmac_key[32]) { | 
|  | static const size_t hmac_key_len = 32; | 
|  | uint8_t block[SHA256_CBLOCK]; | 
|  | OPENSSL_memcpy(block, hmac_key, hmac_key_len); | 
|  | OPENSSL_memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len); | 
|  |  | 
|  | unsigned i; | 
|  | for (i = 0; i < hmac_key_len; i++) { | 
|  | block[i] ^= 0x36; | 
|  | } | 
|  |  | 
|  | SHA256_Init(out_inner); | 
|  | SHA256_Update(out_inner, block, sizeof(block)); | 
|  |  | 
|  | OPENSSL_memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len); | 
|  | for (i = 0; i < hmac_key_len; i++) { | 
|  | block[i] ^= (0x36 ^ 0x5c); | 
|  | } | 
|  |  | 
|  | SHA256_Init(out_outer); | 
|  | SHA256_Update(out_outer, block, sizeof(block)); | 
|  | } | 
|  |  | 
|  | static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx; | 
|  | static const size_t hmac_key_len = 32; | 
|  |  | 
|  | if (key_len < hmac_key_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0; /* EVP_AEAD_CTX_init should catch this. */ | 
|  | } | 
|  |  | 
|  | const size_t aes_key_len = key_len - hmac_key_len; | 
|  | if (aes_key_len != 16 && aes_key_len != 32) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0; /* EVP_AEAD_CTX_init should catch this. */ | 
|  | } | 
|  |  | 
|  | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
|  | tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN; | 
|  | } | 
|  |  | 
|  | if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | aes_ctx = OPENSSL_malloc(sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); | 
|  | if (aes_ctx == NULL) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | aes_ctx->ctr = | 
|  | aes_ctr_set_key(&aes_ctx->ks.ks, NULL, &aes_ctx->block, key, aes_key_len); | 
|  | aes_ctx->tag_len = tag_len; | 
|  | hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state, | 
|  | key + aes_key_len); | 
|  |  | 
|  | ctx->aead_state = aes_ctx; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) { | 
|  | struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; | 
|  | OPENSSL_cleanse(aes_ctx, sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); | 
|  | OPENSSL_free(aes_ctx); | 
|  | } | 
|  |  | 
|  | static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) { | 
|  | unsigned i; | 
|  | uint8_t bytes[8]; | 
|  |  | 
|  | for (i = 0; i < sizeof(bytes); i++) { | 
|  | bytes[i] = value & 0xff; | 
|  | value >>= 8; | 
|  | } | 
|  | SHA256_Update(sha256, bytes, sizeof(bytes)); | 
|  | } | 
|  |  | 
|  | static void hmac_calculate(uint8_t out[SHA256_DIGEST_LENGTH], | 
|  | const SHA256_CTX *inner_init_state, | 
|  | const SHA256_CTX *outer_init_state, | 
|  | const uint8_t *ad, size_t ad_len, | 
|  | const uint8_t *nonce, const uint8_t *ciphertext, | 
|  | size_t ciphertext_len) { | 
|  | SHA256_CTX sha256; | 
|  | OPENSSL_memcpy(&sha256, inner_init_state, sizeof(sha256)); | 
|  | hmac_update_uint64(&sha256, ad_len); | 
|  | hmac_update_uint64(&sha256, ciphertext_len); | 
|  | SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); | 
|  | SHA256_Update(&sha256, ad, ad_len); | 
|  |  | 
|  | /* Pad with zeros to the end of the SHA-256 block. */ | 
|  | const unsigned num_padding = | 
|  | (SHA256_CBLOCK - ((sizeof(uint64_t)*2 + | 
|  | EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) % | 
|  | SHA256_CBLOCK)) % | 
|  | SHA256_CBLOCK; | 
|  | uint8_t padding[SHA256_CBLOCK]; | 
|  | OPENSSL_memset(padding, 0, num_padding); | 
|  | SHA256_Update(&sha256, padding, num_padding); | 
|  |  | 
|  | SHA256_Update(&sha256, ciphertext, ciphertext_len); | 
|  |  | 
|  | uint8_t inner_digest[SHA256_DIGEST_LENGTH]; | 
|  | SHA256_Final(inner_digest, &sha256); | 
|  |  | 
|  | OPENSSL_memcpy(&sha256, outer_init_state, sizeof(sha256)); | 
|  | SHA256_Update(&sha256, inner_digest, sizeof(inner_digest)); | 
|  | SHA256_Final(out, &sha256); | 
|  | } | 
|  |  | 
|  | static void aead_aes_ctr_hmac_sha256_crypt( | 
|  | const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, uint8_t *out, | 
|  | const uint8_t *in, size_t len, const uint8_t *nonce) { | 
|  | /* Since the AEAD operation is one-shot, keeping a buffer of unused keystream | 
|  | * bytes is pointless. However, |CRYPTO_ctr128_encrypt| requires it. */ | 
|  | uint8_t partial_block_buffer[AES_BLOCK_SIZE]; | 
|  | unsigned partial_block_offset = 0; | 
|  | OPENSSL_memset(partial_block_buffer, 0, sizeof(partial_block_buffer)); | 
|  |  | 
|  | uint8_t counter[AES_BLOCK_SIZE]; | 
|  | OPENSSL_memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); | 
|  | OPENSSL_memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4); | 
|  |  | 
|  | if (aes_ctx->ctr) { | 
|  | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &aes_ctx->ks.ks, counter, | 
|  | partial_block_buffer, &partial_block_offset, | 
|  | aes_ctx->ctr); | 
|  | } else { | 
|  | CRYPTO_ctr128_encrypt(in, out, len, &aes_ctx->ks.ks, counter, | 
|  | partial_block_buffer, &partial_block_offset, | 
|  | aes_ctx->block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aead_aes_ctr_hmac_sha256_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; | 
|  | const uint64_t in_len_64 = in_len; | 
|  |  | 
|  | if (in_len + aes_ctx->tag_len < in_len || | 
|  | /* This input is so large it would overflow the 32-bit block counter. */ | 
|  | in_len_64 >= (UINT64_C(1) << 32) * AES_BLOCK_SIZE) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_len < in_len + aes_ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce); | 
|  |  | 
|  | uint8_t hmac_result[SHA256_DIGEST_LENGTH]; | 
|  | hmac_calculate(hmac_result, &aes_ctx->inner_init_state, | 
|  | &aes_ctx->outer_init_state, ad, ad_len, nonce, out, in_len); | 
|  | OPENSSL_memcpy(out + in_len, hmac_result, aes_ctx->tag_len); | 
|  | *out_len = in_len + aes_ctx->tag_len; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_ctr_hmac_sha256_open(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; | 
|  | size_t plaintext_len; | 
|  |  | 
|  | if (in_len < aes_ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | plaintext_len = in_len - aes_ctx->tag_len; | 
|  |  | 
|  | if (max_out_len < plaintext_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t hmac_result[SHA256_DIGEST_LENGTH]; | 
|  | hmac_calculate(hmac_result, &aes_ctx->inner_init_state, | 
|  | &aes_ctx->outer_init_state, ad, ad_len, nonce, in, | 
|  | plaintext_len); | 
|  | if (CRYPTO_memcmp(hmac_result, in + plaintext_len, aes_ctx->tag_len) != 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, plaintext_len, nonce); | 
|  |  | 
|  | *out_len = plaintext_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = { | 
|  | 16 /* AES key */ + 32 /* HMAC key */, | 
|  | 12,                                       /* nonce length */ | 
|  | EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN,     /* overhead */ | 
|  | EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN,     /* max tag length */ | 
|  |  | 
|  | aead_aes_ctr_hmac_sha256_init, | 
|  | NULL /* init_with_direction */, | 
|  | aead_aes_ctr_hmac_sha256_cleanup, | 
|  | aead_aes_ctr_hmac_sha256_seal, | 
|  | aead_aes_ctr_hmac_sha256_open, | 
|  | NULL /* get_iv */, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = { | 
|  | 32 /* AES key */ + 32 /* HMAC key */, | 
|  | 12,                                       /* nonce length */ | 
|  | EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN,     /* overhead */ | 
|  | EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN,     /* max tag length */ | 
|  |  | 
|  | aead_aes_ctr_hmac_sha256_init, | 
|  | NULL /* init_with_direction */, | 
|  | aead_aes_ctr_hmac_sha256_cleanup, | 
|  | aead_aes_ctr_hmac_sha256_seal, | 
|  | aead_aes_ctr_hmac_sha256_open, | 
|  | NULL /* get_iv */, | 
|  | }; | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) { | 
|  | return &aead_aes_128_ctr_hmac_sha256; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) { | 
|  | return &aead_aes_256_ctr_hmac_sha256; | 
|  | } | 
|  |  | 
|  | #if !defined(OPENSSL_SMALL) | 
|  |  | 
|  | #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12 | 
|  | #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 | 
|  |  | 
|  | struct aead_aes_gcm_siv_ctx { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks; | 
|  | block128_f kgk_block; | 
|  | unsigned is_256:1; | 
|  | }; | 
|  |  | 
|  | static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | const size_t key_bits = key_len * 8; | 
|  |  | 
|  | if (key_bits != 128 && key_bits != 256) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0; /* EVP_AEAD_CTX_init should catch this. */ | 
|  | } | 
|  |  | 
|  | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
|  | tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
|  | } | 
|  |  | 
|  | if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = | 
|  | OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_ctx)); | 
|  | if (gcm_siv_ctx == NULL) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); | 
|  |  | 
|  | if (aesni_capable()) { | 
|  | aesni_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); | 
|  | gcm_siv_ctx->kgk_block = (block128_f)aesni_encrypt; | 
|  | } else if (hwaes_capable()) { | 
|  | aes_hw_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); | 
|  | gcm_siv_ctx->kgk_block = (block128_f)aes_hw_encrypt; | 
|  | } else if (vpaes_capable()) { | 
|  | vpaes_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); | 
|  | gcm_siv_ctx->kgk_block = (block128_f)vpaes_encrypt; | 
|  | } else { | 
|  | AES_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); | 
|  | gcm_siv_ctx->kgk_block = (block128_f)AES_encrypt; | 
|  | } | 
|  |  | 
|  | gcm_siv_ctx->is_256 = (key_len == 32); | 
|  | ctx->aead_state = gcm_siv_ctx; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) { | 
|  | struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; | 
|  | OPENSSL_cleanse(gcm_siv_ctx, sizeof(struct aead_aes_gcm_siv_ctx)); | 
|  | OPENSSL_free(gcm_siv_ctx); | 
|  | } | 
|  |  | 
|  | /* gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from | 
|  | * |in| to |out|, using the block function |enc_block| with |key| in counter | 
|  | * mode, starting at |initial_counter|. This differs from the traditional | 
|  | * counter mode code in that the counter is handled little-endian, only the | 
|  | * first four bytes are used and the GCM-SIV tweak to the final byte is | 
|  | * applied. The |in| and |out| pointers may be equal but otherwise must not | 
|  | * alias. */ | 
|  | static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, | 
|  | const uint8_t initial_counter[AES_BLOCK_SIZE], | 
|  | block128_f enc_block, const AES_KEY *key) { | 
|  | union { | 
|  | uint32_t w[4]; | 
|  | uint8_t c[16]; | 
|  | } counter; | 
|  |  | 
|  | OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE); | 
|  | counter.c[15] |= 0x80; | 
|  |  | 
|  | for (size_t done = 0; done < in_len;) { | 
|  | uint8_t keystream[AES_BLOCK_SIZE]; | 
|  | enc_block(counter.c, keystream, key); | 
|  | counter.w[0]++; | 
|  |  | 
|  | size_t todo = AES_BLOCK_SIZE; | 
|  | if (in_len - done < todo) { | 
|  | todo = in_len - done; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < todo; i++) { | 
|  | out[done + i] = keystream[i] ^ in[done + i]; | 
|  | } | 
|  |  | 
|  | done += todo; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and | 
|  | * AD. The result is written to |out_tag|. */ | 
|  | static void gcm_siv_polyval( | 
|  | uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, | 
|  | size_t ad_len, const uint8_t auth_key[16], | 
|  | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { | 
|  | struct polyval_ctx polyval_ctx; | 
|  | CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); | 
|  |  | 
|  | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); | 
|  |  | 
|  | uint8_t scratch[16]; | 
|  | if (ad_len & 15) { | 
|  | OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
|  | OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); | 
|  | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); | 
|  | } | 
|  |  | 
|  | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); | 
|  | if (in_len & 15) { | 
|  | OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
|  | OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); | 
|  | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); | 
|  | } | 
|  |  | 
|  | union { | 
|  | uint8_t c[16]; | 
|  | struct { | 
|  | uint64_t ad; | 
|  | uint64_t in; | 
|  | } bitlens; | 
|  | } length_block; | 
|  |  | 
|  | length_block.bitlens.ad = ad_len * 8; | 
|  | length_block.bitlens.in = in_len * 8; | 
|  | CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c, | 
|  | sizeof(length_block)); | 
|  |  | 
|  | CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); | 
|  | for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) { | 
|  | out_tag[i] ^= nonce[i]; | 
|  | } | 
|  | out_tag[15] &= 0x7f; | 
|  | } | 
|  |  | 
|  | /* gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. */ | 
|  | struct gcm_siv_record_keys { | 
|  | uint8_t auth_key[16]; | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } enc_key; | 
|  | block128_f enc_block; | 
|  | }; | 
|  |  | 
|  | /* gcm_siv_keys calculates the keys for a specific GCM-SIV record with the | 
|  | * given nonce and writes them to |*out_keys|. */ | 
|  | static void gcm_siv_keys( | 
|  | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, | 
|  | struct gcm_siv_record_keys *out_keys, | 
|  | const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { | 
|  | const AES_KEY *const key = &gcm_siv_ctx->ks.ks; | 
|  | uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8]; | 
|  | const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4; | 
|  |  | 
|  | uint8_t counter[AES_BLOCK_SIZE]; | 
|  | OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN); | 
|  | OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN, | 
|  | nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN); | 
|  | for (size_t i = 0; i < blocks_needed; i++) { | 
|  | counter[0] = i; | 
|  |  | 
|  | uint8_t ciphertext[AES_BLOCK_SIZE]; | 
|  | gcm_siv_ctx->kgk_block(counter, ciphertext, key); | 
|  | OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8); | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(out_keys->auth_key, key_material, 16); | 
|  | aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, | 
|  | key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16); | 
|  | } | 
|  |  | 
|  | static int aead_aes_gcm_siv_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; | 
|  | const uint64_t in_len_64 = in_len; | 
|  | const uint64_t ad_len_64 = ad_len; | 
|  |  | 
|  | if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || | 
|  | in_len_64 > (UINT64_C(1) << 36) || | 
|  | ad_len_64 >= (UINT64_C(1) << 61)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_len < in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct gcm_siv_record_keys keys; | 
|  | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); | 
|  |  | 
|  | uint8_t tag[16]; | 
|  | gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce); | 
|  | keys.enc_block(tag, tag, &keys.enc_key.ks); | 
|  |  | 
|  | gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); | 
|  |  | 
|  | OPENSSL_memcpy(&out[in_len], tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); | 
|  | *out_len = in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_gcm_siv_open(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const uint64_t ad_len_64 = ad_len; | 
|  | if (ad_len_64 >= (UINT64_C(1) << 61)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint64_t in_len_64 = in_len; | 
|  | if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || | 
|  | in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; | 
|  | const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
|  |  | 
|  | if (max_out_len < plaintext_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct gcm_siv_record_keys keys; | 
|  | gcm_siv_keys(gcm_siv_ctx, &keys, nonce); | 
|  |  | 
|  | gcm_siv_crypt(out, in, plaintext_len, &in[plaintext_len], keys.enc_block, | 
|  | &keys.enc_key.ks); | 
|  |  | 
|  | uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; | 
|  | gcm_siv_polyval(expected_tag, out, plaintext_len, ad, ad_len, keys.auth_key, | 
|  | nonce); | 
|  | keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); | 
|  |  | 
|  | if (CRYPTO_memcmp(expected_tag, &in[plaintext_len], sizeof(expected_tag)) != | 
|  | 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_len = plaintext_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_AEAD aead_aes_128_gcm_siv = { | 
|  | 16,                             /* key length */ | 
|  | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, /* nonce length */ | 
|  | EVP_AEAD_AES_GCM_SIV_TAG_LEN,   /* overhead */ | 
|  | EVP_AEAD_AES_GCM_SIV_TAG_LEN,   /* max tag length */ | 
|  |  | 
|  | aead_aes_gcm_siv_init, | 
|  | NULL /* init_with_direction */, | 
|  | aead_aes_gcm_siv_cleanup, | 
|  | aead_aes_gcm_siv_seal, | 
|  | aead_aes_gcm_siv_open, | 
|  | NULL /* get_iv */, | 
|  | }; | 
|  |  | 
|  | static const EVP_AEAD aead_aes_256_gcm_siv = { | 
|  | 32,                             /* key length */ | 
|  | EVP_AEAD_AES_GCM_SIV_NONCE_LEN, /* nonce length */ | 
|  | EVP_AEAD_AES_GCM_SIV_TAG_LEN,   /* overhead */ | 
|  | EVP_AEAD_AES_GCM_SIV_TAG_LEN,   /* max tag length */ | 
|  |  | 
|  | aead_aes_gcm_siv_init, | 
|  | NULL /* init_with_direction */, | 
|  | aead_aes_gcm_siv_cleanup, | 
|  | aead_aes_gcm_siv_seal, | 
|  | aead_aes_gcm_siv_open, | 
|  | NULL /* get_iv */, | 
|  | }; | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { | 
|  | return &aead_aes_128_gcm_siv; | 
|  | } | 
|  |  | 
|  | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { | 
|  | return &aead_aes_256_gcm_siv; | 
|  | } | 
|  |  | 
|  | #endif  /* !OPENSSL_SMALL */ | 
|  |  | 
|  | int EVP_has_aes_hardware(void) { | 
|  | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) | 
|  | return aesni_capable() && crypto_gcm_clmul_enabled(); | 
|  | #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) | 
|  | return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } |