|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | /* Altivec-optimized SHA1 in C. This is tested on ppc64le only. | 
|  | * | 
|  | * References: | 
|  | * https://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1 | 
|  | * http://arctic.org/~dean/crypto/sha1.html | 
|  | * | 
|  | * This code used the generic SHA-1 from OpenSSL as a basis and AltiVec | 
|  | * optimisations were added on top. */ | 
|  |  | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #if defined(OPENSSL_PPC64LE) | 
|  |  | 
|  | #include <altivec.h> | 
|  |  | 
|  | void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num); | 
|  |  | 
|  | static uint32_t rotate(uint32_t a, int n) { return (a << n) | (a >> (32 - n)); } | 
|  |  | 
|  | typedef vector unsigned int vec_uint32_t; | 
|  | typedef vector unsigned char vec_uint8_t; | 
|  |  | 
|  | /* Vector constants */ | 
|  | static const vec_uint8_t k_swap_endianness = {3,  2,  1, 0, 7,  6,  5,  4, | 
|  | 11, 10, 9, 8, 15, 14, 13, 12}; | 
|  |  | 
|  | /* Shift amounts for byte and bit shifts and rotations */ | 
|  | static const vec_uint8_t k_4_bytes = {32, 32, 32, 32, 32, 32, 32, 32, | 
|  | 32, 32, 32, 32, 32, 32, 32, 32}; | 
|  | static const vec_uint8_t k_12_bytes = {96, 96, 96, 96, 96, 96, 96, 96, | 
|  | 96, 96, 96, 96, 96, 96, 96, 96}; | 
|  |  | 
|  | #define K_00_19 0x5a827999UL | 
|  | #define K_20_39 0x6ed9eba1UL | 
|  | #define K_40_59 0x8f1bbcdcUL | 
|  | #define K_60_79 0xca62c1d6UL | 
|  |  | 
|  | /* Vector versions of the above. */ | 
|  | static const vec_uint32_t K_00_19_x_4 = {K_00_19, K_00_19, K_00_19, K_00_19}; | 
|  | static const vec_uint32_t K_20_39_x_4 = {K_20_39, K_20_39, K_20_39, K_20_39}; | 
|  | static const vec_uint32_t K_40_59_x_4 = {K_40_59, K_40_59, K_40_59, K_40_59}; | 
|  | static const vec_uint32_t K_60_79_x_4 = {K_60_79, K_60_79, K_60_79, K_60_79}; | 
|  |  | 
|  | /* vector message scheduling: compute message schedule for round i..i+3 where i | 
|  | * is divisible by 4. We return the schedule w[i..i+3] as a vector. In | 
|  | * addition, we also precompute sum w[i..+3] and an additive constant K. This | 
|  | * is done to offload some computation of f() in the integer execution units. | 
|  | * | 
|  | * Byte shifting code below may not be correct for big-endian systems. */ | 
|  | static vec_uint32_t sched_00_15(vec_uint32_t *pre_added, const void *data, | 
|  | vec_uint32_t k) { | 
|  | const vec_uint32_t v = *((const vec_uint32_t *)data); | 
|  | const vec_uint32_t w = vec_perm(v, v, k_swap_endianness); | 
|  | vec_st(w + k, 0, pre_added); | 
|  | return w; | 
|  | } | 
|  |  | 
|  | /* Compute w[i..i+3] using these steps for i in [16, 20, 24, 28] | 
|  | * | 
|  | * w'[i  ]  = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) <<< 1 | 
|  | * w'[i+1]  = (w[i-2] ^ w[i-7] ^ w[i-13] ^ w[i-15]) <<< 1 | 
|  | * w'[i+2]  = (w[i-1] ^ w[i-6] ^ w[i-12] ^ w[i-14]) <<< 1 | 
|  | * w'[i+3]  = (     0 ^ w[i-5] ^ w[i-11] ^ w[i-13]) <<< 1 | 
|  | * | 
|  | * w[  i] = w'[  i] | 
|  | * w[i+1] = w'[i+1] | 
|  | * w[i+2] = w'[i+2] | 
|  | * w[i+3] = w'[i+3] ^ (w'[i] <<< 1) */ | 
|  | static vec_uint32_t sched_16_31(vec_uint32_t *pre_added, vec_uint32_t minus_4, | 
|  | vec_uint32_t minus_8, vec_uint32_t minus_12, | 
|  | vec_uint32_t minus_16, vec_uint32_t k) { | 
|  | const vec_uint32_t minus_3 = vec_sro(minus_4, k_4_bytes); | 
|  | const vec_uint32_t minus_14 = vec_sld((minus_12), (minus_16), 8); | 
|  | const vec_uint32_t k_1_bit = vec_splat_u32(1); | 
|  | const vec_uint32_t w_prime = | 
|  | vec_rl(minus_3 ^ minus_8 ^ minus_14 ^ minus_16, k_1_bit); | 
|  | const vec_uint32_t w = | 
|  | w_prime ^ vec_rl(vec_slo(w_prime, k_12_bytes), k_1_bit); | 
|  | vec_st(w + k, 0, pre_added); | 
|  | return w; | 
|  | } | 
|  |  | 
|  | /* Compute w[i..i+3] using this relation for i in [32, 36, 40 ... 76] | 
|  | * w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]), 2) <<< 2 */ | 
|  | static vec_uint32_t sched_32_79(vec_uint32_t *pre_added, vec_uint32_t minus_4, | 
|  | vec_uint32_t minus_8, vec_uint32_t minus_16, | 
|  | vec_uint32_t minus_28, vec_uint32_t minus_32, | 
|  | vec_uint32_t k) { | 
|  | const vec_uint32_t minus_6 = vec_sld(minus_4, minus_8, 8); | 
|  | const vec_uint32_t k_2_bits = vec_splat_u32(2); | 
|  | const vec_uint32_t w = | 
|  | vec_rl(minus_6 ^ minus_16 ^ minus_28 ^ minus_32, k_2_bits); | 
|  | vec_st(w + k, 0, pre_added); | 
|  | return w; | 
|  | } | 
|  |  | 
|  | /* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified | 
|  | * to the code in F_00_19. Wei attributes these optimisations to Peter | 
|  | * Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define | 
|  | * F(x,y,z) (((x) & (y))  |  ((~(x)) & (z))) I've just become aware of another | 
|  | * tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a */ | 
|  | #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) | 
|  | #define F_20_39(b, c, d) ((b) ^ (c) ^ (d)) | 
|  | #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d))) | 
|  | #define F_60_79(b, c, d) F_20_39(b, c, d) | 
|  |  | 
|  | /* We pre-added the K constants during message scheduling. */ | 
|  | #define BODY_00_19(i, a, b, c, d, e, f)                         \ | 
|  | do {                                                          \ | 
|  | (f) = w[i] + (e) + rotate((a), 5) + F_00_19((b), (c), (d)); \ | 
|  | (b) = rotate((b), 30);                                      \ | 
|  | } while (0) | 
|  |  | 
|  | #define BODY_20_39(i, a, b, c, d, e, f)                         \ | 
|  | do {                                                          \ | 
|  | (f) = w[i] + (e) + rotate((a), 5) + F_20_39((b), (c), (d)); \ | 
|  | (b) = rotate((b), 30);                                      \ | 
|  | } while (0) | 
|  |  | 
|  | #define BODY_40_59(i, a, b, c, d, e, f)                         \ | 
|  | do {                                                          \ | 
|  | (f) = w[i] + (e) + rotate((a), 5) + F_40_59((b), (c), (d)); \ | 
|  | (b) = rotate((b), 30);                                      \ | 
|  | } while (0) | 
|  |  | 
|  | #define BODY_60_79(i, a, b, c, d, e, f)                         \ | 
|  | do {                                                          \ | 
|  | (f) = w[i] + (e) + rotate((a), 5) + F_60_79((b), (c), (d)); \ | 
|  | (b) = rotate((b), 30);                                      \ | 
|  | } while (0) | 
|  |  | 
|  | void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { | 
|  | uint32_t A, B, C, D, E, T; | 
|  |  | 
|  | A = state[0]; | 
|  | B = state[1]; | 
|  | C = state[2]; | 
|  | D = state[3]; | 
|  | E = state[4]; | 
|  |  | 
|  | for (;;) { | 
|  | vec_uint32_t vw[20]; | 
|  | const uint32_t *w = (const uint32_t *)&vw; | 
|  |  | 
|  | vec_uint32_t k = K_00_19_x_4; | 
|  | const vec_uint32_t w0 = sched_00_15(vw + 0, data + 0, k); | 
|  | BODY_00_19(0, A, B, C, D, E, T); | 
|  | BODY_00_19(1, T, A, B, C, D, E); | 
|  | BODY_00_19(2, E, T, A, B, C, D); | 
|  | BODY_00_19(3, D, E, T, A, B, C); | 
|  |  | 
|  | const vec_uint32_t w4 = sched_00_15(vw + 1, data + 16, k); | 
|  | BODY_00_19(4, C, D, E, T, A, B); | 
|  | BODY_00_19(5, B, C, D, E, T, A); | 
|  | BODY_00_19(6, A, B, C, D, E, T); | 
|  | BODY_00_19(7, T, A, B, C, D, E); | 
|  |  | 
|  | const vec_uint32_t w8 = sched_00_15(vw + 2, data + 32, k); | 
|  | BODY_00_19(8, E, T, A, B, C, D); | 
|  | BODY_00_19(9, D, E, T, A, B, C); | 
|  | BODY_00_19(10, C, D, E, T, A, B); | 
|  | BODY_00_19(11, B, C, D, E, T, A); | 
|  |  | 
|  | const vec_uint32_t w12 = sched_00_15(vw + 3, data + 48, k); | 
|  | BODY_00_19(12, A, B, C, D, E, T); | 
|  | BODY_00_19(13, T, A, B, C, D, E); | 
|  | BODY_00_19(14, E, T, A, B, C, D); | 
|  | BODY_00_19(15, D, E, T, A, B, C); | 
|  |  | 
|  | const vec_uint32_t w16 = sched_16_31(vw + 4, w12, w8, w4, w0, k); | 
|  | BODY_00_19(16, C, D, E, T, A, B); | 
|  | BODY_00_19(17, B, C, D, E, T, A); | 
|  | BODY_00_19(18, A, B, C, D, E, T); | 
|  | BODY_00_19(19, T, A, B, C, D, E); | 
|  |  | 
|  | k = K_20_39_x_4; | 
|  | const vec_uint32_t w20 = sched_16_31(vw + 5, w16, w12, w8, w4, k); | 
|  | BODY_20_39(20, E, T, A, B, C, D); | 
|  | BODY_20_39(21, D, E, T, A, B, C); | 
|  | BODY_20_39(22, C, D, E, T, A, B); | 
|  | BODY_20_39(23, B, C, D, E, T, A); | 
|  |  | 
|  | const vec_uint32_t w24 = sched_16_31(vw + 6, w20, w16, w12, w8, k); | 
|  | BODY_20_39(24, A, B, C, D, E, T); | 
|  | BODY_20_39(25, T, A, B, C, D, E); | 
|  | BODY_20_39(26, E, T, A, B, C, D); | 
|  | BODY_20_39(27, D, E, T, A, B, C); | 
|  |  | 
|  | const vec_uint32_t w28 = sched_16_31(vw + 7, w24, w20, w16, w12, k); | 
|  | BODY_20_39(28, C, D, E, T, A, B); | 
|  | BODY_20_39(29, B, C, D, E, T, A); | 
|  | BODY_20_39(30, A, B, C, D, E, T); | 
|  | BODY_20_39(31, T, A, B, C, D, E); | 
|  |  | 
|  | const vec_uint32_t w32 = sched_32_79(vw + 8, w28, w24, w16, w4, w0, k); | 
|  | BODY_20_39(32, E, T, A, B, C, D); | 
|  | BODY_20_39(33, D, E, T, A, B, C); | 
|  | BODY_20_39(34, C, D, E, T, A, B); | 
|  | BODY_20_39(35, B, C, D, E, T, A); | 
|  |  | 
|  | const vec_uint32_t w36 = sched_32_79(vw + 9, w32, w28, w20, w8, w4, k); | 
|  | BODY_20_39(36, A, B, C, D, E, T); | 
|  | BODY_20_39(37, T, A, B, C, D, E); | 
|  | BODY_20_39(38, E, T, A, B, C, D); | 
|  | BODY_20_39(39, D, E, T, A, B, C); | 
|  |  | 
|  | k = K_40_59_x_4; | 
|  | const vec_uint32_t w40 = sched_32_79(vw + 10, w36, w32, w24, w12, w8, k); | 
|  | BODY_40_59(40, C, D, E, T, A, B); | 
|  | BODY_40_59(41, B, C, D, E, T, A); | 
|  | BODY_40_59(42, A, B, C, D, E, T); | 
|  | BODY_40_59(43, T, A, B, C, D, E); | 
|  |  | 
|  | const vec_uint32_t w44 = sched_32_79(vw + 11, w40, w36, w28, w16, w12, k); | 
|  | BODY_40_59(44, E, T, A, B, C, D); | 
|  | BODY_40_59(45, D, E, T, A, B, C); | 
|  | BODY_40_59(46, C, D, E, T, A, B); | 
|  | BODY_40_59(47, B, C, D, E, T, A); | 
|  |  | 
|  | const vec_uint32_t w48 = sched_32_79(vw + 12, w44, w40, w32, w20, w16, k); | 
|  | BODY_40_59(48, A, B, C, D, E, T); | 
|  | BODY_40_59(49, T, A, B, C, D, E); | 
|  | BODY_40_59(50, E, T, A, B, C, D); | 
|  | BODY_40_59(51, D, E, T, A, B, C); | 
|  |  | 
|  | const vec_uint32_t w52 = sched_32_79(vw + 13, w48, w44, w36, w24, w20, k); | 
|  | BODY_40_59(52, C, D, E, T, A, B); | 
|  | BODY_40_59(53, B, C, D, E, T, A); | 
|  | BODY_40_59(54, A, B, C, D, E, T); | 
|  | BODY_40_59(55, T, A, B, C, D, E); | 
|  |  | 
|  | const vec_uint32_t w56 = sched_32_79(vw + 14, w52, w48, w40, w28, w24, k); | 
|  | BODY_40_59(56, E, T, A, B, C, D); | 
|  | BODY_40_59(57, D, E, T, A, B, C); | 
|  | BODY_40_59(58, C, D, E, T, A, B); | 
|  | BODY_40_59(59, B, C, D, E, T, A); | 
|  |  | 
|  | k = K_60_79_x_4; | 
|  | const vec_uint32_t w60 = sched_32_79(vw + 15, w56, w52, w44, w32, w28, k); | 
|  | BODY_60_79(60, A, B, C, D, E, T); | 
|  | BODY_60_79(61, T, A, B, C, D, E); | 
|  | BODY_60_79(62, E, T, A, B, C, D); | 
|  | BODY_60_79(63, D, E, T, A, B, C); | 
|  |  | 
|  | const vec_uint32_t w64 = sched_32_79(vw + 16, w60, w56, w48, w36, w32, k); | 
|  | BODY_60_79(64, C, D, E, T, A, B); | 
|  | BODY_60_79(65, B, C, D, E, T, A); | 
|  | BODY_60_79(66, A, B, C, D, E, T); | 
|  | BODY_60_79(67, T, A, B, C, D, E); | 
|  |  | 
|  | const vec_uint32_t w68 = sched_32_79(vw + 17, w64, w60, w52, w40, w36, k); | 
|  | BODY_60_79(68, E, T, A, B, C, D); | 
|  | BODY_60_79(69, D, E, T, A, B, C); | 
|  | BODY_60_79(70, C, D, E, T, A, B); | 
|  | BODY_60_79(71, B, C, D, E, T, A); | 
|  |  | 
|  | const vec_uint32_t w72 = sched_32_79(vw + 18, w68, w64, w56, w44, w40, k); | 
|  | BODY_60_79(72, A, B, C, D, E, T); | 
|  | BODY_60_79(73, T, A, B, C, D, E); | 
|  | BODY_60_79(74, E, T, A, B, C, D); | 
|  | BODY_60_79(75, D, E, T, A, B, C); | 
|  |  | 
|  | /* We don't use the last value */ | 
|  | (void)sched_32_79(vw + 19, w72, w68, w60, w48, w44, k); | 
|  | BODY_60_79(76, C, D, E, T, A, B); | 
|  | BODY_60_79(77, B, C, D, E, T, A); | 
|  | BODY_60_79(78, A, B, C, D, E, T); | 
|  | BODY_60_79(79, T, A, B, C, D, E); | 
|  |  | 
|  | const uint32_t mask = 0xffffffffUL; | 
|  | state[0] = (state[0] + E) & mask; | 
|  | state[1] = (state[1] + T) & mask; | 
|  | state[2] = (state[2] + A) & mask; | 
|  | state[3] = (state[3] + B) & mask; | 
|  | state[4] = (state[4] + C) & mask; | 
|  |  | 
|  | data += 64; | 
|  | if (--num == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | A = state[0]; | 
|  | B = state[1]; | 
|  | C = state[2]; | 
|  | D = state[3]; | 
|  | E = state[4]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  /* OPENSSL_PPC64LE */ |