|  | /* Copyright (c) 2014, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #if !defined(__STDC_FORMAT_MACROS) | 
|  | #define __STDC_FORMAT_MACROS | 
|  | #endif | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #if !defined(OPENSSL_WINDOWS) | 
|  | #include <arpa/inet.h> | 
|  | #include <netinet/in.h> | 
|  | #include <netinet/tcp.h> | 
|  | #include <signal.h> | 
|  | #include <sys/socket.h> | 
|  | #include <sys/time.h> | 
|  | #include <unistd.h> | 
|  | #else | 
|  | #include <io.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <winsock2.h> | 
|  | #include <ws2tcpip.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  |  | 
|  | OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib")) | 
|  | #endif | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <inttypes.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/buf.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/dh.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/ssl.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "../../crypto/internal.h" | 
|  | #include "async_bio.h" | 
|  | #include "packeted_bio.h" | 
|  | #include "test_config.h" | 
|  |  | 
|  | namespace bssl { | 
|  |  | 
|  | #if !defined(OPENSSL_WINDOWS) | 
|  | static int closesocket(int sock) { | 
|  | return close(sock); | 
|  | } | 
|  |  | 
|  | static void PrintSocketError(const char *func) { | 
|  | perror(func); | 
|  | } | 
|  | #else | 
|  | static void PrintSocketError(const char *func) { | 
|  | fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int Usage(const char *program) { | 
|  | fprintf(stderr, "Usage: %s [flags...]\n", program); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct TestState { | 
|  | // async_bio is async BIO which pauses reads and writes. | 
|  | BIO *async_bio = nullptr; | 
|  | // packeted_bio is the packeted BIO which simulates read timeouts. | 
|  | BIO *packeted_bio = nullptr; | 
|  | bssl::UniquePtr<EVP_PKEY> channel_id; | 
|  | bool cert_ready = false; | 
|  | bssl::UniquePtr<SSL_SESSION> session; | 
|  | bssl::UniquePtr<SSL_SESSION> pending_session; | 
|  | bool early_callback_called = false; | 
|  | bool handshake_done = false; | 
|  | // private_key is the underlying private key used when testing custom keys. | 
|  | bssl::UniquePtr<EVP_PKEY> private_key; | 
|  | std::vector<uint8_t> private_key_result; | 
|  | // private_key_retries is the number of times an asynchronous private key | 
|  | // operation has been retried. | 
|  | unsigned private_key_retries = 0; | 
|  | bool got_new_session = false; | 
|  | bssl::UniquePtr<SSL_SESSION> new_session; | 
|  | bool ticket_decrypt_done = false; | 
|  | bool alpn_select_done = false; | 
|  | }; | 
|  |  | 
|  | static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, | 
|  | int index, long argl, void *argp) { | 
|  | delete ((TestState *)ptr); | 
|  | } | 
|  |  | 
|  | static int g_config_index = 0; | 
|  | static int g_state_index = 0; | 
|  |  | 
|  | static bool SetTestConfig(SSL *ssl, const TestConfig *config) { | 
|  | return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; | 
|  | } | 
|  |  | 
|  | static const TestConfig *GetTestConfig(const SSL *ssl) { | 
|  | return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); | 
|  | } | 
|  |  | 
|  | static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) { | 
|  | // |SSL_set_ex_data| takes ownership of |state| only on success. | 
|  | if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) { | 
|  | state.release(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static TestState *GetTestState(const SSL *ssl) { | 
|  | return (TestState *)SSL_get_ex_data(ssl, g_state_index); | 
|  | } | 
|  |  | 
|  | static bool LoadCertificate(bssl::UniquePtr<X509> *out_x509, | 
|  | bssl::UniquePtr<STACK_OF(X509)> *out_chain, | 
|  | const std::string &file) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); | 
|  | if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); | 
|  | if (!*out_x509) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out_chain->reset(sk_X509_new_null()); | 
|  | if (!*out_chain) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Keep reading the certificate chain. | 
|  | for (;;) { | 
|  | bssl::UniquePtr<X509> cert( | 
|  | PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); | 
|  | if (!cert) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!sk_X509_push(out_chain->get(), cert.get())) { | 
|  | return false; | 
|  | } | 
|  | cert.release();  // sk_X509_push takes ownership. | 
|  | } | 
|  |  | 
|  | uint32_t err = ERR_peek_last_error(); | 
|  | if (ERR_GET_LIB(err) != ERR_LIB_PEM || | 
|  | ERR_GET_REASON(err) != PEM_R_NO_START_LINE) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ERR_clear_error(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); | 
|  | if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { | 
|  | return nullptr; | 
|  | } | 
|  | return bssl::UniquePtr<EVP_PKEY>( | 
|  | PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); | 
|  | } | 
|  |  | 
|  | static int AsyncPrivateKeyType(SSL *ssl) { | 
|  | EVP_PKEY *key = GetTestState(ssl)->private_key.get(); | 
|  | switch (EVP_PKEY_id(key)) { | 
|  | case EVP_PKEY_RSA: | 
|  | return NID_rsaEncryption; | 
|  | case EVP_PKEY_EC: | 
|  | return EC_GROUP_get_curve_name( | 
|  | EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(key))); | 
|  | default: | 
|  | return NID_undef; | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) { | 
|  | return EVP_PKEY_size(GetTestState(ssl)->private_key.get()); | 
|  | } | 
|  |  | 
|  | static ssl_private_key_result_t AsyncPrivateKeySign( | 
|  | SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | if (!test_state->private_key_result.empty()) { | 
|  | fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // Determine the hash. | 
|  | const EVP_MD *md; | 
|  | switch (signature_algorithm) { | 
|  | case SSL_SIGN_RSA_PKCS1_SHA1: | 
|  | case SSL_SIGN_ECDSA_SHA1: | 
|  | md = EVP_sha1(); | 
|  | break; | 
|  | case SSL_SIGN_RSA_PKCS1_SHA256: | 
|  | case SSL_SIGN_ECDSA_SECP256R1_SHA256: | 
|  | case SSL_SIGN_RSA_PSS_SHA256: | 
|  | md = EVP_sha256(); | 
|  | break; | 
|  | case SSL_SIGN_RSA_PKCS1_SHA384: | 
|  | case SSL_SIGN_ECDSA_SECP384R1_SHA384: | 
|  | case SSL_SIGN_RSA_PSS_SHA384: | 
|  | md = EVP_sha384(); | 
|  | break; | 
|  | case SSL_SIGN_RSA_PKCS1_SHA512: | 
|  | case SSL_SIGN_ECDSA_SECP521R1_SHA512: | 
|  | case SSL_SIGN_RSA_PSS_SHA512: | 
|  | md = EVP_sha512(); | 
|  | break; | 
|  | case SSL_SIGN_RSA_PKCS1_MD5_SHA1: | 
|  | md = EVP_md5_sha1(); | 
|  | break; | 
|  | default: | 
|  | fprintf(stderr, "Unknown signature algorithm %04x.\n", | 
|  | signature_algorithm); | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  |  | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, | 
|  | test_state->private_key.get())) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  |  | 
|  | // Configure additional signature parameters. | 
|  | switch (signature_algorithm) { | 
|  | case SSL_SIGN_RSA_PSS_SHA256: | 
|  | case SSL_SIGN_RSA_PSS_SHA384: | 
|  | case SSL_SIGN_RSA_PSS_SHA512: | 
|  | if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || | 
|  | !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, | 
|  | -1 /* salt len = hash len */)) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the signature into |test_state|. | 
|  | size_t len = 0; | 
|  | if (!EVP_DigestSignUpdate(ctx.get(), in, in_len) || | 
|  | !EVP_DigestSignFinal(ctx.get(), nullptr, &len)) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | test_state->private_key_result.resize(len); | 
|  | if (!EVP_DigestSignFinal(ctx.get(), test_state->private_key_result.data(), | 
|  | &len)) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | test_state->private_key_result.resize(len); | 
|  |  | 
|  | // The signature will be released asynchronously in |AsyncPrivateKeyComplete|. | 
|  | return ssl_private_key_retry; | 
|  | } | 
|  |  | 
|  | static ssl_private_key_result_t AsyncPrivateKeyDecrypt( | 
|  | SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | if (!test_state->private_key_result.empty()) { | 
|  | fprintf(stderr, | 
|  | "AsyncPrivateKeyDecrypt called with operation pending.\n"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); | 
|  | if (rsa == NULL) { | 
|  | fprintf(stderr, | 
|  | "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); | 
|  | abort(); | 
|  | } | 
|  | test_state->private_key_result.resize(RSA_size(rsa)); | 
|  | if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), | 
|  | RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  |  | 
|  | test_state->private_key_result.resize(*out_len); | 
|  |  | 
|  | // The decryption will be released asynchronously in |AsyncPrivateComplete|. | 
|  | return ssl_private_key_retry; | 
|  | } | 
|  |  | 
|  | static ssl_private_key_result_t AsyncPrivateKeyComplete( | 
|  | SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | if (test_state->private_key_result.empty()) { | 
|  | fprintf(stderr, | 
|  | "AsyncPrivateKeyComplete called without operation pending.\n"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (test_state->private_key_retries < 2) { | 
|  | // Only return the decryption on the second attempt, to test both incomplete | 
|  | // |decrypt| and |decrypt_complete|. | 
|  | return ssl_private_key_retry; | 
|  | } | 
|  |  | 
|  | if (max_out < test_state->private_key_result.size()) { | 
|  | fprintf(stderr, "Output buffer too small.\n"); | 
|  | return ssl_private_key_failure; | 
|  | } | 
|  | memcpy(out, test_state->private_key_result.data(), | 
|  | test_state->private_key_result.size()); | 
|  | *out_len = test_state->private_key_result.size(); | 
|  |  | 
|  | test_state->private_key_result.clear(); | 
|  | test_state->private_key_retries = 0; | 
|  | return ssl_private_key_success; | 
|  | } | 
|  |  | 
|  | static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { | 
|  | AsyncPrivateKeyType, | 
|  | AsyncPrivateKeyMaxSignatureLen, | 
|  | AsyncPrivateKeySign, | 
|  | nullptr /* sign_digest */, | 
|  | AsyncPrivateKeyDecrypt, | 
|  | AsyncPrivateKeyComplete, | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct Free { | 
|  | void operator()(T *buf) { | 
|  | free(buf); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509, | 
|  | bssl::UniquePtr<STACK_OF(X509)> *out_chain, | 
|  | bssl::UniquePtr<EVP_PKEY> *out_pkey) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | if (!config->digest_prefs.empty()) { | 
|  | std::unique_ptr<char, Free<char>> digest_prefs( | 
|  | strdup(config->digest_prefs.c_str())); | 
|  | std::vector<int> digest_list; | 
|  |  | 
|  | for (;;) { | 
|  | char *token = | 
|  | strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ","); | 
|  | if (token == nullptr) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token))); | 
|  | } | 
|  |  | 
|  | if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(), | 
|  | digest_list.size())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->signing_prefs.empty()) { | 
|  | std::vector<uint16_t> u16s(config->signing_prefs.begin(), | 
|  | config->signing_prefs.end()); | 
|  | if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->key_file.empty()) { | 
|  | *out_pkey = LoadPrivateKey(config->key_file.c_str()); | 
|  | if (!*out_pkey) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!config->cert_file.empty() && | 
|  | !LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) { | 
|  | return false; | 
|  | } | 
|  | if (!config->ocsp_response.empty() && | 
|  | !SSL_CTX_set_ocsp_response(SSL_get_SSL_CTX(ssl), | 
|  | (const uint8_t *)config->ocsp_response.data(), | 
|  | config->ocsp_response.size())) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool InstallCertificate(SSL *ssl) { | 
|  | bssl::UniquePtr<X509> x509; | 
|  | bssl::UniquePtr<STACK_OF(X509)> chain; | 
|  | bssl::UniquePtr<EVP_PKEY> pkey; | 
|  | if (!GetCertificate(ssl, &x509, &chain, &pkey)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (pkey) { | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | if (config->async) { | 
|  | test_state->private_key = std::move(pkey); | 
|  | SSL_set_private_key_method(ssl, &g_async_private_key_method); | 
|  | } else if (!SSL_use_PrivateKey(ssl, pkey.get())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (x509 && !SSL_use_certificate(ssl, x509.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (sk_X509_num(chain.get()) > 0 && | 
|  | !SSL_set1_chain(ssl, chain.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) { | 
|  | const TestConfig *config = GetTestConfig(ctx->ssl); | 
|  | GetTestState(ctx->ssl)->early_callback_called = true; | 
|  |  | 
|  | if (!config->expected_server_name.empty()) { | 
|  | const uint8_t *extension_data; | 
|  | size_t extension_len; | 
|  | CBS extension, server_name_list, host_name; | 
|  | uint8_t name_type; | 
|  |  | 
|  | if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, | 
|  | &extension_data, | 
|  | &extension_len)) { | 
|  | fprintf(stderr, "Could not find server_name extension.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | CBS_init(&extension, extension_data, extension_len); | 
|  | if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || | 
|  | CBS_len(&extension) != 0 || | 
|  | !CBS_get_u8(&server_name_list, &name_type) || | 
|  | name_type != TLSEXT_NAMETYPE_host_name || | 
|  | !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || | 
|  | CBS_len(&server_name_list) != 0) { | 
|  | fprintf(stderr, "Could not decode server_name extension.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!CBS_mem_equal(&host_name, | 
|  | (const uint8_t*)config->expected_server_name.data(), | 
|  | config->expected_server_name.size())) { | 
|  | fprintf(stderr, "Server name mismatch.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->fail_early_callback) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Install the certificate in the early callback. | 
|  | if (config->use_early_callback) { | 
|  | if (config->async) { | 
|  | // Install the certificate asynchronously. | 
|  | return 0; | 
|  | } | 
|  | if (!InstallCertificate(ctx->ssl)) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { | 
|  | if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<X509> x509; | 
|  | bssl::UniquePtr<STACK_OF(X509)> chain; | 
|  | bssl::UniquePtr<EVP_PKEY> pkey; | 
|  | if (!GetCertificate(ssl, &x509, &chain, &pkey)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Return zero for no certificate. | 
|  | if (!x509) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Chains and asynchronous private keys are not supported with client_cert_cb. | 
|  | *out_x509 = x509.release(); | 
|  | *out_pkey = pkey.release(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { | 
|  | SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx, | 
|  | SSL_get_ex_data_X509_STORE_CTX_idx()); | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | if (!config->expected_ocsp_response.empty()) { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | SSL_get0_ocsp_response(ssl, &data, &len); | 
|  | if (len == 0) { | 
|  | fprintf(stderr, "OCSP response not available in verify callback\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) { | 
|  | store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, | 
|  | unsigned int *out_len, void *arg) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | if (config->advertise_npn.empty()) { | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | } | 
|  |  | 
|  | *out = (const uint8_t*)config->advertise_npn.data(); | 
|  | *out_len = config->advertise_npn.size(); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, | 
|  | const uint8_t* in, unsigned inlen, void* arg) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | if (config->select_next_proto.empty()) { | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | } | 
|  |  | 
|  | *out = (uint8_t*)config->select_next_proto.data(); | 
|  | *outlen = config->select_next_proto.size(); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen, | 
|  | const uint8_t* in, unsigned inlen, void* arg) { | 
|  | if (GetTestState(ssl)->alpn_select_done) { | 
|  | fprintf(stderr, "AlpnSelectCallback called after completion.\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | GetTestState(ssl)->alpn_select_done = true; | 
|  |  | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | if (config->decline_alpn) { | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | } | 
|  |  | 
|  | if (!config->expected_advertised_alpn.empty() && | 
|  | (config->expected_advertised_alpn.size() != inlen || | 
|  | memcmp(config->expected_advertised_alpn.data(), | 
|  | in, inlen) != 0)) { | 
|  | fprintf(stderr, "bad ALPN select callback inputs\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | *out = (const uint8_t*)config->select_alpn.data(); | 
|  | *outlen = config->select_alpn.size(); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | static unsigned PskClientCallback(SSL *ssl, const char *hint, | 
|  | char *out_identity, | 
|  | unsigned max_identity_len, | 
|  | uint8_t *out_psk, unsigned max_psk_len) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | if (config->psk_identity.empty()) { | 
|  | if (hint != nullptr) { | 
|  | fprintf(stderr, "Server PSK hint was non-null.\n"); | 
|  | return 0; | 
|  | } | 
|  | } else if (hint == nullptr || | 
|  | strcmp(hint, config->psk_identity.c_str()) != 0) { | 
|  | fprintf(stderr, "Server PSK hint did not match.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Account for the trailing '\0' for the identity. | 
|  | if (config->psk_identity.size() >= max_identity_len || | 
|  | config->psk.size() > max_psk_len) { | 
|  | fprintf(stderr, "PSK buffers too small\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BUF_strlcpy(out_identity, config->psk_identity.c_str(), | 
|  | max_identity_len); | 
|  | memcpy(out_psk, config->psk.data(), config->psk.size()); | 
|  | return config->psk.size(); | 
|  | } | 
|  |  | 
|  | static unsigned PskServerCallback(SSL *ssl, const char *identity, | 
|  | uint8_t *out_psk, unsigned max_psk_len) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | if (strcmp(identity, config->psk_identity.c_str()) != 0) { | 
|  | fprintf(stderr, "Client PSK identity did not match.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (config->psk.size() > max_psk_len) { | 
|  | fprintf(stderr, "PSK buffers too small\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memcpy(out_psk, config->psk.data(), config->psk.size()); | 
|  | return config->psk.size(); | 
|  | } | 
|  |  | 
|  | static timeval g_clock; | 
|  |  | 
|  | static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { | 
|  | *out_clock = g_clock; | 
|  | } | 
|  |  | 
|  | static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { | 
|  | *out_pkey = GetTestState(ssl)->channel_id.release(); | 
|  | } | 
|  |  | 
|  | static int CertCallback(SSL *ssl, void *arg) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | // Check the CertificateRequest metadata is as expected. | 
|  | // | 
|  | // TODO(davidben): Test |SSL_get_client_CA_list|. | 
|  | if (!SSL_is_server(ssl) && | 
|  | !config->expected_certificate_types.empty()) { | 
|  | const uint8_t *certificate_types; | 
|  | size_t certificate_types_len = | 
|  | SSL_get0_certificate_types(ssl, &certificate_types); | 
|  | if (certificate_types_len != config->expected_certificate_types.size() || | 
|  | memcmp(certificate_types, | 
|  | config->expected_certificate_types.data(), | 
|  | certificate_types_len) != 0) { | 
|  | fprintf(stderr, "certificate types mismatch\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->fail_cert_callback) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The certificate will be installed via other means. | 
|  | if (!config->async || config->use_early_callback || | 
|  | config->use_old_client_cert_callback) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!GetTestState(ssl)->cert_ready) { | 
|  | return -1; | 
|  | } | 
|  | if (!InstallCertificate(ssl)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len, | 
|  | int *copy) { | 
|  | TestState *async_state = GetTestState(ssl); | 
|  | if (async_state->session) { | 
|  | *copy = 0; | 
|  | return async_state->session.release(); | 
|  | } else if (async_state->pending_session) { | 
|  | return SSL_magic_pending_session_ptr(); | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int DDoSCallback(const struct ssl_early_callback_ctx *early_context) { | 
|  | const TestConfig *config = GetTestConfig(early_context->ssl); | 
|  | static int callback_num = 0; | 
|  |  | 
|  | callback_num++; | 
|  | if (config->fail_ddos_callback || | 
|  | (config->fail_second_ddos_callback && callback_num == 2)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void InfoCallback(const SSL *ssl, int type, int val) { | 
|  | if (type == SSL_CB_HANDSHAKE_DONE) { | 
|  | if (GetTestConfig(ssl)->handshake_never_done) { | 
|  | fprintf(stderr, "Handshake unexpectedly completed.\n"); | 
|  | // Abort before any expected error code is printed, to ensure the overall | 
|  | // test fails. | 
|  | abort(); | 
|  | } | 
|  | GetTestState(ssl)->handshake_done = true; | 
|  |  | 
|  | // Callbacks may be called again on a new handshake. | 
|  | GetTestState(ssl)->ticket_decrypt_done = false; | 
|  | GetTestState(ssl)->alpn_select_done = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { | 
|  | GetTestState(ssl)->got_new_session = true; | 
|  | GetTestState(ssl)->new_session.reset(session); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, | 
|  | EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, | 
|  | int encrypt) { | 
|  | if (!encrypt) { | 
|  | if (GetTestState(ssl)->ticket_decrypt_done) { | 
|  | fprintf(stderr, "TicketKeyCallback called after completion.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | GetTestState(ssl)->ticket_decrypt_done = true; | 
|  | } | 
|  |  | 
|  | // This is just test code, so use the all-zeros key. | 
|  | static const uint8_t kZeros[16] = {0}; | 
|  |  | 
|  | if (encrypt) { | 
|  | memcpy(key_name, kZeros, sizeof(kZeros)); | 
|  | RAND_bytes(iv, 16); | 
|  | } else if (memcmp(key_name, kZeros, 16) != 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || | 
|  | !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!encrypt) { | 
|  | return GetTestConfig(ssl)->renew_ticket ? 2 : 1; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // kCustomExtensionValue is the extension value that the custom extension | 
|  | // callbacks will add. | 
|  | static const uint16_t kCustomExtensionValue = 1234; | 
|  | static void *const kCustomExtensionAddArg = | 
|  | reinterpret_cast<void *>(kCustomExtensionValue); | 
|  | static void *const kCustomExtensionParseArg = | 
|  | reinterpret_cast<void *>(kCustomExtensionValue + 1); | 
|  | static const char kCustomExtensionContents[] = "custom extension"; | 
|  |  | 
|  | static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value, | 
|  | const uint8_t **out, size_t *out_len, | 
|  | int *out_alert_value, void *add_arg) { | 
|  | if (extension_value != kCustomExtensionValue || | 
|  | add_arg != kCustomExtensionAddArg) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (GetTestConfig(ssl)->custom_extension_skip) { | 
|  | return 0; | 
|  | } | 
|  | if (GetTestConfig(ssl)->custom_extension_fail_add) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents); | 
|  | *out_len = sizeof(kCustomExtensionContents) - 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value, | 
|  | const uint8_t *out, void *add_arg) { | 
|  | if (extension_value != kCustomExtensionValue || | 
|  | add_arg != kCustomExtensionAddArg || | 
|  | out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value, | 
|  | const uint8_t *contents, | 
|  | size_t contents_len, | 
|  | int *out_alert_value, void *parse_arg) { | 
|  | if (extension_value != kCustomExtensionValue || | 
|  | parse_arg != kCustomExtensionParseArg) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | if (contents_len != sizeof(kCustomExtensionContents) - 1 || | 
|  | memcmp(contents, kCustomExtensionContents, contents_len) != 0) { | 
|  | *out_alert_value = SSL_AD_DECODE_ERROR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) { | 
|  | // SNI must be accessible from the SNI callback. | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); | 
|  | if (server_name == nullptr || | 
|  | std::string(server_name) != config->expected_server_name) { | 
|  | fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, | 
|  | config->expected_server_name.c_str()); | 
|  | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | } | 
|  |  | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | // Connect returns a new socket connected to localhost on |port| or -1 on | 
|  | // error. | 
|  | static int Connect(uint16_t port) { | 
|  | int sock = socket(AF_INET, SOCK_STREAM, 0); | 
|  | if (sock == -1) { | 
|  | PrintSocketError("socket"); | 
|  | return -1; | 
|  | } | 
|  | int nodelay = 1; | 
|  | if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, | 
|  | reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) { | 
|  | PrintSocketError("setsockopt"); | 
|  | closesocket(sock); | 
|  | return -1; | 
|  | } | 
|  | sockaddr_in sin; | 
|  | memset(&sin, 0, sizeof(sin)); | 
|  | sin.sin_family = AF_INET; | 
|  | sin.sin_port = htons(port); | 
|  | if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { | 
|  | PrintSocketError("inet_pton"); | 
|  | closesocket(sock); | 
|  | return -1; | 
|  | } | 
|  | if (connect(sock, reinterpret_cast<const sockaddr*>(&sin), | 
|  | sizeof(sin)) != 0) { | 
|  | PrintSocketError("connect"); | 
|  | closesocket(sock); | 
|  | return -1; | 
|  | } | 
|  | return sock; | 
|  | } | 
|  |  | 
|  | class SocketCloser { | 
|  | public: | 
|  | explicit SocketCloser(int sock) : sock_(sock) {} | 
|  | ~SocketCloser() { | 
|  | // Half-close and drain the socket before releasing it. This seems to be | 
|  | // necessary for graceful shutdown on Windows. It will also avoid write | 
|  | // failures in the test runner. | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | shutdown(sock_, SD_SEND); | 
|  | #else | 
|  | shutdown(sock_, SHUT_WR); | 
|  | #endif | 
|  | while (true) { | 
|  | char buf[1024]; | 
|  | if (recv(sock_, buf, sizeof(buf), 0) <= 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | closesocket(sock_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const int sock_; | 
|  | }; | 
|  |  | 
|  | static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) { | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new( | 
|  | config->is_dtls ? DTLS_method() : TLS_method())); | 
|  | if (!ssl_ctx) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Enable TLS 1.3 for tests. | 
|  | if (!config->is_dtls && | 
|  | !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::string cipher_list = "ALL"; | 
|  | if (!config->cipher.empty()) { | 
|  | cipher_list = config->cipher; | 
|  | SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); | 
|  | } | 
|  | if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!config->cipher_tls10.empty() && | 
|  | !SSL_CTX_set_cipher_list_tls10(ssl_ctx.get(), | 
|  | config->cipher_tls10.c_str())) { | 
|  | return nullptr; | 
|  | } | 
|  | if (!config->cipher_tls11.empty() && | 
|  | !SSL_CTX_set_cipher_list_tls11(ssl_ctx.get(), | 
|  | config->cipher_tls11.c_str())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<DH> dh(DH_get_2048_256(NULL)); | 
|  | if (!dh) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (config->use_sparse_dh_prime) { | 
|  | // This prime number is 2^1024 + 643 – a value just above a power of two. | 
|  | // Because of its form, values modulo it are essentially certain to be one | 
|  | // byte shorter. This is used to test padding of these values. | 
|  | if (BN_hex2bn( | 
|  | &dh->p, | 
|  | "1000000000000000000000000000000000000000000000000000000000000000" | 
|  | "0000000000000000000000000000000000000000000000000000000000000000" | 
|  | "0000000000000000000000000000000000000000000000000000000000000000" | 
|  | "0000000000000000000000000000000000000000000000000000000000000028" | 
|  | "3") == 0 || | 
|  | !BN_set_word(dh->g, 2)) { | 
|  | return nullptr; | 
|  | } | 
|  | BN_free(dh->q); | 
|  | dh->q = NULL; | 
|  | dh->priv_length = 0; | 
|  | } | 
|  |  | 
|  | if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (config->async && config->is_server) { | 
|  | // Disable the internal session cache. To test asynchronous session lookup, | 
|  | // we use an external session cache. | 
|  | SSL_CTX_set_session_cache_mode( | 
|  | ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); | 
|  | SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); | 
|  | } else { | 
|  | SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | } | 
|  |  | 
|  | SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); | 
|  |  | 
|  | if (config->use_old_client_cert_callback) { | 
|  | SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback); | 
|  | } | 
|  |  | 
|  | SSL_CTX_set_next_protos_advertised_cb( | 
|  | ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); | 
|  | if (!config->select_next_proto.empty()) { | 
|  | SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | if (!config->select_alpn.empty() || config->decline_alpn) { | 
|  | SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); | 
|  | } | 
|  |  | 
|  | SSL_CTX_enable_tls_channel_id(ssl_ctx.get()); | 
|  | SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); | 
|  |  | 
|  | SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback); | 
|  |  | 
|  | SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); | 
|  | SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); | 
|  |  | 
|  | if (config->use_ticket_callback) { | 
|  | SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); | 
|  | } | 
|  |  | 
|  | if (config->enable_client_custom_extension && | 
|  | !SSL_CTX_add_client_custom_ext( | 
|  | ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, | 
|  | CustomExtensionFreeCallback, kCustomExtensionAddArg, | 
|  | CustomExtensionParseCallback, kCustomExtensionParseArg)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (config->enable_server_custom_extension && | 
|  | !SSL_CTX_add_server_custom_ext( | 
|  | ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, | 
|  | CustomExtensionFreeCallback, kCustomExtensionAddArg, | 
|  | CustomExtensionParseCallback, kCustomExtensionParseArg)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (config->verify_fail) { | 
|  | SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL); | 
|  | } else { | 
|  | SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL); | 
|  | } | 
|  |  | 
|  | if (!config->signed_cert_timestamps.empty() && | 
|  | !SSL_CTX_set_signed_cert_timestamp_list( | 
|  | ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(), | 
|  | config->signed_cert_timestamps.size())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (config->use_null_client_ca_list) { | 
|  | SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr); | 
|  | } | 
|  |  | 
|  | if (config->enable_grease) { | 
|  | SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1); | 
|  | } | 
|  |  | 
|  | if (!config->expected_server_name.empty()) { | 
|  | SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback); | 
|  | } | 
|  |  | 
|  | if (!config->ticket_key.empty() && | 
|  | !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), config->ticket_key.data(), | 
|  | config->ticket_key.size())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return ssl_ctx; | 
|  | } | 
|  |  | 
|  | // RetryAsync is called after a failed operation on |ssl| with return code | 
|  | // |ret|. If the operation should be retried, it simulates one asynchronous | 
|  | // event and returns true. Otherwise it returns false. | 
|  | static bool RetryAsync(SSL *ssl, int ret) { | 
|  | // No error; don't retry. | 
|  | if (ret >= 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | assert(GetTestConfig(ssl)->async); | 
|  |  | 
|  | if (test_state->packeted_bio != nullptr && | 
|  | PacketedBioAdvanceClock(test_state->packeted_bio)) { | 
|  | // The DTLS retransmit logic silently ignores write failures. So the test | 
|  | // may progress, allow writes through synchronously. | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, false); | 
|  | int timeout_ret = DTLSv1_handle_timeout(ssl); | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, true); | 
|  |  | 
|  | if (timeout_ret < 0) { | 
|  | fprintf(stderr, "Error retransmitting.\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // See if we needed to read or write more. If so, allow one byte through on | 
|  | // the appropriate end to maximally stress the state machine. | 
|  | switch (SSL_get_error(ssl, ret)) { | 
|  | case SSL_ERROR_WANT_READ: | 
|  | AsyncBioAllowRead(test_state->async_bio, 1); | 
|  | return true; | 
|  | case SSL_ERROR_WANT_WRITE: | 
|  | AsyncBioAllowWrite(test_state->async_bio, 1); | 
|  | return true; | 
|  | case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = | 
|  | LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); | 
|  | if (!pkey) { | 
|  | return false; | 
|  | } | 
|  | test_state->channel_id = std::move(pkey); | 
|  | return true; | 
|  | } | 
|  | case SSL_ERROR_WANT_X509_LOOKUP: | 
|  | test_state->cert_ready = true; | 
|  | return true; | 
|  | case SSL_ERROR_PENDING_SESSION: | 
|  | test_state->session = std::move(test_state->pending_session); | 
|  | return true; | 
|  | case SSL_ERROR_PENDING_CERTIFICATE: | 
|  | // The handshake will resume without a second call to the early callback. | 
|  | return InstallCertificate(ssl); | 
|  | case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: | 
|  | test_state->private_key_retries++; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // DoRead reads from |ssl|, resolving any asynchronous operations. It returns | 
|  | // the result value of the final |SSL_read| call. | 
|  | static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | int ret; | 
|  | do { | 
|  | if (config->async) { | 
|  | // The DTLS retransmit logic silently ignores write failures. So the test | 
|  | // may progress, allow writes through synchronously. |SSL_read| may | 
|  | // trigger a retransmit, so disconnect the write quota. | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, false); | 
|  | } | 
|  | ret = config->peek_then_read ? SSL_peek(ssl, out, max_out) | 
|  | : SSL_read(ssl, out, max_out); | 
|  | if (config->async) { | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, true); | 
|  | } | 
|  |  | 
|  | // Run the exporter after each read. This is to test that the exporter fails | 
|  | // during a renegotiation. | 
|  | if (config->use_exporter_between_reads) { | 
|  | uint8_t buf; | 
|  | if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) { | 
|  | fprintf(stderr, "failed to export keying material\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } while (config->async && RetryAsync(ssl, ret)); | 
|  |  | 
|  | if (config->peek_then_read && ret > 0) { | 
|  | std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]); | 
|  |  | 
|  | // SSL_peek should synchronously return the same data. | 
|  | int ret2 = SSL_peek(ssl, buf.get(), ret); | 
|  | if (ret2 != ret || | 
|  | memcmp(buf.get(), out, ret) != 0) { | 
|  | fprintf(stderr, "First and second SSL_peek did not match.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // SSL_read should synchronously return the same data and consume it. | 
|  | ret2 = SSL_read(ssl, buf.get(), ret); | 
|  | if (ret2 != ret || | 
|  | memcmp(buf.get(), out, ret) != 0) { | 
|  | fprintf(stderr, "SSL_peek and SSL_read did not match.\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous | 
|  | // operations. It returns the result of the final |SSL_write| call. | 
|  | static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | int ret; | 
|  | do { | 
|  | ret = SSL_write(ssl, in, in_len); | 
|  | if (ret > 0) { | 
|  | in += ret; | 
|  | in_len -= ret; | 
|  | } | 
|  | } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It | 
|  | // returns the result of the final |SSL_shutdown| call. | 
|  | static int DoShutdown(SSL *ssl) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | int ret; | 
|  | do { | 
|  | ret = SSL_shutdown(ssl); | 
|  | } while (config->async && RetryAsync(ssl, ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous | 
|  | // operations. It returns the result of the final |SSL_send_fatal_alert| call. | 
|  | static int DoSendFatalAlert(SSL *ssl, uint8_t alert) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | int ret; | 
|  | do { | 
|  | ret = SSL_send_fatal_alert(ssl, alert); | 
|  | } while (config->async && RetryAsync(ssl, ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint16_t GetProtocolVersion(const SSL *ssl) { | 
|  | uint16_t version = SSL_version(ssl); | 
|  | if (!SSL_is_dtls(ssl)) { | 
|  | return version; | 
|  | } | 
|  | return 0x0201 + ~version; | 
|  | } | 
|  |  | 
|  | // CheckHandshakeProperties checks, immediately after |ssl| completes its | 
|  | // initial handshake (or False Starts), whether all the properties are | 
|  | // consistent with the test configuration and invariants. | 
|  | static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  |  | 
|  | if (SSL_get_current_cipher(ssl) == nullptr) { | 
|  | fprintf(stderr, "null cipher after handshake\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (is_resume && | 
|  | (!!SSL_session_reused(ssl) == config->expect_session_miss)) { | 
|  | fprintf(stderr, "session was%s reused\n", | 
|  | SSL_session_reused(ssl) ? "" : " not"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool expect_handshake_done = is_resume || !config->false_start; | 
|  | if (expect_handshake_done != GetTestState(ssl)->handshake_done) { | 
|  | fprintf(stderr, "handshake was%s completed\n", | 
|  | GetTestState(ssl)->handshake_done ? "" : " not"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (expect_handshake_done && !config->is_server) { | 
|  | bool expect_new_session = | 
|  | !config->expect_no_session && | 
|  | (!SSL_session_reused(ssl) || config->expect_ticket_renewal) && | 
|  | // Session tickets are sent post-handshake in TLS 1.3. | 
|  | GetProtocolVersion(ssl) < TLS1_3_VERSION; | 
|  | if (expect_new_session != GetTestState(ssl)->got_new_session) { | 
|  | fprintf(stderr, | 
|  | "new session was%s cached, but we expected the opposite\n", | 
|  | GetTestState(ssl)->got_new_session ? "" : " not"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->is_server && !GetTestState(ssl)->early_callback_called) { | 
|  | fprintf(stderr, "early callback not called\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!config->expected_server_name.empty()) { | 
|  | const char *server_name = | 
|  | SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); | 
|  | if (server_name == nullptr || | 
|  | server_name != config->expected_server_name) { | 
|  | fprintf(stderr, "servername mismatch (got %s; want %s)\n", | 
|  | server_name, config->expected_server_name.c_str()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expected_next_proto.empty()) { | 
|  | const uint8_t *next_proto; | 
|  | unsigned next_proto_len; | 
|  | SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); | 
|  | if (next_proto_len != config->expected_next_proto.size() || | 
|  | memcmp(next_proto, config->expected_next_proto.data(), | 
|  | next_proto_len) != 0) { | 
|  | fprintf(stderr, "negotiated next proto mismatch\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expected_alpn.empty()) { | 
|  | const uint8_t *alpn_proto; | 
|  | unsigned alpn_proto_len; | 
|  | SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); | 
|  | if (alpn_proto_len != config->expected_alpn.size() || | 
|  | memcmp(alpn_proto, config->expected_alpn.data(), | 
|  | alpn_proto_len) != 0) { | 
|  | fprintf(stderr, "negotiated alpn proto mismatch\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expected_channel_id.empty()) { | 
|  | uint8_t channel_id[64]; | 
|  | if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { | 
|  | fprintf(stderr, "no channel id negotiated\n"); | 
|  | return false; | 
|  | } | 
|  | if (config->expected_channel_id.size() != 64 || | 
|  | memcmp(config->expected_channel_id.data(), | 
|  | channel_id, 64) != 0) { | 
|  | fprintf(stderr, "channel id mismatch\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->expect_extended_master_secret) { | 
|  | if (!SSL_get_extms_support(ssl)) { | 
|  | fprintf(stderr, "No EMS for connection when expected"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expected_ocsp_response.empty()) { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | SSL_get0_ocsp_response(ssl, &data, &len); | 
|  | if (config->expected_ocsp_response.size() != len || | 
|  | memcmp(config->expected_ocsp_response.data(), data, len) != 0) { | 
|  | fprintf(stderr, "OCSP response mismatch\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expected_signed_cert_timestamps.empty()) { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); | 
|  | if (config->expected_signed_cert_timestamps.size() != len || | 
|  | memcmp(config->expected_signed_cert_timestamps.data(), | 
|  | data, len) != 0) { | 
|  | fprintf(stderr, "SCT list mismatch\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->expect_verify_result) { | 
|  | int expected_verify_result = config->verify_fail ? | 
|  | X509_V_ERR_APPLICATION_VERIFICATION : | 
|  | X509_V_OK; | 
|  |  | 
|  | if (SSL_get_verify_result(ssl) != expected_verify_result) { | 
|  | fprintf(stderr, "Wrong certificate verification result\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->expect_peer_signature_algorithm != 0 && | 
|  | config->expect_peer_signature_algorithm != | 
|  | SSL_get_peer_signature_algorithm(ssl)) { | 
|  | fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n", | 
|  | SSL_get_peer_signature_algorithm(ssl), | 
|  | config->expect_peer_signature_algorithm); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (config->expect_curve_id != 0) { | 
|  | uint16_t curve_id = SSL_get_curve_id(ssl); | 
|  | if (static_cast<uint16_t>(config->expect_curve_id) != curve_id) { | 
|  | fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id, | 
|  | static_cast<uint16_t>(config->expect_curve_id)); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->expect_dhe_group_size != 0) { | 
|  | unsigned dhe_group_size = SSL_get_dhe_group_size(ssl); | 
|  | if (static_cast<unsigned>(config->expect_dhe_group_size) != | 
|  | dhe_group_size) { | 
|  | fprintf(stderr, "dhe_group_size was %u, wanted %d\n", dhe_group_size, | 
|  | config->expect_dhe_group_size); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint16_t cipher_id = | 
|  | static_cast<uint16_t>(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl))); | 
|  | if (config->expect_cipher_aes != 0 && | 
|  | EVP_has_aes_hardware() && | 
|  | static_cast<uint16_t>(config->expect_cipher_aes) != cipher_id) { | 
|  | fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n", | 
|  | cipher_id, static_cast<uint16_t>(config->expect_cipher_aes)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (config->expect_cipher_no_aes != 0 && | 
|  | !EVP_has_aes_hardware() && | 
|  | static_cast<uint16_t>(config->expect_cipher_no_aes) != cipher_id) { | 
|  | fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n", | 
|  | cipher_id, static_cast<uint16_t>(config->expect_cipher_no_aes)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!config->psk.empty()) { | 
|  | if (SSL_get_peer_cert_chain(ssl) != nullptr) { | 
|  | fprintf(stderr, "Received peer certificate on a PSK cipher.\n"); | 
|  | return false; | 
|  | } | 
|  | } else if (!config->is_server || config->require_any_client_certificate) { | 
|  | if (SSL_get_peer_cert_chain(ssl) == nullptr) { | 
|  | fprintf(stderr, "Received no peer certificate but expected one.\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->expect_peer_cert_file.empty()) { | 
|  | bssl::UniquePtr<X509> expect_leaf; | 
|  | bssl::UniquePtr<STACK_OF(X509)> expect_chain; | 
|  | if (!LoadCertificate(&expect_leaf, &expect_chain, | 
|  | config->expect_peer_cert_file)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For historical reasons, clients report a chain with a leaf and servers | 
|  | // without. | 
|  | if (!config->is_server) { | 
|  | if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) { | 
|  | return false; | 
|  | } | 
|  | X509_up_ref(expect_leaf.get());  // sk_X509_push takes ownership. | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl)); | 
|  | STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl); | 
|  | if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) { | 
|  | fprintf(stderr, "Received a different leaf certificate than expected.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) { | 
|  | fprintf(stderr, "Received a chain of length %zu instead of %zu.\n", | 
|  | sk_X509_num(chain), sk_X509_num(expect_chain.get())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sk_X509_num(chain); i++) { | 
|  | if (X509_cmp(sk_X509_value(chain, i), | 
|  | sk_X509_value(expect_chain.get(), i)) != 0) { | 
|  | fprintf(stderr, "Chain certificate %zu did not match.\n", | 
|  | i + 1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // DoExchange runs a test SSL exchange against the peer. On success, it returns | 
|  | // true and sets |*out_session| to the negotiated SSL session. If the test is a | 
|  | // resumption attempt, |is_resume| is true and |session| is the session from the | 
|  | // previous exchange. | 
|  | static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session, | 
|  | SSL_CTX *ssl_ctx, const TestConfig *config, | 
|  | bool is_resume, SSL_SESSION *session) { | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx)); | 
|  | if (!ssl) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!SetTestConfig(ssl.get(), config) || | 
|  | !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (config->fallback_scsv && | 
|  | !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { | 
|  | return false; | 
|  | } | 
|  | // Install the certificate synchronously if nothing else will handle it. | 
|  | if (!config->use_early_callback && | 
|  | !config->use_old_client_cert_callback && | 
|  | !config->async && | 
|  | !InstallCertificate(ssl.get())) { | 
|  | return false; | 
|  | } | 
|  | SSL_set_cert_cb(ssl.get(), CertCallback, nullptr); | 
|  | if (config->require_any_client_certificate) { | 
|  | SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | NULL); | 
|  | } | 
|  | if (config->verify_peer) { | 
|  | SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL); | 
|  | } | 
|  | if (config->false_start) { | 
|  | SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); | 
|  | } | 
|  | if (config->cbc_record_splitting) { | 
|  | SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); | 
|  | } | 
|  | if (config->partial_write) { | 
|  | SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); | 
|  | } | 
|  | if (config->no_tls13) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3); | 
|  | } | 
|  | if (config->no_tls12) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); | 
|  | } | 
|  | if (config->no_tls11) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); | 
|  | } | 
|  | if (config->no_tls1) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); | 
|  | } | 
|  | if (config->no_ssl3) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3); | 
|  | } | 
|  | if (!config->expected_channel_id.empty() || | 
|  | config->enable_channel_id) { | 
|  | SSL_enable_tls_channel_id(ssl.get()); | 
|  | } | 
|  | if (!config->send_channel_id.empty()) { | 
|  | SSL_enable_tls_channel_id(ssl.get()); | 
|  | if (!config->async) { | 
|  | // The async case will be supplied by |ChannelIdCallback|. | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(config->send_channel_id); | 
|  | if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!config->host_name.empty() && | 
|  | !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) { | 
|  | return false; | 
|  | } | 
|  | if (!config->advertise_alpn.empty() && | 
|  | SSL_set_alpn_protos(ssl.get(), | 
|  | (const uint8_t *)config->advertise_alpn.data(), | 
|  | config->advertise_alpn.size()) != 0) { | 
|  | return false; | 
|  | } | 
|  | if (!config->psk.empty()) { | 
|  | SSL_set_psk_client_callback(ssl.get(), PskClientCallback); | 
|  | SSL_set_psk_server_callback(ssl.get(), PskServerCallback); | 
|  | } | 
|  | if (!config->psk_identity.empty() && | 
|  | !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) { | 
|  | return false; | 
|  | } | 
|  | if (!config->srtp_profiles.empty() && | 
|  | !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) { | 
|  | return false; | 
|  | } | 
|  | if (config->enable_ocsp_stapling && | 
|  | !SSL_enable_ocsp_stapling(ssl.get())) { | 
|  | return false; | 
|  | } | 
|  | if (config->enable_signed_cert_timestamps && | 
|  | !SSL_enable_signed_cert_timestamps(ssl.get())) { | 
|  | return false; | 
|  | } | 
|  | if (config->min_version != 0 && | 
|  | !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) { | 
|  | return false; | 
|  | } | 
|  | if (config->max_version != 0 && | 
|  | !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) { | 
|  | return false; | 
|  | } | 
|  | if (config->mtu != 0) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); | 
|  | SSL_set_mtu(ssl.get(), config->mtu); | 
|  | } | 
|  | if (config->install_ddos_callback) { | 
|  | SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); | 
|  | } | 
|  | if (config->renegotiate_once) { | 
|  | SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); | 
|  | } | 
|  | if (config->renegotiate_freely) { | 
|  | SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); | 
|  | } | 
|  | if (config->renegotiate_ignore) { | 
|  | SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); | 
|  | } | 
|  | if (!config->check_close_notify) { | 
|  | SSL_set_quiet_shutdown(ssl.get(), 1); | 
|  | } | 
|  | if (config->disable_npn) { | 
|  | SSL_set_options(ssl.get(), SSL_OP_DISABLE_NPN); | 
|  | } | 
|  | if (config->p384_only) { | 
|  | int nid = NID_secp384r1; | 
|  | if (!SSL_set1_curves(ssl.get(), &nid, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (config->enable_all_curves) { | 
|  | static const int kAllCurves[] = { | 
|  | NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519, | 
|  | }; | 
|  | if (!SSL_set1_curves(ssl.get(), kAllCurves, | 
|  | OPENSSL_ARRAY_SIZE(kAllCurves))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (config->initial_timeout_duration_ms > 0) { | 
|  | DTLSv1_set_initial_timeout_duration(ssl.get(), | 
|  | config->initial_timeout_duration_ms); | 
|  | } | 
|  | if (config->max_cert_list > 0) { | 
|  | SSL_set_max_cert_list(ssl.get(), config->max_cert_list); | 
|  | } | 
|  |  | 
|  | int sock = Connect(config->port); | 
|  | if (sock == -1) { | 
|  | return false; | 
|  | } | 
|  | SocketCloser closer(sock); | 
|  |  | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE)); | 
|  | if (!bio) { | 
|  | return false; | 
|  | } | 
|  | if (config->is_dtls) { | 
|  | bssl::UniquePtr<BIO> packeted = PacketedBioCreate(&g_clock, !config->async); | 
|  | if (!packeted) { | 
|  | return false; | 
|  | } | 
|  | GetTestState(ssl.get())->packeted_bio = packeted.get(); | 
|  | BIO_push(packeted.get(), bio.release()); | 
|  | bio = std::move(packeted); | 
|  | } | 
|  | if (config->async) { | 
|  | bssl::UniquePtr<BIO> async_scoped = | 
|  | config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); | 
|  | if (!async_scoped) { | 
|  | return false; | 
|  | } | 
|  | BIO_push(async_scoped.get(), bio.release()); | 
|  | GetTestState(ssl.get())->async_bio = async_scoped.get(); | 
|  | bio = std::move(async_scoped); | 
|  | } | 
|  | SSL_set_bio(ssl.get(), bio.get(), bio.get()); | 
|  | bio.release();  // SSL_set_bio takes ownership. | 
|  |  | 
|  | if (session != NULL) { | 
|  | if (!config->is_server) { | 
|  | if (SSL_set_session(ssl.get(), session) != 1) { | 
|  | return false; | 
|  | } | 
|  | } else if (config->async) { | 
|  | // The internal session cache is disabled, so install the session | 
|  | // manually. | 
|  | SSL_SESSION_up_ref(session); | 
|  | GetTestState(ssl.get())->pending_session.reset(session); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SSL_get_current_cipher(ssl.get()) != nullptr) { | 
|  | fprintf(stderr, "non-null cipher before handshake\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ret; | 
|  | if (config->implicit_handshake) { | 
|  | if (config->is_server) { | 
|  | SSL_set_accept_state(ssl.get()); | 
|  | } else { | 
|  | SSL_set_connect_state(ssl.get()); | 
|  | } | 
|  | } else { | 
|  | do { | 
|  | if (config->is_server) { | 
|  | ret = SSL_accept(ssl.get()); | 
|  | } else { | 
|  | ret = SSL_connect(ssl.get()); | 
|  | } | 
|  | } while (config->async && RetryAsync(ssl.get(), ret)); | 
|  | if (ret != 1 || | 
|  | !CheckHandshakeProperties(ssl.get(), is_resume)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Reset the state to assert later that the callback isn't called in | 
|  | // renegotations. | 
|  | GetTestState(ssl.get())->got_new_session = false; | 
|  | } | 
|  |  | 
|  | if (config->export_keying_material > 0) { | 
|  | std::vector<uint8_t> result( | 
|  | static_cast<size_t>(config->export_keying_material)); | 
|  | if (!SSL_export_keying_material( | 
|  | ssl.get(), result.data(), result.size(), | 
|  | config->export_label.data(), config->export_label.size(), | 
|  | reinterpret_cast<const uint8_t*>(config->export_context.data()), | 
|  | config->export_context.size(), config->use_export_context)) { | 
|  | fprintf(stderr, "failed to export keying material\n"); | 
|  | return false; | 
|  | } | 
|  | if (WriteAll(ssl.get(), result.data(), result.size()) < 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->tls_unique) { | 
|  | uint8_t tls_unique[16]; | 
|  | size_t tls_unique_len; | 
|  | if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len, | 
|  | sizeof(tls_unique))) { | 
|  | fprintf(stderr, "failed to get tls-unique\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (tls_unique_len != 12) { | 
|  | fprintf(stderr, "expected 12 bytes of tls-unique but got %u", | 
|  | static_cast<unsigned>(tls_unique_len)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (config->send_alert) { | 
|  | if (DoSendFatalAlert(ssl.get(), SSL_AD_DECOMPRESSION_FAILURE) < 0) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (config->write_different_record_sizes) { | 
|  | if (config->is_dtls) { | 
|  | fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); | 
|  | return false; | 
|  | } | 
|  | // This mode writes a number of different record sizes in an attempt to | 
|  | // trip up the CBC record splitting code. | 
|  | static const size_t kBufLen = 32769; | 
|  | std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); | 
|  | memset(buf.get(), 0x42, kBufLen); | 
|  | static const size_t kRecordSizes[] = { | 
|  | 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; | 
|  | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) { | 
|  | const size_t len = kRecordSizes[i]; | 
|  | if (len > kBufLen) { | 
|  | fprintf(stderr, "Bad kRecordSizes value.\n"); | 
|  | return false; | 
|  | } | 
|  | if (WriteAll(ssl.get(), buf.get(), len) < 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (config->shim_writes_first) { | 
|  | if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"), | 
|  | 5) < 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!config->shim_shuts_down) { | 
|  | for (;;) { | 
|  | static const size_t kBufLen = 16384; | 
|  | std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); | 
|  |  | 
|  | // Read only 512 bytes at a time in TLS to ensure records may be | 
|  | // returned in multiple reads. | 
|  | int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512); | 
|  | int err = SSL_get_error(ssl.get(), n); | 
|  | if (err == SSL_ERROR_ZERO_RETURN || | 
|  | (n == 0 && err == SSL_ERROR_SYSCALL)) { | 
|  | if (n != 0) { | 
|  | fprintf(stderr, "Invalid SSL_get_error output\n"); | 
|  | return false; | 
|  | } | 
|  | // Stop on either clean or unclean shutdown. | 
|  | break; | 
|  | } else if (err != SSL_ERROR_NONE) { | 
|  | if (n > 0) { | 
|  | fprintf(stderr, "Invalid SSL_get_error output\n"); | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // Successfully read data. | 
|  | if (n <= 0) { | 
|  | fprintf(stderr, "Invalid SSL_get_error output\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // After a successful read, with or without False Start, the handshake | 
|  | // must be complete. | 
|  | if (!GetTestState(ssl.get())->handshake_done) { | 
|  | fprintf(stderr, "handshake was not completed after SSL_read\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < n; i++) { | 
|  | buf[i] ^= 0xff; | 
|  | } | 
|  | if (WriteAll(ssl.get(), buf.get(), n) < 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!config->is_server && !config->false_start && | 
|  | !config->implicit_handshake && | 
|  | // Session tickets are sent post-handshake in TLS 1.3. | 
|  | GetProtocolVersion(ssl.get()) < TLS1_3_VERSION && | 
|  | GetTestState(ssl.get())->got_new_session) { | 
|  | fprintf(stderr, "new session was established after the handshake\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) { | 
|  | bool expect_new_session = | 
|  | !config->expect_no_session && !config->shim_shuts_down; | 
|  | if (expect_new_session != GetTestState(ssl.get())->got_new_session) { | 
|  | fprintf(stderr, | 
|  | "new session was%s cached, but we expected the opposite\n", | 
|  | GetTestState(ssl.get())->got_new_session ? "" : " not"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (out_session) { | 
|  | *out_session = std::move(GetTestState(ssl.get())->new_session); | 
|  | } | 
|  |  | 
|  | ret = DoShutdown(ssl.get()); | 
|  |  | 
|  | if (config->shim_shuts_down && config->check_close_notify) { | 
|  | // We initiate shutdown, so |SSL_shutdown| will return in two stages. First | 
|  | // it returns zero when our close_notify is sent, then one when the peer's | 
|  | // is received. | 
|  | if (ret != 0) { | 
|  | fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); | 
|  | return false; | 
|  | } | 
|  | ret = DoShutdown(ssl.get()); | 
|  | } | 
|  |  | 
|  | if (ret != 1) { | 
|  | fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SSL_total_renegotiations(ssl.get()) != | 
|  | config->expect_total_renegotiations) { | 
|  | fprintf(stderr, "Expected %d renegotiations, got %d\n", | 
|  | config->expect_total_renegotiations, | 
|  | SSL_total_renegotiations(ssl.get())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | class StderrDelimiter { | 
|  | public: | 
|  | ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); } | 
|  | }; | 
|  |  | 
|  | static int Main(int argc, char **argv) { | 
|  | // To distinguish ASan's output from ours, add a trailing message to stderr. | 
|  | // Anything following this line will be considered an error. | 
|  | StderrDelimiter delimiter; | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | /* Initialize Winsock. */ | 
|  | WORD wsa_version = MAKEWORD(2, 2); | 
|  | WSADATA wsa_data; | 
|  | int wsa_err = WSAStartup(wsa_version, &wsa_data); | 
|  | if (wsa_err != 0) { | 
|  | fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); | 
|  | return 1; | 
|  | } | 
|  | if (wsa_data.wVersion != wsa_version) { | 
|  | fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | signal(SIGPIPE, SIG_IGN); | 
|  | #endif | 
|  |  | 
|  | CRYPTO_library_init(); | 
|  | g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); | 
|  | g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree); | 
|  | if (g_config_index < 0 || g_state_index < 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | TestConfig config; | 
|  | if (!ParseConfig(argc - 1, argv + 1, &config)) { | 
|  | return Usage(argv[0]); | 
|  | } | 
|  |  | 
|  | // Some code treats the zero time special, so initialize the clock to a | 
|  | // non-zero time. | 
|  | g_clock.tv_sec = 1234; | 
|  | g_clock.tv_usec = 1234; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config); | 
|  | if (!ssl_ctx) { | 
|  | ERR_print_errors_fp(stderr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session; | 
|  | for (int i = 0; i < config.resume_count + 1; i++) { | 
|  | bool is_resume = i > 0; | 
|  | if (is_resume && !config.is_server && !session) { | 
|  | fprintf(stderr, "No session to offer.\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session); | 
|  | if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume, | 
|  | offer_session.get())) { | 
|  | fprintf(stderr, "Connection %d failed.\n", i + 1); | 
|  | ERR_print_errors_fp(stderr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (config.resumption_delay != 0) { | 
|  | g_clock.tv_sec += config.resumption_delay; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | }  // namespace bssl | 
|  |  | 
|  | int main(int argc, char **argv) { | 
|  | return bssl::Main(argc, argv); | 
|  | } |