| /* Copyright (c) 2014, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/aead.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/hmac.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/sha.h> | 
 | #include <openssl/type_check.h> | 
 |  | 
 | #include "../crypto/internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | typedef struct { | 
 |   EVP_CIPHER_CTX cipher_ctx; | 
 |   HMAC_CTX hmac_ctx; | 
 |   /* mac_key is the portion of the key used for the MAC. It is retained | 
 |    * separately for the constant-time CBC code. */ | 
 |   uint8_t mac_key[EVP_MAX_MD_SIZE]; | 
 |   uint8_t mac_key_len; | 
 |   /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit | 
 |    * IV. */ | 
 |   char implicit_iv; | 
 | } AEAD_TLS_CTX; | 
 |  | 
 | OPENSSL_COMPILE_ASSERT(EVP_MAX_MD_SIZE < 256, mac_key_len_fits_in_uint8_t); | 
 |  | 
 | static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; | 
 |   EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); | 
 |   HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); | 
 |   OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key)); | 
 |   OPENSSL_free(tls_ctx); | 
 |   ctx->aead_state = NULL; | 
 | } | 
 |  | 
 | static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, | 
 |                          size_t tag_len, enum evp_aead_direction_t dir, | 
 |                          const EVP_CIPHER *cipher, const EVP_MD *md, | 
 |                          char implicit_iv) { | 
 |   if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && | 
 |       tag_len != EVP_MD_size(md)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_UNSUPPORTED_TAG_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (key_len != EVP_AEAD_key_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_BAD_KEY_LENGTH); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t mac_key_len = EVP_MD_size(md); | 
 |   size_t enc_key_len = EVP_CIPHER_key_length(cipher); | 
 |   assert(mac_key_len + enc_key_len + | 
 |          (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len); | 
 |   /* Although EVP_rc4() is a variable-length cipher, the default key size is | 
 |    * correct for TLS. */ | 
 |  | 
 |   AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX)); | 
 |   if (tls_ctx == NULL) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, ERR_R_MALLOC_FAILURE); | 
 |     return 0; | 
 |   } | 
 |   EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); | 
 |   HMAC_CTX_init(&tls_ctx->hmac_ctx); | 
 |   assert(mac_key_len <= EVP_MAX_MD_SIZE); | 
 |   memcpy(tls_ctx->mac_key, key, mac_key_len); | 
 |   tls_ctx->mac_key_len = (uint8_t)mac_key_len; | 
 |   tls_ctx->implicit_iv = implicit_iv; | 
 |  | 
 |   ctx->aead_state = tls_ctx; | 
 |   if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], | 
 |                          implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, | 
 |                          dir == evp_aead_seal) || | 
 |       !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { | 
 |     aead_tls_cleanup(ctx); | 
 |     return 0; | 
 |   } | 
 |   EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                          size_t *out_len, size_t max_out_len, | 
 |                          const uint8_t *nonce, size_t nonce_len, | 
 |                          const uint8_t *in, size_t in_len, | 
 |                          const uint8_t *ad, size_t ad_len) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; | 
 |   size_t total = 0; | 
 |  | 
 |   if (!tls_ctx->cipher_ctx.encrypt) { | 
 |     /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */ | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_OPERATION); | 
 |     return 0; | 
 |  | 
 |   } | 
 |  | 
 |   if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len || | 
 |       in_len > INT_MAX) { | 
 |     /* EVP_CIPHER takes int as input. */ | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (ad_len != 13 - 2 /* length bytes */) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_AD_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
 |    * length for legacy ciphers. */ | 
 |   uint8_t ad_extra[2]; | 
 |   ad_extra[0] = (uint8_t)(in_len >> 8); | 
 |   ad_extra[1] = (uint8_t)(in_len & 0xff); | 
 |  | 
 |   /* Compute the MAC. This must be first in case the operation is being done | 
 |    * in-place. */ | 
 |   uint8_t mac[EVP_MAX_MD_SIZE]; | 
 |   unsigned mac_len; | 
 |   HMAC_CTX hmac_ctx; | 
 |   HMAC_CTX_init(&hmac_ctx); | 
 |   if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) || | 
 |       !HMAC_Update(&hmac_ctx, ad, ad_len) || | 
 |       !HMAC_Update(&hmac_ctx, ad_extra, sizeof(ad_extra)) || | 
 |       !HMAC_Update(&hmac_ctx, in, in_len) || | 
 |       !HMAC_Final(&hmac_ctx, mac, &mac_len)) { | 
 |     HMAC_CTX_cleanup(&hmac_ctx); | 
 |     return 0; | 
 |   } | 
 |   HMAC_CTX_cleanup(&hmac_ctx); | 
 |  | 
 |   /* Configure the explicit IV. */ | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       !tls_ctx->implicit_iv && | 
 |       !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Encrypt the input. */ | 
 |   int len; | 
 |   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, | 
 |                          (int)in_len)) { | 
 |     return 0; | 
 |   } | 
 |   total = len; | 
 |  | 
 |   /* Feed the MAC into the cipher. */ | 
 |   if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac, | 
 |                          (int)mac_len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |  | 
 |   unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); | 
 |   if (block_size > 1) { | 
 |     assert(block_size <= 256); | 
 |     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); | 
 |  | 
 |     /* Compute padding and feed that into the cipher. */ | 
 |     uint8_t padding[256]; | 
 |     unsigned padding_len = block_size - ((in_len + mac_len) % block_size); | 
 |     memset(padding, padding_len - 1, padding_len); | 
 |     if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding, | 
 |                            (int)padding_len)) { | 
 |       return 0; | 
 |     } | 
 |     total += len; | 
 |   } | 
 |  | 
 |   if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |  | 
 |   *out_len = total; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                          size_t *out_len, size_t max_out_len, | 
 |                          const uint8_t *nonce, size_t nonce_len, | 
 |                          const uint8_t *in, size_t in_len, | 
 |                          const uint8_t *ad, size_t ad_len) { | 
 |   AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; | 
 |  | 
 |   if (tls_ctx->cipher_ctx.encrypt) { | 
 |     /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */ | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_OPERATION); | 
 |     return 0; | 
 |  | 
 |   } | 
 |  | 
 |   if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_len < in_len) { | 
 |     /* This requires that the caller provide space for the MAC, even though it | 
 |      * will always be removed on return. */ | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (ad_len != 13 - 2 /* length bytes */) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_AD_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_len > INT_MAX) { | 
 |     /* EVP_CIPHER takes int as input. */ | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Configure the explicit IV. */ | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       !tls_ctx->implicit_iv && | 
 |       !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Decrypt to get the plaintext + MAC + padding. */ | 
 |   size_t total = 0; | 
 |   int len; | 
 |   if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |   if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { | 
 |     return 0; | 
 |   } | 
 |   total += len; | 
 |   assert(total == in_len); | 
 |  | 
 |   /* Remove CBC padding. Code from here on is timing-sensitive with respect to | 
 |    * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */ | 
 |   int padding_ok; | 
 |   unsigned data_plus_mac_len, data_len; | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { | 
 |     padding_ok = EVP_tls_cbc_remove_padding( | 
 |         &data_plus_mac_len, out, total, | 
 |         EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), | 
 |         (unsigned)HMAC_size(&tls_ctx->hmac_ctx)); | 
 |     /* Publicly invalid. This can be rejected in non-constant time. */ | 
 |     if (padding_ok == 0) { | 
 |       OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); | 
 |       return 0; | 
 |     } | 
 |   } else { | 
 |     padding_ok = 1; | 
 |     data_plus_mac_len = total; | 
 |     /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has | 
 |      * already been checked against the MAC size at the top of the function. */ | 
 |     assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); | 
 |   } | 
 |   data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); | 
 |  | 
 |   /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the | 
 |    * first |data_plus_mac_size| bytes after |out| are the plaintext and | 
 |    * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */ | 
 |  | 
 |   /* To allow for CBC mode which changes cipher length, |ad| doesn't include the | 
 |    * length for legacy ciphers. */ | 
 |   uint8_t ad_fixed[13]; | 
 |   memcpy(ad_fixed, ad, 11); | 
 |   ad_fixed[11] = (uint8_t)(data_len >> 8); | 
 |   ad_fixed[12] = (uint8_t)(data_len & 0xff); | 
 |   ad_len += 2; | 
 |  | 
 |   /* Compute the MAC and extract the one in the record. */ | 
 |   uint8_t mac[EVP_MAX_MD_SIZE]; | 
 |   size_t mac_len; | 
 |   uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; | 
 |   uint8_t *record_mac; | 
 |   if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && | 
 |       EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { | 
 |     if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, | 
 |                                    ad_fixed, out, data_plus_mac_len, total, | 
 |                                    tls_ctx->mac_key, tls_ctx->mac_key_len)) { | 
 |       OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); | 
 |       return 0; | 
 |     } | 
 |     assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); | 
 |  | 
 |     record_mac = record_mac_tmp; | 
 |     EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); | 
 |   } else { | 
 |     /* We should support the constant-time path for all CBC-mode ciphers | 
 |      * implemented. */ | 
 |     assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); | 
 |  | 
 |     HMAC_CTX hmac_ctx; | 
 |     HMAC_CTX_init(&hmac_ctx); | 
 |     unsigned mac_len_u; | 
 |     if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) || | 
 |         !HMAC_Update(&hmac_ctx, ad_fixed, ad_len) || | 
 |         !HMAC_Update(&hmac_ctx, out, data_len) || | 
 |         !HMAC_Final(&hmac_ctx, mac, &mac_len_u)) { | 
 |       HMAC_CTX_cleanup(&hmac_ctx); | 
 |       return 0; | 
 |     } | 
 |     mac_len = mac_len_u; | 
 |     HMAC_CTX_cleanup(&hmac_ctx); | 
 |  | 
 |     assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); | 
 |     record_mac = &out[data_len]; | 
 |   } | 
 |  | 
 |   /* Perform the MAC check and the padding check in constant-time. It should be | 
 |    * safe to simply perform the padding check first, but it would not be under a | 
 |    * different choice of MAC location on padding failure. See | 
 |    * EVP_tls_cbc_remove_padding. */ | 
 |   unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), | 
 |                                        0); | 
 |   good &= constant_time_eq_int(padding_ok, 1); | 
 |   if (!good) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* End of timing-sensitive code. */ | 
 |  | 
 |   *out_len = data_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                   size_t key_len, size_t tag_len, | 
 |                                   enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_rc4(), EVP_sha1(), | 
 |                        0); | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                           size_t key_len, size_t tag_len, | 
 |                                           enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                             const uint8_t *key, size_t key_len, | 
 |                                             size_t tag_len, | 
 |                                             enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), | 
 |                        EVP_sha256(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                           size_t key_len, size_t tag_len, | 
 |                                           enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                             const uint8_t *key, size_t key_len, | 
 |                                             size_t tag_len, | 
 |                                             enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha256(), 0); | 
 | } | 
 |  | 
 | static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                             const uint8_t *key, size_t key_len, | 
 |                                             size_t tag_len, | 
 |                                             enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), | 
 |                        EVP_sha384(), 0); | 
 | } | 
 |  | 
 | static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, | 
 |                                            const uint8_t *key, size_t key_len, | 
 |                                            size_t tag_len, | 
 |                                            enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
 |                        EVP_sha1(), 0); | 
 | } | 
 |  | 
 | static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( | 
 |     EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, | 
 |     enum evp_aead_direction_t dir) { | 
 |   return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), | 
 |                        EVP_sha1(), 1); | 
 | } | 
 |  | 
 | static int aead_rc4_sha1_tls_get_rc4_state(const EVP_AEAD_CTX *ctx, | 
 |                                            const RC4_KEY **out_key) { | 
 |   const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state; | 
 |   if (EVP_CIPHER_CTX_cipher(&tls_ctx->cipher_ctx) != EVP_rc4()) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   *out_key = (const RC4_KEY*) tls_ctx->cipher_ctx.cipher_data; | 
 |   return 1; | 
 | } | 
 |  | 
 | static const EVP_AEAD aead_rc4_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */ | 
 |     0,                      /* nonce len */ | 
 |     SHA_DIGEST_LENGTH,      /* overhead */ | 
 |     SHA_DIGEST_LENGTH,      /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_rc4_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     aead_rc4_sha1_tls_get_rc4_state, /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */ | 
 |     16,                     /* nonce len (IV) */ | 
 |     16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,      /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_128_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                   /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */ | 
 |     0,                           /* nonce len */ | 
 |     16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,           /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_128_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                        /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { | 
 |     SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */ | 
 |     16,                        /* nonce len (IV) */ | 
 |     16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ | 
 |     SHA_DIGEST_LENGTH,         /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_128_cbc_sha256_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                      /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */ | 
 |     16,                     /* nonce len (IV) */ | 
 |     16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,      /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_256_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                   /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */ | 
 |     0,                           /* nonce len */ | 
 |     16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,           /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_256_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                        /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha256_tls = { | 
 |     SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */ | 
 |     16,                        /* nonce len (IV) */ | 
 |     16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ | 
 |     SHA_DIGEST_LENGTH,         /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_256_cbc_sha256_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                      /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_cbc_sha384_tls = { | 
 |     SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */ | 
 |     16,                        /* nonce len (IV) */ | 
 |     16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */ | 
 |     SHA_DIGEST_LENGTH,         /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_aes_256_cbc_sha384_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                      /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { | 
 |     SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */ | 
 |     8,                      /* nonce len (IV) */ | 
 |     8 + SHA_DIGEST_LENGTH,  /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,      /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_des_ede3_cbc_sha1_tls_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                   /* get_rc4_state */ | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { | 
 |     SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */ | 
 |     0,                          /* nonce len */ | 
 |     8 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */ | 
 |     SHA_DIGEST_LENGTH,          /* max tag length */ | 
 |     NULL, /* init */ | 
 |     aead_des_ede3_cbc_sha1_tls_implicit_iv_init, | 
 |     aead_tls_cleanup, | 
 |     aead_tls_seal, | 
 |     aead_tls_open, | 
 |     NULL,                       /* get_rc4_state */ | 
 | }; | 
 |  | 
 | const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { | 
 |   return &aead_aes_128_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_aes_128_cbc_sha1_tls_implicit_iv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { | 
 |   return &aead_aes_128_cbc_sha256_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { | 
 |   return &aead_aes_256_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_aes_256_cbc_sha1_tls_implicit_iv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) { | 
 |   return &aead_aes_256_cbc_sha256_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) { | 
 |   return &aead_aes_256_cbc_sha384_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { | 
 |   return &aead_des_ede3_cbc_sha1_tls; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { | 
 |   return &aead_des_ede3_cbc_sha1_tls_implicit_iv; | 
 | } |