|  | /* Copyright (c) 2014, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <string> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include <stdint.h> | 
|  | #include <time.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/obj.h> | 
|  | #include <openssl/rsa.h> | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | #include <Windows.h> | 
|  | #elif defined(OPENSSL_APPLE) | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  | extern "C" { | 
|  | // These values are DER encoded, RSA private keys. | 
|  | extern const uint8_t kDERRSAPrivate2048[]; | 
|  | extern size_t kDERRSAPrivate2048Len; | 
|  | extern const uint8_t kDERRSAPrivate4096[]; | 
|  | extern size_t kDERRSAPrivate4096Len; | 
|  | } | 
|  |  | 
|  | // TimeResults represents the results of benchmarking a function. | 
|  | struct TimeResults { | 
|  | // num_calls is the number of function calls done in the time period. | 
|  | unsigned num_calls; | 
|  | // us is the number of microseconds that elapsed in the time period. | 
|  | unsigned us; | 
|  |  | 
|  | void Print(const std::string &description) { | 
|  | printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, | 
|  | description.c_str(), us, | 
|  | (static_cast<double>(num_calls) / us) * 1000000); | 
|  | } | 
|  |  | 
|  | void PrintWithBytes(const std::string &description, size_t bytes_per_call) { | 
|  | printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", | 
|  | num_calls, description.c_str(), us, | 
|  | (static_cast<double>(num_calls) / us) * 1000000, | 
|  | static_cast<double>(bytes_per_call * num_calls) / us); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | static uint64_t time_now() { return GetTickCount64() * 1000; } | 
|  | #elif defined(OPENSSL_APPLE) | 
|  | static uint64_t time_now() { | 
|  | struct timeval tv; | 
|  | uint64_t ret; | 
|  |  | 
|  | gettimeofday(&tv, NULL); | 
|  | ret = tv.tv_sec; | 
|  | ret *= 1000000; | 
|  | ret += tv.tv_usec; | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static uint64_t time_now() { | 
|  | struct timespec ts; | 
|  | clock_gettime(CLOCK_MONOTONIC, &ts); | 
|  |  | 
|  | uint64_t ret = ts.tv_sec; | 
|  | ret *= 1000000; | 
|  | ret += ts.tv_nsec / 1000; | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool TimeFunction(TimeResults *results, std::function<bool()> func) { | 
|  | // kTotalMS is the total amount of time that we'll aim to measure a function | 
|  | // for. | 
|  | static const uint64_t kTotalUS = 3000000; | 
|  | uint64_t start = time_now(), now, delta; | 
|  | unsigned done = 0, iterations_between_time_checks; | 
|  |  | 
|  | if (!func()) { | 
|  | return false; | 
|  | } | 
|  | now = time_now(); | 
|  | delta = now - start; | 
|  | if (delta == 0) { | 
|  | iterations_between_time_checks = 250; | 
|  | } else { | 
|  | // Aim for about 100ms between time checks. | 
|  | iterations_between_time_checks = | 
|  | static_cast<double>(100000) / static_cast<double>(delta); | 
|  | if (iterations_between_time_checks > 1000) { | 
|  | iterations_between_time_checks = 1000; | 
|  | } else if (iterations_between_time_checks < 1) { | 
|  | iterations_between_time_checks = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | for (unsigned i = 0; i < iterations_between_time_checks; i++) { | 
|  | if (!func()) { | 
|  | return false; | 
|  | } | 
|  | done++; | 
|  | } | 
|  |  | 
|  | now = time_now(); | 
|  | if (now - start > kTotalUS) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | results->us = now - start; | 
|  | results->num_calls = done; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SpeedRSA(const std::string& key_name, RSA *key) { | 
|  | TimeResults results; | 
|  |  | 
|  | std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]); | 
|  | const uint8_t fake_sha256_hash[32] = {0}; | 
|  | unsigned sig_len; | 
|  |  | 
|  | if (!TimeFunction(&results, | 
|  | [key, &sig, &fake_sha256_hash, &sig_len]() -> bool { | 
|  | return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), | 
|  | sig.get(), &sig_len, key); | 
|  | })) { | 
|  | fprintf(stderr, "RSA_sign failed.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  | results.Print(key_name + " signing"); | 
|  |  | 
|  | if (!TimeFunction(&results, | 
|  | [key, &fake_sha256_hash, &sig, sig_len]() -> bool { | 
|  | return RSA_verify(NID_sha256, fake_sha256_hash, | 
|  | sizeof(fake_sha256_hash), sig.get(), sig_len, key); | 
|  | })) { | 
|  | fprintf(stderr, "RSA_verify failed.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  | results.Print(key_name + " verify"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name, | 
|  | size_t chunk_len) { | 
|  | EVP_AEAD_CTX ctx; | 
|  | const size_t key_len = EVP_AEAD_key_length(aead); | 
|  | const size_t nonce_len = EVP_AEAD_nonce_length(aead); | 
|  | const size_t overhead_len = EVP_AEAD_max_overhead(aead); | 
|  |  | 
|  | std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); | 
|  | memset(key.get(), 0, key_len); | 
|  | std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); | 
|  | memset(nonce.get(), 0, nonce_len); | 
|  | std::unique_ptr<uint8_t[]> in(new uint8_t[chunk_len]); | 
|  | memset(in.get(), 0, chunk_len); | 
|  | std::unique_ptr<uint8_t[]> out(new uint8_t[chunk_len + overhead_len]); | 
|  | memset(out.get(), 0, chunk_len + overhead_len); | 
|  |  | 
|  | if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len, | 
|  | EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) { | 
|  | fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TimeResults results; | 
|  | if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, &in, &out, | 
|  | &ctx, &nonce]() -> bool { | 
|  | size_t out_len; | 
|  |  | 
|  | return EVP_AEAD_CTX_seal(&ctx, out.get(), &out_len, | 
|  | chunk_len + overhead_len, nonce.get(), | 
|  | nonce_len, in.get(), chunk_len, NULL, 0); | 
|  | })) { | 
|  | fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | results.PrintWithBytes(name + " seal", chunk_len); | 
|  |  | 
|  | EVP_AEAD_CTX_cleanup(&ctx); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name) { | 
|  | return SpeedAEADChunk(aead, name + " (16 bytes)", 16) && | 
|  | SpeedAEADChunk(aead, name + " (1350 bytes)", 1350) && | 
|  | SpeedAEADChunk(aead, name + " (8192 bytes)", 8192); | 
|  | } | 
|  |  | 
|  | static bool SpeedHashChunk(const EVP_MD *md, const std::string &name, | 
|  | size_t chunk_len) { | 
|  | EVP_MD_CTX *ctx = EVP_MD_CTX_create(); | 
|  | uint8_t scratch[8192]; | 
|  |  | 
|  | if (chunk_len > sizeof(scratch)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TimeResults results; | 
|  | if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool { | 
|  | uint8_t digest[EVP_MAX_MD_SIZE]; | 
|  | unsigned int md_len; | 
|  |  | 
|  | return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) && | 
|  | EVP_DigestUpdate(ctx, scratch, chunk_len) && | 
|  | EVP_DigestFinal_ex(ctx, digest, &md_len); | 
|  | })) { | 
|  | fprintf(stderr, "EVP_DigestInit_ex failed.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | results.PrintWithBytes(name, chunk_len); | 
|  |  | 
|  | EVP_MD_CTX_destroy(ctx); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | static bool SpeedHash(const EVP_MD *md, const std::string &name) { | 
|  | return SpeedHashChunk(md, name + " (16 bytes)", 16) && | 
|  | SpeedHashChunk(md, name + " (256 bytes)", 256) && | 
|  | SpeedHashChunk(md, name + " (8192 bytes)", 8192); | 
|  | } | 
|  |  | 
|  | bool Speed(const std::vector<std::string> &args) { | 
|  | const uint8_t *inp; | 
|  |  | 
|  | RSA *key = NULL; | 
|  | inp = kDERRSAPrivate2048; | 
|  | if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) { | 
|  | fprintf(stderr, "Failed to parse RSA key.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!SpeedRSA("RSA 2048", key)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RSA_free(key); | 
|  | key = NULL; | 
|  |  | 
|  | inp = kDERRSAPrivate4096; | 
|  | if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) { | 
|  | fprintf(stderr, "Failed to parse 4096-bit RSA key.\n"); | 
|  | BIO_print_errors_fp(stderr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!SpeedRSA("RSA 4096", key)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RSA_free(key); | 
|  |  | 
|  | if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM") || | 
|  | !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM") || | 
|  | !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305") || | 
|  | !SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5") || | 
|  | !SpeedHash(EVP_sha1(), "SHA-1") || | 
|  | !SpeedHash(EVP_sha256(), "SHA-256") || | 
|  | !SpeedHash(EVP_sha512(), "SHA-512")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |