|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) { | 
|  | BN_ULONG *rr; | 
|  |  | 
|  | if (na < nb) { | 
|  | int itmp; | 
|  | BN_ULONG *ltmp; | 
|  |  | 
|  | itmp = na; | 
|  | na = nb; | 
|  | nb = itmp; | 
|  | ltmp = a; | 
|  | a = b; | 
|  | b = ltmp; | 
|  | } | 
|  | rr = &(r[na]); | 
|  | if (nb <= 0) { | 
|  | (void)bn_mul_words(r, a, na, 0); | 
|  | return; | 
|  | } else { | 
|  | rr[0] = bn_mul_words(r, a, na, b[0]); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | if (--nb <= 0) { | 
|  | return; | 
|  | } | 
|  | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | 
|  | if (--nb <= 0) { | 
|  | return; | 
|  | } | 
|  | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | 
|  | if (--nb <= 0) { | 
|  | return; | 
|  | } | 
|  | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | 
|  | if (--nb <= 0) { | 
|  | return; | 
|  | } | 
|  | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | 
|  | rr += 4; | 
|  | r += 4; | 
|  | b += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) { | 
|  | bn_mul_words(r, a, n, b[0]); | 
|  |  | 
|  | for (;;) { | 
|  | if (--n <= 0) { | 
|  | return; | 
|  | } | 
|  | bn_mul_add_words(&(r[1]), a, n, b[1]); | 
|  | if (--n <= 0) { | 
|  | return; | 
|  | } | 
|  | bn_mul_add_words(&(r[2]), a, n, b[2]); | 
|  | if (--n <= 0) { | 
|  | return; | 
|  | } | 
|  | bn_mul_add_words(&(r[3]), a, n, b[3]); | 
|  | if (--n <= 0) { | 
|  | return; | 
|  | } | 
|  | bn_mul_add_words(&(r[4]), a, n, b[4]); | 
|  | r += 4; | 
|  | b += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM) | 
|  | /* Here follows specialised variants of bn_add_words() and bn_sub_words(). They | 
|  | * have the property performing operations on arrays of different sizes. The | 
|  | * sizes of those arrays is expressed through cl, which is the common length ( | 
|  | * basicall, min(len(a),len(b)) ), and dl, which is the delta between the two | 
|  | * lengths, calculated as len(a)-len(b). All lengths are the number of | 
|  | * BN_ULONGs...  For the operations that require a result array as parameter, | 
|  | * it must have the length cl+abs(dl). These functions should probably end up | 
|  | * in bn_asm.c as soon as there are assembler counterparts for the systems that | 
|  | * use assembler files.  */ | 
|  |  | 
|  | static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, | 
|  | const BN_ULONG *b, int cl, int dl) { | 
|  | BN_ULONG c, t; | 
|  |  | 
|  | assert(cl >= 0); | 
|  | c = bn_sub_words(r, a, b, cl); | 
|  |  | 
|  | if (dl == 0) | 
|  | return c; | 
|  |  | 
|  | r += cl; | 
|  | a += cl; | 
|  | b += cl; | 
|  |  | 
|  | if (dl < 0) { | 
|  | for (;;) { | 
|  | t = b[0]; | 
|  | r[0] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 1; | 
|  | } | 
|  | if (++dl >= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = b[1]; | 
|  | r[1] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 1; | 
|  | } | 
|  | if (++dl >= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = b[2]; | 
|  | r[2] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 1; | 
|  | } | 
|  | if (++dl >= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = b[3]; | 
|  | r[3] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 1; | 
|  | } | 
|  | if (++dl >= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | b += 4; | 
|  | r += 4; | 
|  | } | 
|  | } else { | 
|  | int save_dl = dl; | 
|  | while (c) { | 
|  | t = a[0]; | 
|  | r[0] = (t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 0; | 
|  | } | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = a[1]; | 
|  | r[1] = (t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 0; | 
|  | } | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = a[2]; | 
|  | r[2] = (t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 0; | 
|  | } | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | t = a[3]; | 
|  | r[3] = (t - c) & BN_MASK2; | 
|  | if (t != 0) { | 
|  | c = 0; | 
|  | } | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | save_dl = dl; | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | if (dl > 0) { | 
|  | if (save_dl > dl) { | 
|  | switch (save_dl - dl) { | 
|  | case 1: | 
|  | r[1] = a[1]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | case 2: | 
|  | r[2] = a[2]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | case 3: | 
|  | r[3] = a[3]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dl > 0) { | 
|  | for (;;) { | 
|  | r[0] = a[0]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | r[1] = a[1]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | r[2] = a[2]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  | r[3] = a[3]; | 
|  | if (--dl <= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  | #else | 
|  | /* On other platforms the function is defined in asm. */ | 
|  | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | int cl, int dl); | 
|  | #endif | 
|  |  | 
|  | /* Karatsuba recursive multiplication algorithm | 
|  | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | 
|  |  | 
|  | /* r is 2*n2 words in size, | 
|  | * a and b are both n2 words in size. | 
|  | * n2 must be a power of 2. | 
|  | * We multiply and return the result. | 
|  | * t must be 2*n2 words in size | 
|  | * We calculate | 
|  | * a[0]*b[0] | 
|  | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | 
|  | * a[1]*b[1] | 
|  | */ | 
|  | /* dnX may not be positive, but n2/2+dnX has to be */ | 
|  | static void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | 
|  | int dna, int dnb, BN_ULONG *t) { | 
|  | int n = n2 / 2, c1, c2; | 
|  | int tna = n + dna, tnb = n + dnb; | 
|  | unsigned int neg, zero; | 
|  | BN_ULONG ln, lo, *p; | 
|  |  | 
|  | /* Only call bn_mul_comba 8 if n2 == 8 and the | 
|  | * two arrays are complete [steve] | 
|  | */ | 
|  | if (n2 == 8 && dna == 0 && dnb == 0) { | 
|  | bn_mul_comba8(r, a, b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Else do normal multiply */ | 
|  | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | 
|  | if ((dna + dnb) < 0) | 
|  | memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 
|  | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | 
|  | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | 
|  | zero = neg = 0; | 
|  | switch (c1 * 3 + c2) { | 
|  | case -4: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | break; | 
|  | case -3: | 
|  | zero = 1; | 
|  | break; | 
|  | case -2: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */ | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | 
|  | neg = 1; | 
|  | break; | 
|  | case -1: | 
|  | case 0: | 
|  | case 1: | 
|  | zero = 1; | 
|  | break; | 
|  | case 2: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | neg = 1; | 
|  | break; | 
|  | case 3: | 
|  | zero = 1; | 
|  | break; | 
|  | case 4: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (n == 4 && dna == 0 && dnb == 0) { | 
|  | /* XXX: bn_mul_comba4 could take extra args to do this well */ | 
|  | if (!zero) { | 
|  | bn_mul_comba4(&(t[n2]), t, &(t[n])); | 
|  | } else { | 
|  | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); | 
|  | } | 
|  |  | 
|  | bn_mul_comba4(r, a, b); | 
|  | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | 
|  | } else if (n == 8 && dna == 0 && dnb == 0) { | 
|  | /* XXX: bn_mul_comba8 could take extra args to do this well */ | 
|  | if (!zero) { | 
|  | bn_mul_comba8(&(t[n2]), t, &(t[n])); | 
|  | } else { | 
|  | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); | 
|  | } | 
|  |  | 
|  | bn_mul_comba8(r, a, b); | 
|  | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | 
|  | } else { | 
|  | p = &(t[n2 * 2]); | 
|  | if (!zero) { | 
|  | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | 
|  | } else { | 
|  | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | 
|  | } | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | 
|  | } | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) */ | 
|  |  | 
|  | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | 
|  |  | 
|  | if (neg) { | 
|  | /* if t[32] is negative */ | 
|  | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | 
|  | } else { | 
|  | /* Might have a carry */ | 
|  | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | 
|  | } | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | * c1 holds the carry bits */ | 
|  | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | 
|  | if (c1) { | 
|  | p = &(r[n + n2]); | 
|  | lo = *p; | 
|  | ln = (lo + c1) & BN_MASK2; | 
|  | *p = ln; | 
|  |  | 
|  | /* The overflow will stop before we over write | 
|  | * words we should not overwrite */ | 
|  | if (ln < (BN_ULONG)c1) { | 
|  | do { | 
|  | p++; | 
|  | lo = *p; | 
|  | ln = (lo + 1) & BN_MASK2; | 
|  | *p = ln; | 
|  | } while (ln == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* n+tn is the word length | 
|  | * t needs to be n*4 is size, as does r */ | 
|  | /* tnX may not be negative but less than n */ | 
|  | static void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | 
|  | int tna, int tnb, BN_ULONG *t) { | 
|  | int i, j, n2 = n * 2; | 
|  | int c1, c2, neg; | 
|  | BN_ULONG ln, lo, *p; | 
|  |  | 
|  | if (n < 8) { | 
|  | bn_mul_normal(r, a, n + tna, b, n + tnb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 
|  | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | 
|  | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | 
|  | neg = 0; | 
|  | switch (c1 * 3 + c2) { | 
|  | case -4: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | break; | 
|  | case -3: | 
|  | /* break; */ | 
|  | case -2: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */ | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | 
|  | neg = 1; | 
|  | break; | 
|  | case -1: | 
|  | case 0: | 
|  | case 1: | 
|  | /* break; */ | 
|  | case 2: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | neg = 1; | 
|  | break; | 
|  | case 3: | 
|  | /* break; */ | 
|  | case 4: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (n == 8) { | 
|  | bn_mul_comba8(&(t[n2]), t, &(t[n])); | 
|  | bn_mul_comba8(r, a, b); | 
|  | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | 
|  | memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); | 
|  | } else { | 
|  | p = &(t[n2 * 2]); | 
|  | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  | i = n / 2; | 
|  | /* If there is only a bottom half to the number, | 
|  | * just do it */ | 
|  | if (tna > tnb) { | 
|  | j = tna - i; | 
|  | } else { | 
|  | j = tnb - i; | 
|  | } | 
|  |  | 
|  | if (j == 0) { | 
|  | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); | 
|  | memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); | 
|  | } else if (j > 0) { | 
|  | /* eg, n == 16, i == 8 and tn == 11 */ | 
|  | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); | 
|  | memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); | 
|  | } else { | 
|  | /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | 
|  | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); | 
|  | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | 
|  | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | 
|  | } else { | 
|  | for (;;) { | 
|  | i /= 2; | 
|  | /* these simplified conditions work | 
|  | * exclusively because difference | 
|  | * between tna and tnb is 1 or 0 */ | 
|  | if (i < tna || i < tnb) { | 
|  | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, | 
|  | tnb - i, p); | 
|  | break; | 
|  | } else if (i == tna || i == tnb) { | 
|  | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, | 
|  | p); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | */ | 
|  |  | 
|  | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | 
|  |  | 
|  | if (neg) { | 
|  | /* if t[32] is negative */ | 
|  | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | 
|  | } else { | 
|  | /* Might have a carry */ | 
|  | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | 
|  | } | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | * c1 holds the carry bits */ | 
|  | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | 
|  | if (c1) { | 
|  | p = &(r[n + n2]); | 
|  | lo = *p; | 
|  | ln = (lo + c1) & BN_MASK2; | 
|  | *p = ln; | 
|  |  | 
|  | /* The overflow will stop before we over write | 
|  | * words we should not overwrite */ | 
|  | if (ln < (BN_ULONG)c1) { | 
|  | do { | 
|  | p++; | 
|  | lo = *p; | 
|  | ln = (lo + 1) & BN_MASK2; | 
|  | *p = ln; | 
|  | } while (ln == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { | 
|  | int ret = 0; | 
|  | int top, al, bl; | 
|  | BIGNUM *rr; | 
|  | int i; | 
|  | BIGNUM *t = NULL; | 
|  | int j = 0, k; | 
|  |  | 
|  | al = a->top; | 
|  | bl = b->top; | 
|  |  | 
|  | if ((al == 0) || (bl == 0)) { | 
|  | BN_zero(r); | 
|  | return 1; | 
|  | } | 
|  | top = al + bl; | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | if ((r == a) || (r == b)) { | 
|  | if ((rr = BN_CTX_get(ctx)) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | rr = r; | 
|  | } | 
|  | rr->neg = a->neg ^ b->neg; | 
|  |  | 
|  | i = al - bl; | 
|  | if (i == 0) { | 
|  | if (al == 8) { | 
|  | if (bn_wexpand(rr, 16) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | rr->top = 16; | 
|  | bn_mul_comba8(rr->d, a->d, b->d); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | 
|  | if (i >= -1 && i <= 1) { | 
|  | /* Find out the power of two lower or equal | 
|  | to the longest of the two numbers */ | 
|  | if (i >= 0) { | 
|  | j = BN_num_bits_word((BN_ULONG)al); | 
|  | } | 
|  | if (i == -1) { | 
|  | j = BN_num_bits_word((BN_ULONG)bl); | 
|  | } | 
|  | j = 1 << (j - 1); | 
|  | assert(j <= al || j <= bl); | 
|  | k = j + j; | 
|  | t = BN_CTX_get(ctx); | 
|  | if (t == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (al > j || bl > j) { | 
|  | if (bn_wexpand(t, k * 4) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (bn_wexpand(rr, k * 4) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); | 
|  | } else { | 
|  | /* al <= j || bl <= j */ | 
|  | if (bn_wexpand(t, k * 2) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (bn_wexpand(rr, k * 2) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); | 
|  | } | 
|  | rr->top = top; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bn_wexpand(rr, top) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | rr->top = top; | 
|  | bn_mul_normal(rr->d, a->d, al, b->d, bl); | 
|  |  | 
|  | end: | 
|  | bn_correct_top(rr); | 
|  | if (r != rr) { | 
|  | BN_copy(r, rr); | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* tmp must have 2*n words */ | 
|  | static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) { | 
|  | int i, j, max; | 
|  | const BN_ULONG *ap; | 
|  | BN_ULONG *rp; | 
|  |  | 
|  | max = n * 2; | 
|  | ap = a; | 
|  | rp = r; | 
|  | rp[0] = rp[max - 1] = 0; | 
|  | rp++; | 
|  | j = n; | 
|  |  | 
|  | if (--j > 0) { | 
|  | ap++; | 
|  | rp[j] = bn_mul_words(rp, ap, j, ap[-1]); | 
|  | rp += 2; | 
|  | } | 
|  |  | 
|  | for (i = n - 2; i > 0; i--) { | 
|  | j--; | 
|  | ap++; | 
|  | rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); | 
|  | rp += 2; | 
|  | } | 
|  |  | 
|  | bn_add_words(r, r, r, max); | 
|  |  | 
|  | /* There will not be a carry */ | 
|  |  | 
|  | bn_sqr_words(tmp, a, n); | 
|  |  | 
|  | bn_add_words(r, r, tmp, max); | 
|  | } | 
|  |  | 
|  | /* r is 2*n words in size, | 
|  | * a and b are both n words in size.    (There's not actually a 'b' here ...) | 
|  | * n must be a power of 2. | 
|  | * We multiply and return the result. | 
|  | * t must be 2*n words in size | 
|  | * We calculate | 
|  | * a[0]*b[0] | 
|  | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | 
|  | * a[1]*b[1] | 
|  | */ | 
|  | static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) { | 
|  | int n = n2 / 2; | 
|  | int zero, c1; | 
|  | BN_ULONG ln, lo, *p; | 
|  |  | 
|  | if (n2 == 4) { | 
|  | bn_sqr_comba4(r, a); | 
|  | return; | 
|  | } else if (n2 == 8) { | 
|  | bn_sqr_comba8(r, a); | 
|  | return; | 
|  | } | 
|  | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_sqr_normal(r, a, n2, t); | 
|  | return; | 
|  | } | 
|  | /* r=(a[0]-a[1])*(a[1]-a[0]) */ | 
|  | c1 = bn_cmp_words(a, &(a[n]), n); | 
|  | zero = 0; | 
|  | if (c1 > 0) { | 
|  | bn_sub_words(t, a, &(a[n]), n); | 
|  | } else if (c1 < 0) { | 
|  | bn_sub_words(t, &(a[n]), a, n); | 
|  | } else { | 
|  | zero = 1; | 
|  | } | 
|  |  | 
|  | /* The result will always be negative unless it is zero */ | 
|  | p = &(t[n2 * 2]); | 
|  |  | 
|  | if (!zero) { | 
|  | bn_sqr_recursive(&(t[n2]), t, n, p); | 
|  | } else { | 
|  | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | 
|  | } | 
|  | bn_sqr_recursive(r, a, n, p); | 
|  | bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) */ | 
|  |  | 
|  | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | 
|  |  | 
|  | /* t[32] is negative */ | 
|  | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | 
|  |  | 
|  | /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) | 
|  | * r[10] holds (a[0]*a[0]) | 
|  | * r[32] holds (a[1]*a[1]) | 
|  | * c1 holds the carry bits */ | 
|  | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | 
|  | if (c1) { | 
|  | p = &(r[n + n2]); | 
|  | lo = *p; | 
|  | ln = (lo + c1) & BN_MASK2; | 
|  | *p = ln; | 
|  |  | 
|  | /* The overflow will stop before we over write | 
|  | * words we should not overwrite */ | 
|  | if (ln < (BN_ULONG)c1) { | 
|  | do { | 
|  | p++; | 
|  | lo = *p; | 
|  | ln = (lo + 1) & BN_MASK2; | 
|  | *p = ln; | 
|  | } while (ln == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int BN_mul_word(BIGNUM *bn, BN_ULONG w) { | 
|  | BN_ULONG ll; | 
|  |  | 
|  | w &= BN_MASK2; | 
|  | if (!bn->top) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (w == 0) { | 
|  | BN_zero(bn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ll = bn_mul_words(bn->d, bn->d, bn->top, w); | 
|  | if (ll) { | 
|  | if (bn_wexpand(bn, bn->top + 1) == NULL) { | 
|  | return 0; | 
|  | } | 
|  | bn->d[bn->top++] = ll; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { | 
|  | int max, al; | 
|  | int ret = 0; | 
|  | BIGNUM *tmp, *rr; | 
|  |  | 
|  | al = a->top; | 
|  | if (al <= 0) { | 
|  | r->top = 0; | 
|  | r->neg = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | rr = (a != r) ? r : BN_CTX_get(ctx); | 
|  | tmp = BN_CTX_get(ctx); | 
|  | if (!rr || !tmp) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | max = 2 * al; /* Non-zero (from above) */ | 
|  | if (bn_wexpand(rr, max) == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (al == 4) { | 
|  | bn_sqr_comba4(rr->d, a->d); | 
|  | } else if (al == 8) { | 
|  | bn_sqr_comba8(rr->d, a->d); | 
|  | } else { | 
|  | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { | 
|  | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; | 
|  | bn_sqr_normal(rr->d, a->d, al, t); | 
|  | } else { | 
|  | int j, k; | 
|  |  | 
|  | j = BN_num_bits_word((BN_ULONG)al); | 
|  | j = 1 << (j - 1); | 
|  | k = j + j; | 
|  | if (al == j) { | 
|  | if (bn_wexpand(tmp, k * 2) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | bn_sqr_recursive(rr->d, a->d, al, tmp->d); | 
|  | } else { | 
|  | if (bn_wexpand(tmp, max) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | bn_sqr_normal(rr->d, a->d, al, tmp->d); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rr->neg = 0; | 
|  | /* If the most-significant half of the top word of 'a' is zero, then | 
|  | * the square of 'a' will max-1 words. */ | 
|  | if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) { | 
|  | rr->top = max - 1; | 
|  | } else { | 
|  | rr->top = max; | 
|  | } | 
|  |  | 
|  | if (rr != r) { | 
|  | BN_copy(r, rr); | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } |