blob: 6803e9bcccefd9ceb8e623ce3ac20123f10aee2c [file] [log] [blame] [edit]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <stdio.h>
#include <assert.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include "ssl_locl.h"
/* seed1 through seed5 are virtually concatenated */
static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
int sec_len,
const void *seed1, int seed1_len,
const void *seed2, int seed2_len,
const void *seed3, int seed3_len,
unsigned char *out, int olen)
{
int chunk;
size_t j;
EVP_MD_CTX ctx, ctx_tmp, ctx_init;
EVP_PKEY *mac_key;
unsigned char A1[EVP_MAX_MD_SIZE];
size_t A1_len;
int ret = 0;
chunk=EVP_MD_size(md);
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_init(&ctx_tmp);
EVP_MD_CTX_init(&ctx_init);
mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
if (!mac_key)
goto err;
if (!EVP_DigestSignInit(&ctx_init,NULL,md, NULL, mac_key))
goto err;
if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
goto err;
A1_len = EVP_MAX_MD_SIZE;
if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
goto err;
for (;;)
{
/* Reinit mac contexts */
if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init))
goto err;
if (!EVP_DigestSignUpdate(&ctx,A1,A1_len))
goto err;
if (olen>chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp,&ctx))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
goto err;
if (olen > chunk)
{
j = olen;
if (!EVP_DigestSignFinal(&ctx,out,&j))
goto err;
out+=j;
olen-=j;
/* calc the next A1 value */
A1_len = EVP_MAX_MD_SIZE;
if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len))
goto err;
}
else /* last one */
{
A1_len = EVP_MAX_MD_SIZE;
if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
goto err;
memcpy(out,A1,olen);
break;
}
}
ret = 1;
err:
EVP_PKEY_free(mac_key);
EVP_MD_CTX_cleanup(&ctx);
EVP_MD_CTX_cleanup(&ctx_tmp);
EVP_MD_CTX_cleanup(&ctx_init);
OPENSSL_cleanse(A1,sizeof(A1));
return ret;
}
/* seed1 through seed5 are virtually concatenated */
static int tls1_PRF(long digest_mask,
const void *seed1, int seed1_len,
const void *seed2, int seed2_len,
const void *seed3, int seed3_len,
const unsigned char *sec, int slen,
unsigned char *out1,
unsigned char *out2, int olen)
{
int len,i,idx,count;
const unsigned char *S1;
long m;
const EVP_MD *md;
int ret = 0;
/* Count number of digests and partition sec evenly */
count=0;
for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) count++;
}
len=slen/count;
if (count == 1)
slen = 0;
S1=sec;
memset(out1,0,olen);
for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) {
if (!md) {
OPENSSL_PUT_ERROR(SSL, tls1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE);
goto err;
}
if (!tls1_P_hash(md ,S1,len+(slen&1),
seed1,seed1_len,seed2,seed2_len,seed3,seed3_len,
out2,olen))
goto err;
S1+=len;
for (i=0; i<olen; i++)
{
out1[i]^=out2[i];
}
}
}
ret = 1;
err:
return ret;
}
static int tls1_generate_key_block(SSL *s, unsigned char *km,
unsigned char *tmp, int num)
{
int ret;
ret = tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_KEY_EXPANSION_CONST,TLS_MD_KEY_EXPANSION_CONST_SIZE,
s->s3->server_random,SSL3_RANDOM_SIZE,
s->s3->client_random,SSL3_RANDOM_SIZE,
s->session->master_key,s->session->master_key_length,
km,tmp,num);
return ret;
}
/* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It
* returns 0 on malloc error. */
static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
{
if (*aead_ctx != NULL)
EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
else
{
*aead_ctx = (SSL_AEAD_CTX*) OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
if (*aead_ctx == NULL)
{
OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE);
return 0;
}
}
return 1;
}
static void tls1_cleanup_enc_ctx(EVP_CIPHER_CTX **ctx)
{
if (*ctx != NULL)
EVP_CIPHER_CTX_free(*ctx);
*ctx = NULL;
}
static void tls1_cleanup_hash_ctx(EVP_MD_CTX **ctx)
{
if (*ctx != NULL)
EVP_MD_CTX_destroy(*ctx);
*ctx = NULL;
}
static int tls1_change_cipher_state_aead(SSL *s, char is_read,
const unsigned char *key, unsigned key_len,
const unsigned char *iv, unsigned iv_len,
const unsigned char *mac_secret, unsigned mac_secret_len)
{
const EVP_AEAD *aead = s->s3->tmp.new_aead;
SSL_AEAD_CTX *aead_ctx;
/* mac_key_and_key is used to merge the MAC and cipher keys for an AEAD
* which simulates pre-AEAD cipher suites. It needs to be large enough
* to cope with the largest pair of keys. */
uint8_t mac_key_and_key[32 /* HMAC(SHA256) */ + 32 /* AES-256 */];
if (is_read)
{
tls1_cleanup_enc_ctx(&s->enc_read_ctx);
tls1_cleanup_hash_ctx(&s->read_hash);
}
else
{
tls1_cleanup_enc_ctx(&s->enc_write_ctx);
tls1_cleanup_hash_ctx(&s->write_hash);
}
if (mac_secret_len > 0)
{
/* This is a "stateful" AEAD (for compatibility with pre-AEAD
* cipher suites). */
if (mac_secret_len + key_len > sizeof(mac_key_and_key))
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
return 0;
}
memcpy(mac_key_and_key, mac_secret, mac_secret_len);
memcpy(mac_key_and_key + mac_secret_len, key, key_len);
key = mac_key_and_key;
key_len += mac_secret_len;
}
if (is_read)
{
if (!tls1_aead_ctx_init(&s->aead_read_ctx))
return 0;
aead_ctx = s->aead_read_ctx;
}
else
{
if (!tls1_aead_ctx_init(&s->aead_write_ctx))
return 0;
aead_ctx = s->aead_write_ctx;
}
if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */))
{
OPENSSL_free(aead_ctx);
if (is_read)
s->aead_read_ctx = NULL;
else
s->aead_write_ctx = NULL;
return 0;
}
if (iv_len > sizeof(aead_ctx->fixed_nonce))
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
return 0;
}
memcpy(aead_ctx->fixed_nonce, iv, iv_len);
aead_ctx->fixed_nonce_len = iv_len;
aead_ctx->variable_nonce_len = 8; /* correct for all true AEADs so far. */
if (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD)
aead_ctx->variable_nonce_len = 0;
aead_ctx->variable_nonce_included_in_record =
(s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0;
if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead))
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
return 0;
}
aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
return 1;
}
static void tls1_cleanup_aead_ctx(SSL_AEAD_CTX **ctx)
{
if (*ctx != NULL)
{
EVP_AEAD_CTX_cleanup(&(*ctx)->ctx);
OPENSSL_free(*ctx);
}
*ctx = NULL;
}
/* tls1_change_cipher_state_cipher performs the work needed to switch cipher
* states when using EVP_CIPHER. The argument |is_read| is true iff this
* function is being called due to reading, as opposed to writing, a
* ChangeCipherSpec message. In order to support export ciphersuites,
* use_client_keys indicates whether the key material provided is in the
* "client write" direction. */
static int tls1_change_cipher_state_cipher(
SSL *s, char is_read, char use_client_keys,
const unsigned char *mac_secret, unsigned mac_secret_len,
const unsigned char *key, unsigned key_len,
const unsigned char *iv, unsigned iv_len)
{
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
EVP_CIPHER_CTX *cipher_ctx;
EVP_MD_CTX *mac_ctx;
if (is_read)
tls1_cleanup_aead_ctx(&s->aead_read_ctx);
else
tls1_cleanup_aead_ctx(&s->aead_write_ctx);
if (is_read)
{
if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s))
EVP_CIPHER_CTX_cleanup(s->enc_read_ctx);
else if ((s->enc_read_ctx=EVP_CIPHER_CTX_new()) == NULL)
goto err;
cipher_ctx = s->enc_read_ctx;
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len);
s->s3->read_mac_secret_size = mac_secret_len;
}
else
{
/* When updating the write contexts for DTLS, we do not wish to
* free the old ones because DTLS stores pointers to them in
* order to implement retransmission. */
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
EVP_CIPHER_CTX_cleanup(s->enc_write_ctx);
else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/* make sure it's intialized in case we exit later with an error */
EVP_CIPHER_CTX_init(s->enc_write_ctx);
cipher_ctx = s->enc_write_ctx;
if (SSL_IS_DTLS(s))
{
/* This is the same as ssl_replace_hash, but doesn't
* free the old |s->write_hash|. */
mac_ctx = EVP_MD_CTX_create();
if (!mac_ctx)
goto err;
s->write_hash = mac_ctx;
}
else
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len);
s->s3->write_mac_secret_size = mac_secret_len;
}
EVP_PKEY *mac_key =
EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type,
NULL, mac_secret, mac_secret_len);
if (!mac_key)
return 0;
EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key);
EVP_PKEY_free(mac_key);
EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read);
return 1;
err:
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE);
return 0;
}
int tls1_change_cipher_state(SSL *s, int which)
{
/* is_read is true if we have just read a ChangeCipherSpec message -
* i.e. we need to update the read cipherspec. Otherwise we have just
* written one. */
const char is_read = (which & SSL3_CC_READ) != 0;
/* use_client_keys is true if we wish to use the keys for the "client
* write" direction. This is the case if we're a client sending a
* ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */
const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
which == SSL3_CHANGE_CIPHER_SERVER_READ;
const unsigned char *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
const unsigned char *client_write_key, *server_write_key, *key;
const unsigned char *client_write_iv, *server_write_iv, *iv;
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
const EVP_AEAD *aead = s->s3->tmp.new_aead;
unsigned key_len, iv_len, mac_secret_len;
const unsigned char *key_data;
/* Reset sequence number to zero. */
if (!SSL_IS_DTLS(s))
memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
mac_secret_len = s->s3->tmp.new_mac_secret_size;
if (aead != NULL)
{
key_len = EVP_AEAD_key_length(aead);
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD
* cipher suites) the key length reported by
* |EVP_AEAD_key_length| will include the MAC key bytes. */
if (key_len < mac_secret_len)
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
return 0;
}
key_len -= mac_secret_len;
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher);
}
else
{
key_len = EVP_CIPHER_key_length(cipher);
iv_len = EVP_CIPHER_iv_length(cipher);
}
key_data = s->s3->tmp.key_block;
client_write_mac_secret = key_data; key_data += mac_secret_len;
server_write_mac_secret = key_data; key_data += mac_secret_len;
client_write_key = key_data; key_data += key_len;
server_write_key = key_data; key_data += key_len;
client_write_iv = key_data; key_data += iv_len;
server_write_iv = key_data; key_data += iv_len;
if (use_client_keys)
{
mac_secret = client_write_mac_secret;
key = client_write_key;
iv = client_write_iv;
}
else
{
mac_secret = server_write_mac_secret;
key = server_write_key;
iv = server_write_iv;
}
if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length)
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
return 0;
}
if (aead != NULL)
{
if (!tls1_change_cipher_state_aead(s, is_read,
key, key_len, iv, iv_len,
mac_secret, mac_secret_len))
return 0;
}
else
{
if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys,
mac_secret, mac_secret_len,
key, key_len,
iv, iv_len))
return 0;
}
return 1;
}
int tls1_setup_key_block(SSL *s)
{
unsigned char *p1,*p2=NULL;
const EVP_CIPHER *c = NULL;
const EVP_MD *hash = NULL;
const EVP_AEAD *aead = NULL;
int num;
int mac_type= NID_undef,mac_secret_size=0;
int ret=0;
unsigned key_len, iv_len;
if (s->s3->tmp.key_block_length != 0)
return(1);
if (s->session->cipher &&
((s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) ||
(s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD)))
{
if (!ssl_cipher_get_evp_aead(s->session, &aead))
goto cipher_unavailable_err;
key_len = EVP_AEAD_key_length(aead);
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
if ((s->session->cipher->algorithm2 &
SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) &&
!ssl_cipher_get_mac(s->session, &hash, &mac_type, &mac_secret_size))
goto cipher_unavailable_err;
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD
* cipher suites) the key length reported by
* |EVP_AEAD_key_length| will include the MAC key bytes. */
if (key_len < (size_t)mac_secret_size)
{
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
return 0;
}
key_len -= mac_secret_size;
}
else
{
if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size))
goto cipher_unavailable_err;
key_len = EVP_CIPHER_key_length(c);
iv_len = EVP_CIPHER_iv_length(c);
}
s->s3->tmp.new_aead=aead;
s->s3->tmp.new_sym_enc=c;
s->s3->tmp.new_hash=hash;
s->s3->tmp.new_mac_pkey_type = mac_type;
s->s3->tmp.new_mac_secret_size = mac_secret_size;
num=key_len+mac_secret_size+iv_len;
num*=2;
ssl3_cleanup_key_block(s);
if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
goto err;
}
s->s3->tmp.key_block_length=num;
s->s3->tmp.key_block=p1;
if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
goto err;
}
#ifdef TLS_DEBUG
printf("client random\n");
{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->client_random[z],((z+1)%16)?' ':'\n'); }
printf("server random\n");
{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->server_random[z],((z+1)%16)?' ':'\n'); }
printf("pre-master\n");
{ int z; for (z=0; z<s->session->master_key_length; z++) printf("%02X%c",s->session->master_key[z],((z+1)%16)?' ':'\n'); }
#endif
if (!tls1_generate_key_block(s,p1,p2,num))
goto err;
#ifdef TLS_DEBUG
printf("\nkey block\n");
{ int z; for (z=0; z<num; z++) printf("%02X%c",p1[z],((z+1)%16)?' ':'\n'); }
#endif
if (s->method->version <= TLS1_VERSION &&
(s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0)
{
/* enable vulnerability countermeasure for CBC ciphers with
* known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3->need_record_splitting = 1;
if (s->session->cipher != NULL)
{
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3->need_record_splitting = 0;
}
}
ret = 1;
err:
if (p2)
{
OPENSSL_cleanse(p2,num);
OPENSSL_free(p2);
}
return(ret);
cipher_unavailable_err:
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return 0;
}
/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
*
* Returns:
* 0: (in non-constant time) if the record is publically invalid (i.e. too
* short etc).
* 1: if the record's padding is valid / the encryption was successful.
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
* an internal error occured.
*/
int tls1_enc(SSL *s, int send)
{
SSL3_RECORD *rec;
EVP_CIPHER_CTX *ds;
unsigned long l;
int bs,i,j,k,pad=0,ret,mac_size=0;
const EVP_CIPHER *enc;
const SSL_AEAD_CTX *aead;
if (send)
rec = &s->s3->wrec;
else
rec = &s->s3->rrec;
if (send)
aead = s->aead_write_ctx;
else
aead = s->aead_read_ctx;
if (aead)
{
unsigned char ad[13], *seq, *in, *out, nonce[16];
unsigned nonce_used;
size_t n;
seq = send ? s->s3->write_sequence : s->s3->read_sequence;
if (SSL_IS_DTLS(s))
{
unsigned char dtlsseq[9], *p = dtlsseq;
s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
memcpy(p, &seq[2], 6);
memcpy(ad, dtlsseq, 8);
}
else
{
memcpy(ad, seq, 8);
for (i=7; i>=0; i--) /* increment */
{
++seq[i];
if (seq[i] != 0)
break;
}
}
ad[8] = rec->type;
ad[9] = (unsigned char)(s->version>>8);
ad[10] = (unsigned char)(s->version);
if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) ||
aead->variable_nonce_len > 8)
return -1; /* internal error - should never happen. */
memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
nonce_used = aead->fixed_nonce_len;
if (send)
{
size_t len = rec->length;
size_t eivlen = 0;
in = rec->input;
out = rec->data;
/* When sending we use the sequence number as the
* variable part of the nonce. */
if (aead->variable_nonce_len > 8)
return -1;
memcpy(nonce + nonce_used, ad, aead->variable_nonce_len);
nonce_used += aead->variable_nonce_len;
/* in do_ssl3_write, rec->input is moved forward by
* variable_nonce_len in order to leave space for the
* variable nonce. Thus we can copy the sequence number
* bytes into place without overwriting any of the
* plaintext. */
if (aead->variable_nonce_included_in_record)
{
memcpy(out, ad, aead->variable_nonce_len);
len -= aead->variable_nonce_len;
eivlen = aead->variable_nonce_len;
}
ad[11] = len >> 8;
ad[12] = len & 0xff;
if (!EVP_AEAD_CTX_seal(
&aead->ctx,
out + eivlen, &n, len + aead->tag_len,
nonce, nonce_used,
in + eivlen, len,
ad, sizeof(ad)))
{
return -1;
}
if (aead->variable_nonce_included_in_record)
n += aead->variable_nonce_len;
}
else
{
/* receive */
size_t len = rec->length;
if (rec->data != rec->input)
return -1; /* internal error - should never happen. */
out = in = rec->input;
if (len < aead->variable_nonce_len)
return 0;
memcpy(nonce + nonce_used,
aead->variable_nonce_included_in_record ? in : ad,
aead->variable_nonce_len);
nonce_used += aead->variable_nonce_len;
if (aead->variable_nonce_included_in_record)
{
in += aead->variable_nonce_len;
len -= aead->variable_nonce_len;
out += aead->variable_nonce_len;
}
if (len < aead->tag_len)
return 0;
len -= aead->tag_len;
ad[11] = len >> 8;
ad[12] = len & 0xff;
if (!EVP_AEAD_CTX_open(
&aead->ctx,
out, &n, len,
nonce, nonce_used,
in, len + aead->tag_len,
ad, sizeof(ad)))
{
return -1;
}
rec->data = rec->input = out;
}
rec->length = n;
return 1;
}
if (send)
{
ds=s->enc_write_ctx;
rec= &(s->s3->wrec);
if (s->enc_write_ctx == NULL)
enc=NULL;
else
{
int ivlen;
enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
/* For TLSv1.1 and later explicit IV */
if (SSL_USE_EXPLICIT_IV(s)
&& EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
ivlen = EVP_CIPHER_iv_length(enc);
else
ivlen = 0;
if (ivlen > 1)
{
if ( rec->data != rec->input)
/* we can't write into the input stream:
* Can this ever happen?? (steve)
*/
fprintf(stderr,
"%s:%d: rec->data != rec->input\n",
__FILE__, __LINE__);
else if (RAND_bytes(rec->input, ivlen) <= 0)
return -1;
}
}
}
else
{
ds=s->enc_read_ctx;
rec= &(s->s3->rrec);
if (s->enc_read_ctx == NULL)
enc=NULL;
else
enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
}
if ((s->session == NULL) || (ds == NULL) || (enc == NULL))
{
memmove(rec->data,rec->input,rec->length);
rec->input=rec->data;
ret = 1;
}
else
{
l=rec->length;
bs=EVP_CIPHER_block_size(ds->cipher);
if ((bs != 1) && send)
{
i=bs-((int)l%bs);
/* Add weird padding of upto 256 bytes */
/* we need to add 'i' padding bytes of value j */
j=i-1;
for (k=(int)l; k<(int)(l+i); k++)
rec->input[k]=j;
l+=i;
rec->length+=i;
}
if (!send)
{
if (l == 0 || l%bs != 0)
return 0;
}
i = EVP_Cipher(ds,rec->data,rec->input,l);
if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER)
?(i<0)
:(i==0))
return -1; /* AEAD can fail to verify MAC */
ret = 1;
if (EVP_MD_CTX_md(s->read_hash) != NULL)
mac_size = EVP_MD_CTX_size(s->read_hash);
if ((bs != 1) && !send)
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
if (pad && !send)
rec->length -= pad;
}
return ret;
}
int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
{
unsigned int ret;
EVP_MD_CTX ctx, *d=NULL;
int i;
if (s->s3->handshake_buffer)
if (!ssl3_digest_cached_records(s, free_handshake_buffer))
return 0;
for (i=0;i<SSL_MAX_DIGEST;i++)
{
if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake_dgst[i])==md_nid)
{
d=s->s3->handshake_dgst[i];
break;
}
}
if (!d) {
OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
return 0;
}
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_copy_ex(&ctx,d);
EVP_DigestFinal_ex(&ctx,out,&ret);
EVP_MD_CTX_cleanup(&ctx);
return((int)ret);
}
/* tls1_handshake_digest calculates the current handshake hash and writes it to
* |out|, which has space for |out_len| bytes. It returns the number of bytes
* written or -1 in the event of an error. This function works on a copy of the
* underlying digests so can be called multiple times and prior to the final
* update etc. */
int tls1_handshake_digest(SSL *s, unsigned char *out, size_t out_len)
{
const EVP_MD *md;
EVP_MD_CTX ctx;
int i, err = 0, len = 0;
long mask;
EVP_MD_CTX_init(&ctx);
for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++)
{
int hash_size;
unsigned int digest_len;
EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
if ((mask & ssl_get_algorithm2(s)) == 0)
continue;
hash_size = EVP_MD_size(md);
if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len)
{
err = 1;
break;
}
if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
!EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
digest_len != (unsigned int)hash_size) /* internal error */
{
err = 1;
break;
}
out += digest_len;
out_len -= digest_len;
len += digest_len;
}
EVP_MD_CTX_cleanup(&ctx);
if (err != 0)
return -1;
return len;
}
int tls1_final_finish_mac(SSL *s,
const char *str, int slen, unsigned char *out)
{
unsigned char buf[2*EVP_MAX_MD_SIZE];
unsigned char buf2[12];
int err=0;
int digests_len;
if (s->s3->handshake_buffer)
if (!ssl3_digest_cached_records(s, free_handshake_buffer))
return 0;
digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
if (digests_len < 0)
{
err = 1;
digests_len = 0;
}
if (!tls1_PRF(ssl_get_algorithm2(s),
str,slen, buf, digests_len, NULL,0,
s->session->master_key,s->session->master_key_length,
out,buf2,sizeof buf2))
err = 1;
if (err)
return 0;
else
return sizeof buf2;
}
int tls1_mac(SSL *ssl, unsigned char *md, int send)
{
SSL3_RECORD *rec;
unsigned char *seq;
EVP_MD_CTX *hash;
size_t md_size, orig_len;
int i;
EVP_MD_CTX hmac, *mac_ctx;
unsigned char header[13];
int t;
if (send)
{
rec= &(ssl->s3->wrec);
seq= &(ssl->s3->write_sequence[0]);
hash=ssl->write_hash;
}
else
{
rec= &(ssl->s3->rrec);
seq= &(ssl->s3->read_sequence[0]);
hash=ssl->read_hash;
}
t=EVP_MD_CTX_size(hash);
assert(t >= 0);
md_size=t;
if (!EVP_MD_CTX_copy(&hmac,hash))
return -1;
mac_ctx = &hmac;
if (SSL_IS_DTLS(ssl))
{
unsigned char dtlsseq[8],*p=dtlsseq;
s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p);
memcpy (p,&seq[2],6);
memcpy(header, dtlsseq, 8);
}
else
memcpy(header, seq, 8);
/* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
orig_len = rec->length+md_size+((unsigned int)rec->type>>8);
rec->type &= 0xff;
header[8]=rec->type;
header[9]=(unsigned char)(ssl->version>>8);
header[10]=(unsigned char)(ssl->version);
header[11]=(rec->length)>>8;
header[12]=(rec->length)&0xff;
if (!send &&
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
ssl3_cbc_record_digest_supported(mac_ctx))
{
/* This is a CBC-encrypted record. We must avoid leaking any
* timing-side channel information about how many blocks of
* data we are hashing because that gives an attacker a
* timing-oracle. */
ssl3_cbc_digest_record(
mac_ctx,
md, &md_size,
header, rec->input,
rec->length + md_size, orig_len,
ssl->s3->read_mac_secret,
ssl->s3->read_mac_secret_size,
0 /* not SSLv3 */);
}
else
{
EVP_DigestSignUpdate(mac_ctx,header,sizeof(header));
EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length);
t=EVP_DigestSignFinal(mac_ctx,md,&md_size);
assert(t > 0);
}
EVP_MD_CTX_cleanup(&hmac);
if (!SSL_IS_DTLS(ssl))
{
for (i=7; i>=0; i--)
{
++seq[i];
if (seq[i] != 0) break;
}
}
return(md_size);
}
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
int len)
{
unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
if (s->s3->tmp.extended_master_secret)
{
uint8_t digests[2*EVP_MAX_MD_SIZE];
int digests_len;
if (s->s3->handshake_buffer)
{
/* The master secret is based on the handshake hash
* just after sending the ClientKeyExchange. However,
* we might have a client certificate to send, in which
* case we might need different hashes for the
* verification and thus still need the handshake
* buffer around. Keeping both a handshake buffer *and*
* running hashes isn't yet supported so, when it comes
* to calculating the Finished hash, we'll have to hash
* the handshake buffer again. */
if (!ssl3_digest_cached_records(s, dont_free_handshake_buffer))
return 0;
}
digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
if (digests_len == -1)
{
return 0;
}
tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
digests, digests_len,
NULL, 0,
p, len,
s->session->master_key,
buff, sizeof(buff));
}
else
{
tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3->client_random,SSL3_RANDOM_SIZE,
s->s3->server_random,SSL3_RANDOM_SIZE,
p, len,
s->session->master_key,buff,sizeof buff);
}
#ifdef SSL_DEBUG
fprintf(stderr, "Premaster Secret:\n");
BIO_dump_fp(stderr, (char *)p, len);
fprintf(stderr, "Client Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Server Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Master Secret:\n");
BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE);
#endif
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (s->msg_callback)
{
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER,
p, len, s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM,
s->s3->client_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM,
s->s3->server_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER,
s->session->master_key,
SSL3_MASTER_SECRET_SIZE,
s, s->msg_callback_arg);
}
#endif
return(SSL3_MASTER_SECRET_SIZE);
}
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen, const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *buff;
unsigned char *val = NULL;
size_t vallen, currentvalpos;
int rv;
buff = OPENSSL_malloc(olen);
if (buff == NULL) goto err2;
/* construct PRF arguments
* we construct the PRF argument ourself rather than passing separate
* values into the TLS PRF to ensure that the concatenation of values
* does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context)
{
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL) goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *) label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context)
{
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL))
{
memcpy(val + currentvalpos, context, contextlen);
}
}
/* disallow prohibited labels
* note that SSL3_RANDOM_SIZE > max(prohibited label len) =
* 15, so size of val > max(prohibited label len) = 15 and the
* comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1;
rv = tls1_PRF(ssl_get_algorithm2(s),
val, vallen,
NULL, 0,
NULL, 0,
s->session->master_key,s->session->master_key_length,
out,buff,olen);
goto ret;
err1:
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
if (buff != NULL) OPENSSL_free(buff);
if (val != NULL) OPENSSL_free(val);
return(rv);
}
int tls1_alert_code(int code)
{
switch (code)
{
case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED: return(TLS1_AD_DECRYPTION_FAILED);
case SSL_AD_RECORD_OVERFLOW: return(TLS1_AD_RECORD_OVERFLOW);
case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE: return(-1);
case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA: return(TLS1_AD_UNKNOWN_CA);
case SSL_AD_ACCESS_DENIED: return(TLS1_AD_ACCESS_DENIED);
case SSL_AD_DECODE_ERROR: return(TLS1_AD_DECODE_ERROR);
case SSL_AD_DECRYPT_ERROR: return(TLS1_AD_DECRYPT_ERROR);
case SSL_AD_EXPORT_RESTRICTION: return(TLS1_AD_EXPORT_RESTRICTION);
case SSL_AD_PROTOCOL_VERSION: return(TLS1_AD_PROTOCOL_VERSION);
case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY);
case SSL_AD_INTERNAL_ERROR: return(TLS1_AD_INTERNAL_ERROR);
case SSL_AD_USER_CANCELLED: return(TLS1_AD_USER_CANCELLED);
case SSL_AD_NO_RENEGOTIATION: return(TLS1_AD_NO_RENEGOTIATION);
case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION);
case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAINABLE);
case SSL_AD_UNRECOGNIZED_NAME: return(TLS1_AD_UNRECOGNIZED_NAME);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY);
case SSL_AD_INAPPROPRIATE_FALLBACK:return(SSL3_AD_INAPPROPRIATE_FALLBACK);
default: return(-1);
}
}