| /* Copyright (c) 2017, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #ifndef OPENSSL_HEADER_SSL_SPAN_H |
| #define OPENSSL_HEADER_SSL_SPAN_H |
| |
| #include <openssl/base.h> |
| |
| #if !defined(BORINGSSL_NO_CXX) |
| |
| extern "C++" { |
| |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <type_traits> |
| |
| #if __cplusplus >= 201703L |
| #include <string_view> |
| #endif |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| template <typename T> |
| class Span; |
| |
| namespace internal { |
| template <typename T> |
| class SpanBase { |
| // Put comparison operator implementations into a base class with const T, so |
| // they can be used with any type that implicitly converts into a Span. |
| static_assert(std::is_const<T>::value, |
| "Span<T> must be derived from SpanBase<const T>"); |
| |
| friend bool operator==(Span<T> lhs, Span<T> rhs) { |
| return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| } |
| |
| friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); } |
| }; |
| } // namespace internal |
| |
| // A Span<T> is a non-owning reference to a contiguous array of objects of type |
| // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of |
| // elements accessible via that pointer. The elements referenced by the Span can |
| // be mutated if |T| is mutable. |
| // |
| // A Span can be constructed from container types implementing |data()| and |
| // |size()| methods. If |T| is constant, construction from a container type is |
| // implicit. This allows writing methods that accept data from some unspecified |
| // container type: |
| // |
| // // Foo views data referenced by v. |
| // void Foo(bssl::Span<const uint8_t> v) { ... } |
| // |
| // std::vector<uint8_t> vec; |
| // Foo(vec); |
| // |
| // For mutable Spans, conversion is explicit: |
| // |
| // // FooMutate mutates data referenced by v. |
| // void FooMutate(bssl::Span<uint8_t> v) { ... } |
| // |
| // FooMutate(bssl::Span<uint8_t>(vec)); |
| // |
| // You can also use the |MakeSpan| and |MakeConstSpan| factory methods to |
| // construct Spans in order to deduce the type of the Span automatically. |
| // |
| // FooMutate(bssl::MakeSpan(vec)); |
| // |
| // Note that Spans have value type sematics. They are cheap to construct and |
| // copy, and should be passed by value whenever a method would otherwise accept |
| // a reference or pointer to a container or array. |
| template <typename T> |
| class Span : private internal::SpanBase<const T> { |
| private: |
| // Heuristically test whether C is a container type that can be converted into |
| // a Span by checking for data() and size() member functions. |
| // |
| // TODO(davidben): Require C++17 support for std::is_convertible_v, etc. |
| template <typename C> |
| using EnableIfContainer = std::enable_if_t< |
| std::is_convertible<decltype(std::declval<C>().data()), T *>::value && |
| std::is_integral<decltype(std::declval<C>().size())>::value>; |
| |
| public: |
| static const size_t npos = static_cast<size_t>(-1); |
| |
| using element_type = T; |
| using value_type = std::remove_cv_t<T>; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using pointer = T *; |
| using const_pointer = const T *; |
| using reference = T &; |
| using const_reference = const T &; |
| using iterator = T *; |
| using const_iterator = const T *; |
| |
| constexpr Span() : Span(nullptr, 0) {} |
| constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {} |
| |
| template <size_t N> |
| constexpr Span(T (&array)[N]) : Span(array, N) {} |
| |
| template <typename C, typename = EnableIfContainer<C>, |
| typename = std::enable_if_t<std::is_const<T>::value, C>> |
| constexpr Span(const C &container) |
| : data_(container.data()), size_(container.size()) {} |
| |
| template <typename C, typename = EnableIfContainer<C>, |
| typename = std::enable_if_t<!std::is_const<T>::value, C>> |
| constexpr explicit Span(C &container) |
| : data_(container.data()), size_(container.size()) {} |
| |
| constexpr T *data() const { return data_; } |
| constexpr size_t size() const { return size_; } |
| constexpr bool empty() const { return size_ == 0; } |
| |
| constexpr iterator begin() const { return data_; } |
| constexpr const_iterator cbegin() const { return data_; } |
| constexpr iterator end() const { return data_ + size_; } |
| constexpr const_iterator cend() const { return end(); } |
| |
| constexpr T &front() const { |
| if (size_ == 0) { |
| abort(); |
| } |
| return data_[0]; |
| } |
| constexpr T &back() const { |
| if (size_ == 0) { |
| abort(); |
| } |
| return data_[size_ - 1]; |
| } |
| |
| constexpr T &operator[](size_t i) const { |
| if (i >= size_) { |
| abort(); |
| } |
| return data_[i]; |
| } |
| T &at(size_t i) const { return (*this)[i]; } |
| |
| constexpr Span subspan(size_t pos = 0, size_t len = npos) const { |
| if (pos > size_) { |
| // absl::Span throws an exception here. Note std::span and Chromium |
| // base::span additionally forbid pos + len being out of range, with a |
| // special case at npos/dynamic_extent, while absl::Span::subspan clips |
| // the span. For now, we align with absl::Span in case we switch to it in |
| // the future. |
| abort(); |
| } |
| return Span(data_ + pos, std::min(size_ - pos, len)); |
| } |
| |
| constexpr Span first(size_t len) const { |
| if (len > size_) { |
| abort(); |
| } |
| return Span(data_, len); |
| } |
| |
| constexpr Span last(size_t len) const { |
| if (len > size_) { |
| abort(); |
| } |
| return Span(data_ + size_ - len, len); |
| } |
| |
| private: |
| T *data_; |
| size_t size_; |
| }; |
| |
| template <typename T> |
| const size_t Span<T>::npos; |
| |
| template <typename T> |
| constexpr Span<T> MakeSpan(T *ptr, size_t size) { |
| return Span<T>(ptr, size); |
| } |
| |
| template <typename C> |
| constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) { |
| return MakeSpan(c.data(), c.size()); |
| } |
| |
| template <typename T> |
| constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) { |
| return Span<const T>(ptr, size); |
| } |
| |
| template <typename C> |
| constexpr auto MakeConstSpan(const C &c) |
| -> decltype(MakeConstSpan(c.data(), c.size())) { |
| return MakeConstSpan(c.data(), c.size()); |
| } |
| |
| template <typename T, size_t size> |
| constexpr Span<const T> MakeConstSpan(T (&array)[size]) { |
| return array; |
| } |
| |
| #if __cplusplus >= 201703L |
| inline Span<const uint8_t> StringAsBytes(std::string_view s) { |
| return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size()); |
| } |
| |
| inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) { |
| return std::string_view(reinterpret_cast<const char *>(b.data()), b.size()); |
| } |
| #endif |
| |
| BSSL_NAMESPACE_END |
| |
| } // extern C++ |
| |
| #endif // !defined(BORINGSSL_NO_CXX) |
| |
| #endif // OPENSSL_HEADER_SSL_SPAN_H |