blob: 1984630b665057ce686767839d98ee43298f850a [file] [log] [blame]
/* Copyright (c) 2017, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/crypto.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/bn.h>
#include <openssl/ctrdrbg.h>
#include <openssl/dh.h>
#include <openssl/digest.h>
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/ec_key.h>
#include <openssl/hkdf.h>
#include <openssl/hmac.h>
#include <openssl/nid.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include "../../internal.h"
#include "../dh/internal.h"
#include "../ec/internal.h"
#include "../ecdsa/internal.h"
#include "../rand/internal.h"
#include "../rsa/internal.h"
#include "../service_indicator/internal.h"
#include "../tls/internal.h"
// MSVC wants to put a NUL byte at the end of non-char arrays and so cannot
// compile the real logic.
#if defined(_MSC_VER)
int BORINGSSL_self_test(void) {
return 0;
}
#else
static void hexdump(const uint8_t *in, size_t len) {
for (size_t i = 0; i < len; i++) {
fprintf(stderr, "%02x", in[i]);
}
}
static int check_test(const void *expected, const void *actual,
size_t expected_len, const char *name) {
if (OPENSSL_memcmp(actual, expected, expected_len) != 0) {
fprintf(stderr, "%s failed.\nExpected: ", name);
hexdump(expected, expected_len);
fprintf(stderr, "\nCalculated: ");
hexdump(actual, expected_len);
fprintf(stderr, "\n");
fflush(stderr);
return 0;
}
return 1;
}
static int set_bignum(BIGNUM **out, const uint8_t *in, size_t len) {
*out = BN_bin2bn(in, len, NULL);
return *out != NULL;
}
static int serialize_ecdsa_sig(uint8_t *out, size_t out_len,
const ECDSA_SIG *sig) {
if ((out_len & 1) || //
!BN_bn2bin_padded(out, out_len / 2, sig->r) ||
!BN_bn2bin_padded(out + out_len / 2, out_len / 2, sig->s)) {
return 0;
}
return 1;
}
static ECDSA_SIG *parse_ecdsa_sig(const uint8_t *in, size_t in_len) {
ECDSA_SIG *ret = ECDSA_SIG_new();
if (!ret || //
(in_len & 1) ||
BN_bin2bn(in, in_len/2, ret->r) == NULL ||
BN_bin2bn(in + in_len/2, in_len/2, ret->s) == NULL) {
ECDSA_SIG_free(ret);
ret = NULL;
}
return ret;
}
static RSA *self_test_rsa_key(void) {
static const uint8_t kN[] = {
0xd3, 0x3a, 0x62, 0x9f, 0x07, 0x77, 0xb0, 0x18, 0xf3, 0xff, 0xfe, 0xcc,
0xc9, 0xa2, 0xc2, 0x3a, 0xa6, 0x1d, 0xd8, 0xf0, 0x26, 0x5b, 0x38, 0x90,
0x17, 0x48, 0x15, 0xce, 0x21, 0xcd, 0xd6, 0x62, 0x99, 0xe2, 0xd7, 0xda,
0x40, 0x80, 0x3c, 0xad, 0x18, 0xb7, 0x26, 0xe9, 0x30, 0x8a, 0x23, 0x3f,
0x68, 0x9a, 0x9c, 0x31, 0x34, 0x91, 0x99, 0x06, 0x11, 0x36, 0xb2, 0x9e,
0x3a, 0xd0, 0xbc, 0xb9, 0x93, 0x4e, 0xb8, 0x72, 0xa1, 0x9f, 0xb6, 0x8c,
0xd5, 0x17, 0x1f, 0x7e, 0xaa, 0x75, 0xbb, 0xdf, 0xa1, 0x70, 0x48, 0xc4,
0xec, 0x9a, 0x51, 0xed, 0x41, 0xc9, 0x74, 0xc0, 0x3e, 0x1e, 0x85, 0x2f,
0xbe, 0x34, 0xc7, 0x65, 0x34, 0x8b, 0x4d, 0x55, 0x4b, 0xe1, 0x45, 0x54,
0x0d, 0x75, 0x7e, 0x89, 0x4d, 0x0c, 0xf6, 0x33, 0xe5, 0xfc, 0xfb, 0x56,
0x1b, 0xf2, 0x39, 0x9d, 0xe0, 0xff, 0x55, 0xcf, 0x02, 0x05, 0xb9, 0x74,
0xd2, 0x91, 0xfc, 0x87, 0xe1, 0xbb, 0x97, 0x2a, 0xe4, 0xdd, 0x20, 0xc0,
0x38, 0x47, 0xc0, 0x76, 0x3f, 0xa1, 0x9b, 0x5c, 0x20, 0xff, 0xff, 0xc7,
0x49, 0x3b, 0x4c, 0xaf, 0x99, 0xa6, 0x3e, 0x82, 0x5c, 0x58, 0x27, 0xce,
0x01, 0x03, 0xc3, 0x16, 0x35, 0x20, 0xe9, 0xf0, 0x15, 0x7a, 0x41, 0xd5,
0x1f, 0x52, 0xea, 0xdf, 0xad, 0x4c, 0xbb, 0x0d, 0xcb, 0x04, 0x91, 0xb0,
0x95, 0xa8, 0xce, 0x25, 0xfd, 0xd2, 0x62, 0x47, 0x77, 0xee, 0x13, 0xf1,
0x48, 0x72, 0x9e, 0xd9, 0x2d, 0xe6, 0x5f, 0xa4, 0xc6, 0x9e, 0x5a, 0xb2,
0xc6, 0xa2, 0xf7, 0x0a, 0x16, 0x17, 0xae, 0x6b, 0x1c, 0x30, 0x7c, 0x63,
0x08, 0x83, 0xe7, 0x43, 0xec, 0x54, 0x5e, 0x2c, 0x08, 0x0b, 0x5e, 0x46,
0xa7, 0x10, 0x93, 0x43, 0x53, 0x4e, 0xe3, 0x16, 0x73, 0x55, 0xce, 0xf2,
0x94, 0xc0, 0xbe, 0xb3,
};
static const uint8_t kE[] = {0x01, 0x00, 0x01}; // 65537
static const uint8_t kD[] = {
0x2f, 0x2c, 0x1e, 0xd2, 0x3d, 0x2c, 0xb1, 0x9b, 0x21, 0x02, 0xce, 0xb8,
0x95, 0x5f, 0x4f, 0xd9, 0x21, 0x38, 0x11, 0x36, 0xb0, 0x9a, 0x36, 0xab,
0x97, 0x47, 0x75, 0xf7, 0x2e, 0xfd, 0x75, 0x1f, 0x58, 0x16, 0x9c, 0xf6,
0x14, 0xe9, 0x8e, 0xa3, 0x69, 0x9d, 0x9d, 0x86, 0xfe, 0x5c, 0x1b, 0x3b,
0x11, 0xf5, 0x55, 0x64, 0x77, 0xc4, 0xfc, 0x53, 0xaa, 0x8c, 0x78, 0x9f,
0x75, 0xab, 0x20, 0x3a, 0xa1, 0x77, 0x37, 0x22, 0x02, 0x8e, 0x54, 0x8a,
0x67, 0x1c, 0x5e, 0xe0, 0x3e, 0xd9, 0x44, 0x37, 0xd1, 0x29, 0xee, 0x56,
0x6c, 0x30, 0x9a, 0x93, 0x4d, 0xd9, 0xdb, 0xc5, 0x03, 0x1a, 0x75, 0xcc,
0x0f, 0xc2, 0x61, 0xb5, 0x6c, 0x62, 0x9f, 0xc6, 0xa8, 0xc7, 0x8a, 0x60,
0x17, 0x11, 0x62, 0x4c, 0xef, 0x74, 0x31, 0x97, 0xad, 0x89, 0x2d, 0xe8,
0x31, 0x1d, 0x8b, 0x58, 0x82, 0xe3, 0x03, 0x1a, 0x6b, 0xdf, 0x3f, 0x3e,
0xa4, 0x27, 0x19, 0xef, 0x46, 0x7a, 0x90, 0xdf, 0xa7, 0xe7, 0xc9, 0x66,
0xab, 0x41, 0x1d, 0x65, 0x78, 0x1c, 0x18, 0x40, 0x5c, 0xd6, 0x87, 0xb5,
0xea, 0x29, 0x44, 0xb3, 0xf5, 0xb3, 0xd2, 0x4f, 0xce, 0x88, 0x78, 0x49,
0x27, 0x4e, 0x0b, 0x30, 0x85, 0xfb, 0x73, 0xfd, 0x8b, 0x32, 0x15, 0xee,
0x1f, 0xc9, 0x0e, 0x89, 0xb9, 0x43, 0x2f, 0xe9, 0x60, 0x8d, 0xda, 0xae,
0x2b, 0x30, 0x99, 0xee, 0x88, 0x81, 0x20, 0x7b, 0x4a, 0xc3, 0x18, 0xf2,
0x94, 0x02, 0x79, 0x94, 0xaa, 0x65, 0xd9, 0x1b, 0x45, 0x2a, 0xac, 0x6e,
0x30, 0x48, 0x57, 0xea, 0xbe, 0x79, 0x7d, 0xfc, 0x67, 0xaa, 0x47, 0xc0,
0xf7, 0x52, 0xfd, 0x0b, 0x63, 0x4e, 0x3d, 0x2e, 0xcc, 0x36, 0xa0, 0xdb,
0x92, 0x0b, 0xa9, 0x1b, 0xeb, 0xc2, 0xd5, 0x08, 0xd3, 0x85, 0x87, 0xf8,
0x5d, 0x1a, 0xf6, 0xc1,
};
static const uint8_t kP[] = {
0xf7, 0x06, 0xa3, 0x98, 0x8a, 0x52, 0xf8, 0x63, 0x68, 0x27, 0x4f, 0x68,
0x7f, 0x34, 0xec, 0x8e, 0x5d, 0xf8, 0x30, 0x92, 0xb3, 0x62, 0x4c, 0xeb,
0xdb, 0x19, 0x6b, 0x09, 0xc5, 0xa3, 0xf0, 0xbb, 0xff, 0x0f, 0xc2, 0xd4,
0x9b, 0xc9, 0x54, 0x4f, 0xb9, 0xf9, 0xe1, 0x4c, 0xf0, 0xe3, 0x4c, 0x90,
0xda, 0x7a, 0x01, 0xc2, 0x9f, 0xc4, 0xc8, 0x8e, 0xb1, 0x1e, 0x93, 0x75,
0x75, 0xc6, 0x13, 0x25, 0xc3, 0xee, 0x3b, 0xcc, 0xb8, 0x72, 0x6c, 0x49,
0xb0, 0x09, 0xfb, 0xab, 0x44, 0xeb, 0x4d, 0x40, 0xf0, 0x61, 0x6b, 0xe5,
0xe6, 0xfe, 0x3e, 0x0a, 0x77, 0x26, 0x39, 0x76, 0x3d, 0x4c, 0x3e, 0x9b,
0x5b, 0xc0, 0xaf, 0xa2, 0x58, 0x76, 0xb0, 0xe9, 0xda, 0x7f, 0x0e, 0x78,
0xc9, 0x76, 0x49, 0x5c, 0xfa, 0xb3, 0xb0, 0x15, 0x4b, 0x41, 0xc7, 0x27,
0xa4, 0x75, 0x28, 0x5c, 0x30, 0x69, 0x50, 0x29,
};
static const uint8_t kQ[] = {
0xda, 0xe6, 0xd2, 0xbb, 0x44, 0xff, 0x4f, 0xdf, 0x57, 0xc1, 0x11, 0xa3,
0x51, 0xba, 0x17, 0x89, 0x4c, 0x01, 0xc0, 0x0c, 0x97, 0x34, 0x50, 0xcf,
0x32, 0x1e, 0xc0, 0xbd, 0x7b, 0x35, 0xb5, 0x6a, 0x26, 0xcc, 0xea, 0x4c,
0x8e, 0x87, 0x4a, 0x67, 0x8b, 0xd3, 0xe5, 0x4f, 0x3a, 0x60, 0x48, 0x59,
0x04, 0x93, 0x39, 0xd7, 0x7c, 0xfb, 0x19, 0x1a, 0x34, 0xd5, 0xe8, 0xaf,
0xe7, 0x22, 0x2c, 0x0d, 0xc2, 0x91, 0x69, 0xb6, 0xe9, 0x2a, 0xe9, 0x1c,
0x4c, 0x6e, 0x8f, 0x40, 0xf5, 0xa8, 0x3e, 0x82, 0x69, 0x69, 0xbe, 0x9f,
0x7d, 0x5c, 0x7f, 0x92, 0x78, 0x17, 0xa3, 0x6d, 0x41, 0x2d, 0x72, 0xed,
0x3f, 0x71, 0xfa, 0x97, 0xb4, 0x63, 0xe4, 0x4f, 0xd9, 0x46, 0x03, 0xfb,
0x00, 0xeb, 0x30, 0x70, 0xb9, 0x51, 0xd9, 0x0a, 0xd2, 0xf8, 0x50, 0xd4,
0xfb, 0x43, 0x84, 0xf8, 0xac, 0x58, 0xc3, 0x7b,
};
static const uint8_t kDModPMinusOne[] = {
0xf5, 0x50, 0x8f, 0x88, 0x7d, 0xdd, 0xb5, 0xb4, 0x2a, 0x8b, 0xd7, 0x4d,
0x23, 0xfe, 0xaf, 0xe9, 0x16, 0x22, 0xd2, 0x41, 0xed, 0x88, 0xf2, 0x70,
0xcb, 0x4d, 0xeb, 0xc1, 0x71, 0x97, 0xc4, 0x0b, 0x3e, 0x5a, 0x2d, 0x96,
0xab, 0xfa, 0xfd, 0x12, 0x8b, 0xd3, 0x3e, 0x4e, 0x05, 0x6f, 0x04, 0xeb,
0x59, 0x3c, 0x0e, 0xa1, 0x73, 0xbe, 0x9d, 0x99, 0x2f, 0x05, 0xf9, 0x54,
0x8d, 0x98, 0x1e, 0x0d, 0xc4, 0x0c, 0xc3, 0x30, 0x23, 0xff, 0xe5, 0xd0,
0x2b, 0xd5, 0x4e, 0x2b, 0xa0, 0xae, 0xb8, 0x32, 0x84, 0x45, 0x8b, 0x3c,
0x6d, 0xf0, 0x10, 0x36, 0x9e, 0x6a, 0xc4, 0x67, 0xca, 0xa9, 0xfc, 0x06,
0x96, 0xd0, 0xbc, 0xda, 0xd1, 0x55, 0x55, 0x8d, 0x77, 0x21, 0xf4, 0x82,
0x39, 0x37, 0x91, 0xd5, 0x97, 0x56, 0x78, 0xc8, 0x3c, 0xcb, 0x5e, 0xf6,
0xdc, 0x58, 0x48, 0xb3, 0x7c, 0x94, 0x29, 0x39,
};
static const uint8_t kDModQMinusOne[] = {
0x64, 0x65, 0xbd, 0x7d, 0x1a, 0x96, 0x26, 0xa1, 0xfe, 0xf3, 0x94, 0x0d,
0x5d, 0xec, 0x85, 0xe2, 0xf8, 0xb3, 0x4c, 0xcb, 0xf9, 0x85, 0x8b, 0x12,
0x9c, 0xa0, 0x32, 0x32, 0x35, 0x92, 0x5a, 0x94, 0x47, 0x1b, 0x70, 0xd2,
0x90, 0x04, 0x49, 0x01, 0xd8, 0xc5, 0xe4, 0xc4, 0x43, 0xb7, 0xe9, 0x36,
0xba, 0xbc, 0x73, 0xa8, 0xfb, 0xaf, 0x86, 0xc1, 0xd8, 0x3d, 0xcb, 0xac,
0xf1, 0xcb, 0x60, 0x7d, 0x27, 0x21, 0xde, 0x64, 0x7f, 0xe8, 0xa8, 0x65,
0xcc, 0x40, 0x60, 0xff, 0xa0, 0x2b, 0xfc, 0x0f, 0x80, 0x1d, 0x79, 0xca,
0x58, 0x8a, 0xd6, 0x0f, 0xed, 0x78, 0x9a, 0x02, 0x00, 0x04, 0xc2, 0x53,
0x41, 0xe8, 0x1a, 0xd0, 0xfd, 0x71, 0x5b, 0x43, 0xac, 0x19, 0x4a, 0xb6,
0x12, 0xa3, 0xcb, 0xe1, 0xc7, 0x7d, 0x5c, 0x98, 0x74, 0x4e, 0x63, 0x74,
0x6b, 0x91, 0x7a, 0x29, 0x3b, 0x92, 0xb2, 0x85,
};
static const uint8_t kQInverseModP[] = {
0xd0, 0xde, 0x19, 0xda, 0x1e, 0xa2, 0xd8, 0x8f, 0x1c, 0x92, 0x73, 0xb0,
0xc9, 0x90, 0xc7, 0xf5, 0xec, 0xc5, 0x89, 0x01, 0x05, 0x78, 0x11, 0x2d,
0x74, 0x34, 0x44, 0xad, 0xd5, 0xf7, 0xa4, 0xfe, 0x9f, 0x25, 0x4d, 0x0b,
0x92, 0xe3, 0xb8, 0x7d, 0xd3, 0xfd, 0xa5, 0xca, 0x95, 0x60, 0xa3, 0xf9,
0x55, 0x42, 0x14, 0xb2, 0x45, 0x51, 0x9f, 0x73, 0x88, 0x43, 0x8a, 0xd1,
0x65, 0x9e, 0xd1, 0xf7, 0x82, 0x2a, 0x2a, 0x8d, 0x70, 0x56, 0xe3, 0xef,
0xc9, 0x0e, 0x2a, 0x2c, 0x15, 0xaf, 0x7f, 0x97, 0x81, 0x66, 0xf3, 0xb5,
0x00, 0xa9, 0x26, 0xcc, 0x1e, 0xc2, 0x98, 0xdd, 0xd3, 0x37, 0x06, 0x79,
0xb3, 0x60, 0x58, 0x79, 0x99, 0x3f, 0xa3, 0x15, 0x1f, 0x31, 0xe3, 0x11,
0x88, 0x4c, 0x35, 0x57, 0xfa, 0x79, 0xd7, 0xd8, 0x72, 0xee, 0x73, 0x95,
0x89, 0x29, 0xc7, 0x05, 0x27, 0x68, 0x90, 0x15,
};
RSA *rsa = RSA_new();
if (rsa == NULL ||
!set_bignum(&rsa->n, kN, sizeof(kN)) ||
!set_bignum(&rsa->e, kE, sizeof(kE)) ||
!set_bignum(&rsa->d, kD, sizeof(kD)) ||
!set_bignum(&rsa->p, kP, sizeof(kP)) ||
!set_bignum(&rsa->q, kQ, sizeof(kQ)) ||
!set_bignum(&rsa->dmp1, kDModPMinusOne, sizeof(kDModPMinusOne)) ||
!set_bignum(&rsa->dmq1, kDModQMinusOne, sizeof(kDModQMinusOne)) ||
!set_bignum(&rsa->iqmp, kQInverseModP, sizeof(kQInverseModP))) {
RSA_free(rsa);
return NULL;
}
return rsa;
}
static EC_KEY *self_test_ecdsa_key(void) {
static const uint8_t kQx[] = {
0xc8, 0x15, 0x61, 0xec, 0xf2, 0xe5, 0x4e, 0xde, 0xfe, 0x66, 0x17,
0xdb, 0x1c, 0x7a, 0x34, 0xa7, 0x07, 0x44, 0xdd, 0xb2, 0x61, 0xf2,
0x69, 0xb8, 0x3d, 0xac, 0xfc, 0xd2, 0xad, 0xe5, 0xa6, 0x81,
};
static const uint8_t kQy[] = {
0xe0, 0xe2, 0xaf, 0xa3, 0xf9, 0xb6, 0xab, 0xe4, 0xc6, 0x98, 0xef,
0x64, 0x95, 0xf1, 0xbe, 0x49, 0xa3, 0x19, 0x6c, 0x50, 0x56, 0xac,
0xb3, 0x76, 0x3f, 0xe4, 0x50, 0x7e, 0xec, 0x59, 0x6e, 0x88,
};
static const uint8_t kD[] = {
0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c,
0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0,
0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77,
};
EC_KEY *ec_key = EC_KEY_new();
BIGNUM *qx = BN_bin2bn(kQx, sizeof(kQx), NULL);
BIGNUM *qy = BN_bin2bn(kQy, sizeof(kQy), NULL);
BIGNUM *d = BN_bin2bn(kD, sizeof(kD), NULL);
if (ec_key == NULL || qx == NULL || qy == NULL || d == NULL ||
!EC_KEY_set_group(ec_key, EC_group_p256()) ||
!EC_KEY_set_public_key_affine_coordinates(ec_key, qx, qy) ||
!EC_KEY_set_private_key(ec_key, d)) {
EC_KEY_free(ec_key);
ec_key = NULL;
}
BN_free(qx);
BN_free(qy);
BN_free(d);
return ec_key;
}
static DH *self_test_dh(void) {
DH *dh = DH_get_rfc7919_2048();
if (!dh) {
return NULL;
}
BIGNUM *priv = BN_new();
if (!priv) {
goto err;
}
// kFFDHE2048PrivateKeyData is a 225-bit value. (225 because that's the
// minimum private key size in
// https://tools.ietf.org/html/rfc7919#appendix-A.1.)
static const BN_ULONG kFFDHE2048PrivateKeyData[] = {
TOBN(0x187be36b, 0xd38a4fa1),
TOBN(0x0a152f39, 0x6458f3b8),
TOBN(0x0570187e, 0xc422eeb7),
TOBN(0x00000001, 0x91173f2a),
};
bn_set_static_words(priv, kFFDHE2048PrivateKeyData,
OPENSSL_ARRAY_SIZE(kFFDHE2048PrivateKeyData));
if (!DH_set0_key(dh, NULL, priv)) {
goto err;
}
return dh;
err:
BN_free(priv);
DH_free(dh);
return NULL;
}
// Lazy self-tests
//
// Self tests that are slow are deferred until the corresponding algorithm is
// actually exercised, in FIPS mode. (In non-FIPS mode these tests are only run
// when requested by |BORINGSSL_self_test|.)
static int boringssl_self_test_rsa(void) {
int ret = 0;
uint8_t output[256];
RSA *const rsa_key = self_test_rsa_key();
if (rsa_key == NULL) {
fprintf(stderr, "RSA key construction failed\n");
goto err;
}
// Disable blinding for the power-on tests because it's not needed and
// triggers an entropy draw.
rsa_key->flags |= RSA_FLAG_NO_BLINDING;
// RSA Sign KAT
static const uint8_t kRSASignDigest[32] = {
0xd2, 0xb5, 0x6e, 0x53, 0x30, 0x6f, 0x72, 0x0d, 0x79, 0x29, 0xd8,
0x70, 0x8b, 0xf4, 0x6f, 0x1c, 0x22, 0x30, 0x03, 0x05, 0x58, 0x2b,
0x11, 0x5b, 0xed, 0xca, 0xc7, 0x22, 0xd8, 0xaa, 0x5a, 0xb2,
};
static const uint8_t kRSASignSignature[256] = {
0x64, 0xce, 0xdd, 0x91, 0x27, 0xb0, 0x4f, 0xb9, 0x14, 0xea, 0xc0, 0xb4,
0xa2, 0x06, 0xc5, 0xd8, 0x40, 0x0f, 0x6c, 0x54, 0xac, 0xf7, 0x02, 0xde,
0x26, 0xbb, 0xfd, 0x33, 0xe5, 0x2f, 0x4d, 0xb1, 0x53, 0xc4, 0xff, 0xd0,
0x5f, 0xea, 0x15, 0x89, 0x83, 0x4c, 0xe3, 0x80, 0x0b, 0xe9, 0x13, 0x82,
0x1d, 0x71, 0x92, 0x1a, 0x03, 0x60, 0x2c, 0xaf, 0xe2, 0x16, 0xc7, 0x43,
0x3f, 0xde, 0x6b, 0x94, 0xfd, 0x6e, 0x08, 0x7b, 0x11, 0xf1, 0x34, 0x52,
0xe5, 0xc0, 0x97, 0x66, 0x4a, 0xe0, 0x91, 0x45, 0xc8, 0xb1, 0x3d, 0x6a,
0x54, 0xc1, 0x32, 0x0f, 0x32, 0xad, 0x25, 0x11, 0x3e, 0x49, 0xad, 0x41,
0xce, 0x7b, 0xca, 0x95, 0x6b, 0x54, 0x5e, 0x86, 0x1b, 0xce, 0xfa, 0x2a,
0x60, 0xe8, 0xfa, 0xbb, 0x23, 0xb2, 0x41, 0xbc, 0x7c, 0x98, 0xec, 0x73,
0x20, 0xed, 0xb3, 0xcf, 0xab, 0x07, 0x24, 0x85, 0x6a, 0x2a, 0x61, 0x76,
0x28, 0xf8, 0x00, 0x80, 0xeb, 0xd9, 0x3a, 0x63, 0xe2, 0x01, 0xb1, 0xee,
0x6d, 0xe9, 0x73, 0xe9, 0xb6, 0x75, 0x2e, 0xf9, 0x81, 0xd9, 0xa8, 0x79,
0xf6, 0x8f, 0xe3, 0x02, 0x7d, 0xf6, 0xea, 0xdc, 0x35, 0xe4, 0x62, 0x0d,
0x91, 0xba, 0x3e, 0x7d, 0x8b, 0x82, 0xbf, 0x15, 0x74, 0x6a, 0x4e, 0x29,
0xf8, 0x9b, 0x2c, 0x94, 0x8d, 0xa7, 0x00, 0x4d, 0x7b, 0xbf, 0x35, 0x07,
0xeb, 0xdd, 0x10, 0xef, 0xd5, 0x2f, 0xe6, 0x98, 0x4b, 0x7e, 0x24, 0x80,
0xe2, 0x01, 0xf2, 0x66, 0xb7, 0xd3, 0x93, 0xfe, 0x2a, 0xb3, 0x74, 0xed,
0xec, 0x4b, 0xb1, 0x5f, 0x5f, 0xee, 0x85, 0x44, 0xa7, 0x26, 0xdf, 0xc1,
0x2e, 0x7a, 0xf3, 0xa5, 0x8f, 0xf8, 0x64, 0xda, 0x65, 0xad, 0x91, 0xe2,
0x90, 0x94, 0x20, 0x16, 0xb8, 0x61, 0xa5, 0x0a, 0x7d, 0xb4, 0xbf, 0xc0,
0x10, 0xaf, 0x72, 0x67,
};
unsigned sig_len;
if (!rsa_sign_no_self_test(NID_sha256, kRSASignDigest, sizeof(kRSASignDigest),
output, &sig_len, rsa_key) ||
!check_test(kRSASignSignature, output, sizeof(kRSASignSignature),
"RSA-sign KAT")) {
fprintf(stderr, "RSA signing test failed.\n");
goto err;
}
// RSA Verify KAT
static const uint8_t kRSAVerifyDigest[32] = {
0x09, 0x65, 0x2f, 0xd8, 0xed, 0x9d, 0xc2, 0x6d, 0xbc, 0xbf, 0xf2,
0xa7, 0xa5, 0xed, 0xe1, 0x37, 0x13, 0x78, 0x21, 0x36, 0xcf, 0x8d,
0x22, 0x3d, 0xab, 0x93, 0xb4, 0x12, 0xa8, 0xb5, 0x15, 0x53,
};
static const uint8_t kRSAVerifySignature[256] = {
0xab, 0xe2, 0xcb, 0xc1, 0x3d, 0x6b, 0xd3, 0x9d, 0x48, 0xdb, 0x53, 0x34,
0xdd, 0xbf, 0x8d, 0x07, 0x0a, 0x93, 0xbd, 0xcb, 0x10, 0x4e, 0x2c, 0xc5,
0xd0, 0xee, 0x48, 0x6e, 0xe2, 0x95, 0xf6, 0xb3, 0x1b, 0xda, 0x12, 0x6c,
0x41, 0x89, 0x0b, 0x98, 0xb7, 0x3e, 0x70, 0xe6, 0xb6, 0x5d, 0x82, 0xf9,
0x5c, 0x66, 0x31, 0x21, 0x75, 0x5a, 0x90, 0x74, 0x4c, 0x8d, 0x1c, 0x21,
0x14, 0x8a, 0x19, 0x60, 0xbe, 0x0e, 0xca, 0x44, 0x6e, 0x9f, 0xf4, 0x97,
0xf1, 0x34, 0x5c, 0x53, 0x7e, 0xf8, 0x11, 0x9b, 0x9a, 0x43, 0x98, 0xe9,
0x5c, 0x5c, 0x6d, 0xe2, 0xb1, 0xc9, 0x55, 0x90, 0x5c, 0x52, 0x99, 0xd8,
0xce, 0x7a, 0x3b, 0x6a, 0xb7, 0x63, 0x80, 0xd9, 0xba, 0xbd, 0xd1, 0x5f,
0x61, 0x02, 0x37, 0xe1, 0xf3, 0xf2, 0xaa, 0x1c, 0x1f, 0x1e, 0x77, 0x0b,
0x62, 0xfb, 0xb5, 0x96, 0x38, 0x1b, 0x2e, 0xbd, 0xd7, 0x7e, 0xce, 0xf9,
0xc9, 0x0d, 0x4c, 0x92, 0xf7, 0xb6, 0xb0, 0x5f, 0xed, 0x29, 0x36, 0x28,
0x5f, 0xa9, 0x48, 0x26, 0xe6, 0x20, 0x55, 0x32, 0x2a, 0x33, 0xb6, 0xf0,
0x4c, 0x74, 0xce, 0x69, 0xe5, 0xd8, 0xd7, 0x37, 0xfb, 0x83, 0x8b, 0x79,
0xd2, 0xd4, 0x8e, 0x3d, 0xaf, 0x71, 0x38, 0x75, 0x31, 0x88, 0x25, 0x31,
0xa9, 0x5a, 0xc9, 0x64, 0xd0, 0x2e, 0xa4, 0x13, 0xbf, 0x85, 0x95, 0x29,
0x82, 0xbb, 0xc0, 0x89, 0x52, 0x7d, 0xaf, 0xf5, 0xb8, 0x45, 0xc9, 0xa0,
0xf4, 0xd1, 0x4e, 0xf1, 0x95, 0x6d, 0x9c, 0x3a, 0xca, 0xe8, 0x82, 0xd1,
0x2d, 0xa6, 0x6d, 0xa0, 0xf3, 0x57, 0x94, 0xf5, 0xee, 0x32, 0x23, 0x23,
0x33, 0x51, 0x7d, 0xb9, 0x31, 0x52, 0x32, 0xa1, 0x83, 0xb9, 0x91, 0x65,
0x4d, 0xbe, 0xa4, 0x16, 0x15, 0x34, 0x5c, 0x88, 0x53, 0x25, 0x92, 0x67,
0x44, 0xa5, 0x39, 0x15,
};
if (!rsa_verify_no_self_test(NID_sha256, kRSAVerifyDigest,
sizeof(kRSAVerifyDigest), kRSAVerifySignature,
sizeof(kRSAVerifySignature), rsa_key)) {
fprintf(stderr, "RSA-verify KAT failed.\n");
goto err;
}
ret = 1;
err:
RSA_free(rsa_key);
return ret;
}
static int boringssl_self_test_ecc(void) {
int ret = 0;
EC_KEY *ec_key = NULL;
EC_POINT *ec_point_in = NULL;
EC_POINT *ec_point_out = NULL;
BIGNUM *ec_scalar = NULL;
ECDSA_SIG *sig = NULL;
ec_key = self_test_ecdsa_key();
if (ec_key == NULL) {
fprintf(stderr, "ECDSA KeyGen failed\n");
goto err;
}
// ECDSA Sign/Verify KAT
static const uint8_t kECDSASignDigest[32] = {
0x1e, 0x35, 0x93, 0x0b, 0xe8, 0x60, 0xd0, 0x94, 0x2c, 0xa7, 0xbb,
0xd6, 0xf6, 0xde, 0xd8, 0x7f, 0x15, 0x7e, 0x4d, 0xe2, 0x4f, 0x81,
0xed, 0x4b, 0x87, 0x5c, 0x0e, 0x01, 0x8e, 0x89, 0xa8, 0x1f,
};
static const uint8_t kECDSASignSig[64] = {
0x67, 0x80, 0xc5, 0xfc, 0x70, 0x27, 0x5e, 0x2c, 0x70, 0x61, 0xa0,
0xe7, 0x87, 0x7b, 0xb1, 0x74, 0xde, 0xad, 0xeb, 0x98, 0x87, 0x02,
0x7f, 0x3f, 0xa8, 0x36, 0x54, 0x15, 0x8b, 0xa7, 0xf5, 0x0c, 0x68,
0x04, 0x73, 0x40, 0x94, 0xb2, 0xd1, 0x90, 0xac, 0x2d, 0x0c, 0xd7,
0xa5, 0x7f, 0x2f, 0x2e, 0xb2, 0x62, 0xb0, 0x09, 0x16, 0xe1, 0xa6,
0x70, 0xb5, 0xbb, 0x0d, 0xfd, 0x8e, 0x0c, 0x02, 0x3f,
};
// The 'k' value for ECDSA is fixed to avoid an entropy draw.
uint8_t ecdsa_k[32] = {0};
ecdsa_k[31] = 42;
sig = ecdsa_sign_with_nonce_for_known_answer_test(
kECDSASignDigest, sizeof(kECDSASignDigest), ec_key, ecdsa_k,
sizeof(ecdsa_k));
uint8_t ecdsa_sign_output[64];
if (sig == NULL ||
!serialize_ecdsa_sig(ecdsa_sign_output, sizeof(ecdsa_sign_output), sig) ||
!check_test(kECDSASignSig, ecdsa_sign_output, sizeof(ecdsa_sign_output),
"ECDSA-sign signature")) {
fprintf(stderr, "ECDSA-sign KAT failed.\n");
goto err;
}
static const uint8_t kECDSAVerifyDigest[32] = {
0x78, 0x7c, 0x50, 0x5c, 0x60, 0xc9, 0xe4, 0x13, 0x6c, 0xe4, 0x48,
0xba, 0x93, 0xff, 0x71, 0xfa, 0x9c, 0x18, 0xf4, 0x17, 0x09, 0x4f,
0xdf, 0x5a, 0xe2, 0x75, 0xc0, 0xcc, 0xd2, 0x67, 0x97, 0xad,
};
static const uint8_t kECDSAVerifySig[64] = {
0x67, 0x80, 0xc5, 0xfc, 0x70, 0x27, 0x5e, 0x2c, 0x70, 0x61, 0xa0,
0xe7, 0x87, 0x7b, 0xb1, 0x74, 0xde, 0xad, 0xeb, 0x98, 0x87, 0x02,
0x7f, 0x3f, 0xa8, 0x36, 0x54, 0x15, 0x8b, 0xa7, 0xf5, 0x0c, 0x2d,
0x36, 0xe5, 0x79, 0x97, 0x90, 0xbf, 0xbe, 0x21, 0x83, 0xd3, 0x3e,
0x96, 0xf3, 0xc5, 0x1f, 0x6a, 0x23, 0x2f, 0x2a, 0x24, 0x48, 0x8c,
0x8e, 0x5f, 0x64, 0xc3, 0x7e, 0xa2, 0xcf, 0x05, 0x29,
};
ECDSA_SIG_free(sig);
sig = parse_ecdsa_sig(kECDSAVerifySig, sizeof(kECDSAVerifySig));
if (!sig ||
!ecdsa_do_verify_no_self_test(kECDSAVerifyDigest,
sizeof(kECDSAVerifyDigest), sig, ec_key)) {
fprintf(stderr, "ECDSA-verify KAT failed.\n");
goto err;
}
// Primitive Z Computation KAT (IG 9.6).
// kP256Point is SHA256("Primitive Z Computation KAT")×G within P-256.
static const uint8_t kP256Point[65] = {
0x04, 0x4e, 0xc1, 0x94, 0x8c, 0x5c, 0xf4, 0x37, 0x35, 0x0d, 0xa3,
0xf9, 0x55, 0xf9, 0x8b, 0x26, 0x23, 0x5c, 0x43, 0xe0, 0x83, 0x51,
0x2b, 0x0d, 0x4b, 0x56, 0x24, 0xc3, 0xe4, 0xa5, 0xa8, 0xe2, 0xe9,
0x95, 0xf2, 0xc4, 0xb9, 0xb7, 0x48, 0x7d, 0x2a, 0xae, 0xc5, 0xc0,
0x0a, 0xcc, 0x1b, 0xd0, 0xec, 0xb8, 0xdc, 0xbe, 0x0c, 0xbe, 0x52,
0x79, 0x93, 0x7c, 0x0b, 0x92, 0x2b, 0x7f, 0x17, 0xa5, 0x80,
};
// kP256Scalar is SHA256("Primitive Z Computation KAT scalar").
static const uint8_t kP256Scalar[32] = {
0xe7, 0x60, 0x44, 0x91, 0x26, 0x9a, 0xfb, 0x5b, 0x10, 0x2d, 0x6e,
0xa5, 0x2c, 0xb5, 0x9f, 0xeb, 0x70, 0xae, 0xde, 0x6c, 0xe3, 0xbf,
0xb3, 0xe0, 0x10, 0x54, 0x85, 0xab, 0xd8, 0x61, 0xd7, 0x7b,
};
// kP256PointResult is |kP256Scalar|×|kP256Point|.
static const uint8_t kP256PointResult[65] = {
0x04, 0xf1, 0x63, 0x00, 0x88, 0xc5, 0xd5, 0xe9, 0x05, 0x52, 0xac,
0xb6, 0xec, 0x68, 0x76, 0xb8, 0x73, 0x7f, 0x0f, 0x72, 0x34, 0xe6,
0xbb, 0x30, 0x32, 0x22, 0x37, 0xb6, 0x2a, 0x80, 0xe8, 0x9e, 0x6e,
0x6f, 0x36, 0x02, 0xe7, 0x21, 0xd2, 0x31, 0xdb, 0x94, 0x63, 0xb7,
0xd8, 0x19, 0x0e, 0xc2, 0xc0, 0xa7, 0x2f, 0x15, 0x49, 0x1a, 0xa2,
0x7c, 0x41, 0x8f, 0xaf, 0x9c, 0x40, 0xaf, 0x2e, 0x4a, 0x0c,
};
const EC_GROUP *ec_group = EC_group_p256();
ec_point_in = EC_POINT_new(ec_group);
ec_point_out = EC_POINT_new(ec_group);
ec_scalar = BN_new();
uint8_t z_comp_result[65];
if (ec_point_in == NULL || ec_point_out == NULL || ec_scalar == NULL ||
!EC_POINT_oct2point(ec_group, ec_point_in, kP256Point, sizeof(kP256Point),
NULL) ||
!BN_bin2bn(kP256Scalar, sizeof(kP256Scalar), ec_scalar) ||
!ec_point_mul_no_self_test(ec_group, ec_point_out, NULL, ec_point_in,
ec_scalar, NULL) ||
!EC_POINT_point2oct(ec_group, ec_point_out, POINT_CONVERSION_UNCOMPRESSED,
z_comp_result, sizeof(z_comp_result), NULL) ||
!check_test(kP256PointResult, z_comp_result, sizeof(z_comp_result),
"Z Computation Result")) {
fprintf(stderr, "Z-computation KAT failed.\n");
goto err;
}
ret = 1;
err:
EC_KEY_free(ec_key);
EC_POINT_free(ec_point_in);
EC_POINT_free(ec_point_out);
BN_free(ec_scalar);
ECDSA_SIG_free(sig);
return ret;
}
static int boringssl_self_test_ffdh(void) {
int ret = 0;
DH *dh = NULL;
BIGNUM *ffdhe2048_value = NULL;
// FFC Diffie-Hellman KAT
// kFFDHE2048PublicValueData is an arbitrary public value, mod
// kFFDHE2048Data. (The private key happens to be 4096.)
static const BN_ULONG kFFDHE2048PublicValueData[] = {
TOBN(0x187be36b, 0xd38a4fa1), TOBN(0x0a152f39, 0x6458f3b8),
TOBN(0x0570187e, 0xc422eeb7), TOBN(0x18af7482, 0x91173f2a),
TOBN(0xe9fdac6a, 0xcff4eaaa), TOBN(0xf6afebb7, 0x6e589d6c),
TOBN(0xf92f8e9a, 0xb7e33fb0), TOBN(0x70acf2aa, 0x4cf36ddd),
TOBN(0x561ab426, 0xd07137fd), TOBN(0x5f57d037, 0x430ee91e),
TOBN(0xe3e768c8, 0x60d10b8a), TOBN(0xb14884d8, 0xa18af8ce),
TOBN(0xf8a98014, 0xa12b74e4), TOBN(0x748d407c, 0x3437b7a8),
TOBN(0x627588c4, 0x9875d5a7), TOBN(0xdd24a127, 0x53c8f09d),
TOBN(0x85a997d5, 0x0cd51aec), TOBN(0x44f0c619, 0xce348458),
TOBN(0x9b894b24, 0x5f6b69a1), TOBN(0xae1302f2, 0xf6d4777e),
TOBN(0xe6678eeb, 0x375db18e), TOBN(0x2674e1d6, 0x4fbcbdc8),
TOBN(0xb297a823, 0x6fa93d28), TOBN(0x6a12fb70, 0x7c8c0510),
TOBN(0x5c6d1aeb, 0xdb06f65b), TOBN(0xe8c2954e, 0x4c1804ca),
TOBN(0x06bdeac1, 0xf5500fa7), TOBN(0x6a315604, 0x189cd76b),
TOBN(0xbae7b0b3, 0x6e362dc0), TOBN(0xa57c73bd, 0xdc70fb82),
TOBN(0xfaff50d2, 0x9d573457), TOBN(0x352bd399, 0xbe84058e),
};
static const uint8_t kDHOutput[2048 / 8] = {
0x2a, 0xe6, 0xd3, 0xa6, 0x13, 0x58, 0x8e, 0xce, 0x53, 0xaa, 0xf6, 0x5d,
0x9a, 0xae, 0x02, 0x12, 0xf5, 0x80, 0x3d, 0x06, 0x09, 0x76, 0xac, 0x57,
0x37, 0x9e, 0xab, 0x38, 0x62, 0x25, 0x05, 0x1d, 0xf3, 0xa9, 0x39, 0x60,
0xf6, 0xae, 0x90, 0xed, 0x1e, 0xad, 0x6e, 0xe9, 0xe3, 0xba, 0x27, 0xf6,
0xdb, 0x54, 0xdf, 0xe2, 0xbd, 0xbb, 0x7f, 0xf1, 0x81, 0xac, 0x1a, 0xfa,
0xdb, 0x87, 0x07, 0x98, 0x76, 0x90, 0x21, 0xf2, 0xae, 0xda, 0x0d, 0x84,
0x97, 0x64, 0x0b, 0xbf, 0xb8, 0x8d, 0x10, 0x46, 0xe2, 0xd5, 0xca, 0x1b,
0xbb, 0xe5, 0x37, 0xb2, 0x3b, 0x35, 0xd3, 0x1b, 0x65, 0xea, 0xae, 0xf2,
0x03, 0xe2, 0xb6, 0xde, 0x22, 0xb7, 0x86, 0x49, 0x79, 0xfe, 0xd7, 0x16,
0xf7, 0xdc, 0x9c, 0x59, 0xf5, 0xb7, 0x70, 0xc0, 0x53, 0x42, 0x6f, 0xb1,
0xd2, 0x4e, 0x00, 0x25, 0x4b, 0x2d, 0x5a, 0x9b, 0xd0, 0xe9, 0x27, 0x43,
0xcc, 0x00, 0x66, 0xea, 0x94, 0x7a, 0x0b, 0xb9, 0x89, 0x0c, 0x5e, 0x94,
0xb8, 0x3a, 0x78, 0x9c, 0x4d, 0x84, 0xe6, 0x32, 0x2c, 0x38, 0x7c, 0xf7,
0x43, 0x9c, 0xd8, 0xb8, 0x1c, 0xce, 0x24, 0x91, 0x20, 0x67, 0x7a, 0x54,
0x1f, 0x7e, 0x86, 0x7f, 0xa1, 0xc1, 0x03, 0x4e, 0x2c, 0x26, 0x71, 0xb2,
0x06, 0x30, 0xb3, 0x6c, 0x15, 0xcc, 0xac, 0x25, 0xe5, 0x37, 0x3f, 0x24,
0x8f, 0x2a, 0x89, 0x5e, 0x3d, 0x43, 0x94, 0xc9, 0x36, 0xae, 0x40, 0x00,
0x6a, 0x0d, 0xb0, 0x6e, 0x8b, 0x2e, 0x70, 0x57, 0xe1, 0x88, 0x53, 0xd6,
0x06, 0x80, 0x2a, 0x4e, 0x5a, 0xf0, 0x1e, 0xaa, 0xcb, 0xab, 0x06, 0x0e,
0x27, 0x0f, 0xd9, 0x88, 0xd9, 0x01, 0xe3, 0x07, 0xeb, 0xdf, 0xc3, 0x12,
0xe3, 0x40, 0x88, 0x7b, 0x5f, 0x59, 0x78, 0x6e, 0x26, 0x20, 0xc3, 0xdf,
0xc8, 0xe4, 0x5e, 0xb8,
};
ffdhe2048_value = BN_new();
if (ffdhe2048_value) {
bn_set_static_words(ffdhe2048_value, kFFDHE2048PublicValueData,
OPENSSL_ARRAY_SIZE(kFFDHE2048PublicValueData));
}
dh = self_test_dh();
uint8_t dh_out[sizeof(kDHOutput)];
if (dh == NULL || ffdhe2048_value == NULL || sizeof(dh_out) != DH_size(dh) ||
dh_compute_key_padded_no_self_test(dh_out, ffdhe2048_value, dh) !=
sizeof(dh_out) ||
!check_test(kDHOutput, dh_out, sizeof(dh_out), "FFC DH")) {
fprintf(stderr, "FFDH failed.\n");
goto err;
}
ret = 1;
err:
DH_free(dh);
BN_free(ffdhe2048_value);
return ret;
}
#if defined(BORINGSSL_FIPS)
static void run_self_test_rsa(void) {
FIPS_service_indicator_lock_state();
if (!boringssl_self_test_rsa()) {
BORINGSSL_FIPS_abort();
}
FIPS_service_indicator_unlock_state();
}
DEFINE_STATIC_ONCE(g_self_test_once_rsa);
void boringssl_ensure_rsa_self_test(void) {
CRYPTO_once(g_self_test_once_rsa_bss_get(), run_self_test_rsa);
}
static void run_self_test_ecc(void) {
FIPS_service_indicator_lock_state();
if (!boringssl_self_test_ecc()) {
BORINGSSL_FIPS_abort();
}
FIPS_service_indicator_unlock_state();
}
DEFINE_STATIC_ONCE(g_self_test_once_ecc);
void boringssl_ensure_ecc_self_test(void) {
CRYPTO_once(g_self_test_once_ecc_bss_get(), run_self_test_ecc);
}
static void run_self_test_ffdh(void) {
FIPS_service_indicator_lock_state();
if (!boringssl_self_test_ffdh()) {
BORINGSSL_FIPS_abort();
}
FIPS_service_indicator_unlock_state();
}
DEFINE_STATIC_ONCE(g_self_test_once_ffdh);
void boringssl_ensure_ffdh_self_test(void) {
CRYPTO_once(g_self_test_once_ffdh_bss_get(), run_self_test_ffdh);
}
#endif // BORINGSSL_FIPS
// Startup self tests.
//
// These tests are run at process start when in FIPS mode.
int boringssl_self_test_sha256(void) {
static const uint8_t kInput[16] = {
0xff, 0x3b, 0x85, 0x7d, 0xa7, 0x23, 0x6a, 0x2b,
0xaa, 0x0f, 0x39, 0x6b, 0x51, 0x52, 0x22, 0x17,
};
static const uint8_t kPlaintextSHA256[32] = {
0x7f, 0xe4, 0xd5, 0xf1, 0xa1, 0xe3, 0x82, 0x87, 0xd9, 0x58, 0xf5,
0x11, 0xc7, 0x1d, 0x5e, 0x27, 0x5e, 0xcc, 0xd2, 0x66, 0xcf, 0xb9,
0xc8, 0xc6, 0x60, 0xd8, 0x92, 0x1e, 0x57, 0xfd, 0x46, 0x75,
};
uint8_t output[SHA256_DIGEST_LENGTH];
// SHA-256 KAT
SHA256(kInput, sizeof(kInput), output);
return check_test(kPlaintextSHA256, output, sizeof(kPlaintextSHA256),
"SHA-256 KAT");
}
int boringssl_self_test_sha512(void) {
static const uint8_t kInput[16] = {
0x21, 0x25, 0x12, 0xf8, 0xd2, 0xad, 0x83, 0x22,
0x78, 0x1c, 0x6c, 0x4d, 0x69, 0xa9, 0xda, 0xa1,
};
static const uint8_t kPlaintextSHA512[64] = {
0x29, 0x3c, 0x94, 0x35, 0x4e, 0x98, 0x83, 0xe5, 0xc2, 0x78, 0x36,
0x7a, 0xe5, 0x18, 0x90, 0xbf, 0x35, 0x41, 0x01, 0x64, 0x19, 0x8d,
0x26, 0xeb, 0xe1, 0xf8, 0x2f, 0x04, 0x8e, 0xfa, 0x8b, 0x2b, 0xc6,
0xb2, 0x9d, 0x5d, 0x46, 0x76, 0x5a, 0xc8, 0xb5, 0x25, 0xa3, 0xea,
0x52, 0x84, 0x47, 0x6d, 0x6d, 0xf4, 0xc9, 0x71, 0xf3, 0x3d, 0x89,
0x4c, 0x3b, 0x20, 0x8c, 0x5b, 0x75, 0xe8, 0xf8, 0x7c,
};
uint8_t output[SHA512_DIGEST_LENGTH];
// SHA-512 KAT
SHA512(kInput, sizeof(kInput), output);
return check_test(kPlaintextSHA512, output, sizeof(kPlaintextSHA512),
"SHA-512 KAT");
}
int boringssl_self_test_hmac_sha256(void) {
static const uint8_t kInput[16] = {
0xda, 0xd9, 0x12, 0x93, 0xdf, 0xcf, 0x2a, 0x7c,
0x8e, 0xcd, 0x13, 0xfe, 0x35, 0x3f, 0xa7, 0x5b,
};
static const uint8_t kPlaintextHMACSHA256[32] = {
0x36, 0x5f, 0x5b, 0xd5, 0xf5, 0xeb, 0xfd, 0xc7, 0x6e, 0x53, 0xa5,
0x73, 0x6d, 0x73, 0x20, 0x13, 0xaa, 0xd3, 0xbc, 0x86, 0x4b, 0xb8,
0x84, 0x94, 0x16, 0x46, 0x88, 0x9c, 0x48, 0xee, 0xa9, 0x0e,
};
uint8_t output[EVP_MAX_MD_SIZE];
unsigned output_len;
HMAC(EVP_sha256(), kInput, sizeof(kInput), kInput, sizeof(kInput), output,
&output_len);
return output_len == sizeof(kPlaintextHMACSHA256) &&
check_test(kPlaintextHMACSHA256, output, sizeof(kPlaintextHMACSHA256),
"HMAC-SHA-256 KAT");
}
static int boringssl_self_test_fast(void) {
static const uint8_t kAESKey[16] = "BoringCrypto Key";
static const uint8_t kAESIV[16] = {0};
EVP_AEAD_CTX aead_ctx;
EVP_AEAD_CTX_zero(&aead_ctx);
int ret = 0;
AES_KEY aes_key;
uint8_t aes_iv[16];
uint8_t output[256];
// AES-CBC Encryption KAT
static const uint8_t kAESCBCEncPlaintext[32] = {
0x07, 0x86, 0x09, 0xa6, 0xc5, 0xac, 0x25, 0x44, 0x69, 0x9a, 0xdf,
0x68, 0x2f, 0xa3, 0x77, 0xf9, 0xbe, 0x8a, 0xb6, 0xae, 0xf5, 0x63,
0xe8, 0xc5, 0x6a, 0x36, 0xb8, 0x4f, 0x55, 0x7f, 0xad, 0xd3,
};
static const uint8_t kAESCBCEncCiphertext[sizeof(kAESCBCEncPlaintext)] = {
0x56, 0x46, 0xc1, 0x41, 0xf4, 0x13, 0xd6, 0xff, 0x62, 0x92, 0x41,
0x7a, 0x26, 0xc6, 0x86, 0xbd, 0x30, 0x5f, 0xb6, 0x57, 0xa7, 0xd2,
0x50, 0x3a, 0xc5, 0x5e, 0x8e, 0x93, 0x40, 0xf2, 0x10, 0xd8,
};
memcpy(aes_iv, kAESIV, sizeof(kAESIV));
if (AES_set_encrypt_key(kAESKey, 8 * sizeof(kAESKey), &aes_key) != 0) {
fprintf(stderr, "AES_set_encrypt_key failed.\n");
goto err;
}
AES_cbc_encrypt(kAESCBCEncPlaintext, output, sizeof(kAESCBCEncPlaintext),
&aes_key, aes_iv, AES_ENCRYPT);
if (!check_test(kAESCBCEncCiphertext, output, sizeof(kAESCBCEncCiphertext),
"AES-CBC-encrypt KAT")) {
goto err;
}
// AES-CBC Decryption KAT
static const uint8_t kAESCBCDecCiphertext[32] = {
0x34, 0x7a, 0xa5, 0xa0, 0x24, 0xb2, 0x82, 0x57, 0xb3, 0x65, 0x10,
0xbe, 0x58, 0x3d, 0x4f, 0x47, 0xad, 0xb7, 0xbb, 0xee, 0xdc, 0x60,
0x05, 0xbb, 0xbd, 0x0d, 0x0a, 0x9f, 0x06, 0xbb, 0x7b, 0x10,
};
static const uint8_t kAESCBCDecPlaintext[sizeof(kAESCBCDecCiphertext)] = {
0x51, 0xa7, 0xa0, 0x1f, 0x6b, 0x79, 0x6c, 0xcd, 0x48, 0x03, 0xa1,
0x41, 0xdc, 0x56, 0xa6, 0xc2, 0x16, 0xb5, 0xd1, 0xd3, 0xb7, 0x06,
0xb2, 0x25, 0x6f, 0xa6, 0xd0, 0xd2, 0x0e, 0x6f, 0x19, 0xb5,
};
memcpy(aes_iv, kAESIV, sizeof(kAESIV));
if (AES_set_decrypt_key(kAESKey, 8 * sizeof(kAESKey), &aes_key) != 0) {
fprintf(stderr, "AES_set_decrypt_key failed.\n");
goto err;
}
AES_cbc_encrypt(kAESCBCDecCiphertext, output, sizeof(kAESCBCDecCiphertext),
&aes_key, aes_iv, AES_DECRYPT);
if (!check_test(kAESCBCDecPlaintext, output, sizeof(kAESCBCDecPlaintext),
"AES-CBC-decrypt KAT")) {
goto err;
}
size_t out_len;
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
OPENSSL_memset(nonce, 0, sizeof(nonce));
if (!EVP_AEAD_CTX_init(&aead_ctx, EVP_aead_aes_128_gcm(), kAESKey,
sizeof(kAESKey), 0, NULL)) {
fprintf(stderr, "EVP_AEAD_CTX_init for AES-128-GCM failed.\n");
goto err;
}
// AES-GCM Encryption KAT
static const uint8_t kAESGCMEncPlaintext[32] = {
0x8f, 0xcc, 0x40, 0x99, 0x80, 0x8e, 0x75, 0xca, 0xaf, 0xf5, 0x82,
0x89, 0x88, 0x48, 0xa8, 0x8d, 0x80, 0x8b, 0x55, 0xab, 0x4e, 0x93,
0x70, 0x79, 0x7d, 0x94, 0x0b, 0xe8, 0xcc, 0x1d, 0x78, 0x84,
};
static const uint8_t kAESGCMCiphertext[sizeof(kAESGCMEncPlaintext) + 16] = {
0x87, 0x7b, 0xd5, 0x8d, 0x96, 0x3e, 0x4b, 0xe6, 0x64, 0x94, 0x40, 0x2f,
0x61, 0x9b, 0x7e, 0x56, 0x52, 0x7d, 0xa4, 0x5a, 0xf9, 0xa6, 0xe2, 0xdb,
0x1c, 0x63, 0x2e, 0x97, 0x93, 0x0f, 0xfb, 0xed, 0xb5, 0x9e, 0x1c, 0x20,
0xb2, 0xb0, 0x58, 0xda, 0x48, 0x07, 0x2d, 0xbd, 0x96, 0x0d, 0x34, 0xc6,
};
if (!EVP_AEAD_CTX_seal(&aead_ctx, output, &out_len, sizeof(output), nonce,
EVP_AEAD_nonce_length(EVP_aead_aes_128_gcm()),
kAESGCMEncPlaintext, sizeof(kAESGCMEncPlaintext), NULL,
0) ||
!check_test(kAESGCMCiphertext, output, sizeof(kAESGCMCiphertext),
"AES-GCM-encrypt KAT")) {
fprintf(stderr, "EVP_AEAD_CTX_seal for AES-128-GCM failed.\n");
goto err;
}
// AES-GCM Decryption KAT
static const uint8_t kAESGCMDecCiphertext[48] = {
0x35, 0xf3, 0x05, 0x8f, 0x87, 0x57, 0x60, 0xff, 0x09, 0xd3, 0x12, 0x0f,
0x70, 0xc4, 0xbc, 0x9e, 0xd7, 0xa8, 0x68, 0x72, 0xe1, 0x34, 0x52, 0x20,
0x21, 0x76, 0xf7, 0x37, 0x1a, 0xe0, 0x4f, 0xaa, 0xe1, 0xdd, 0x39, 0x19,
0x20, 0xf5, 0xd1, 0x39, 0x53, 0xd8, 0x96, 0x78, 0x59, 0x94, 0x82, 0x3c,
};
static const uint8_t kAESGCMDecPlaintext[sizeof(kAESGCMDecCiphertext) - 16] =
{
0x3d, 0x44, 0x90, 0x9b, 0x91, 0xe7, 0x5e, 0xd3, 0xc2, 0xb2, 0xd0,
0xa9, 0x99, 0x17, 0x6a, 0x45, 0x05, 0x5e, 0x99, 0x83, 0x56, 0x01,
0xc0, 0x82, 0x40, 0x81, 0xd2, 0x48, 0x45, 0xf2, 0xcc, 0xc3,
};
if (!EVP_AEAD_CTX_open(&aead_ctx, output, &out_len, sizeof(output), nonce,
EVP_AEAD_nonce_length(EVP_aead_aes_128_gcm()),
kAESGCMDecCiphertext, sizeof(kAESGCMDecCiphertext),
NULL, 0) ||
!check_test(kAESGCMDecPlaintext, output, sizeof(kAESGCMDecPlaintext),
"AES-GCM-decrypt KAT")) {
fprintf(stderr,
"AES-GCM-decrypt KAT failed because EVP_AEAD_CTX_open failed.\n");
goto err;
}
// SHA-1 KAT
static const uint8_t kSHA1Input[16] = {
0x13, 0x2f, 0xd9, 0xba, 0xd5, 0xc1, 0x82, 0x62,
0x63, 0xba, 0xfb, 0xb6, 0x99, 0xf7, 0x07, 0xa5,
};
static const uint8_t kSHA1Digest[20] = {
0x94, 0x19, 0x55, 0x93, 0x0a, 0x58, 0x29, 0x38, 0xeb, 0xf5,
0x09, 0x11, 0x6d, 0x1a, 0xfd, 0x0f, 0x1e, 0x11, 0xe3, 0xcb,
};
SHA1(kSHA1Input, sizeof(kSHA1Input), output);
if (!check_test(kSHA1Digest, output, sizeof(kSHA1Digest),
"SHA-1 KAT")) {
goto err;
}
if (!boringssl_self_test_sha256() ||
!boringssl_self_test_sha512() ||
!boringssl_self_test_hmac_sha256()) {
goto err;
}
// DBRG KAT
static const uint8_t kDRBGEntropy[48] = {
0xc4, 0xda, 0x07, 0x40, 0xd5, 0x05, 0xf1, 0xee, 0x28, 0x0b, 0x95, 0xe5,
0x8c, 0x49, 0x31, 0xac, 0x6d, 0xe8, 0x46, 0xa0, 0x15, 0x2f, 0xbb, 0x4a,
0x3f, 0x17, 0x4c, 0xf4, 0x78, 0x7a, 0x4f, 0x1a, 0x40, 0xc2, 0xb5, 0x0b,
0xab, 0xe1, 0x4a, 0xae, 0x53, 0x0b, 0xe5, 0x88, 0x6d, 0x91, 0x0a, 0x27,
};
static const uint8_t kDRBGPersonalization[18] = "BCMPersonalization";
static const uint8_t kDRBGAD[16] = "BCM DRBG KAT AD ";
static const uint8_t kDRBGOutput[64] = {
0x19, 0x1f, 0x2b, 0x49, 0x76, 0x85, 0xfd, 0x51, 0xb6, 0x56, 0xbc,
0x1c, 0x7d, 0xd5, 0xdd, 0x44, 0x76, 0xa3, 0x5e, 0x17, 0x9b, 0x8e,
0xb8, 0x98, 0x65, 0x12, 0xca, 0x35, 0x6c, 0xa0, 0x6f, 0xa0, 0x22,
0xe4, 0xf6, 0xd8, 0x43, 0xed, 0x4e, 0x2d, 0x97, 0x39, 0x43, 0x3b,
0x57, 0xfc, 0x23, 0x3f, 0x71, 0x0a, 0xe0, 0xed, 0xfe, 0xd5, 0xb8,
0x67, 0x7a, 0x00, 0x39, 0xb2, 0x6e, 0xa9, 0x25, 0x97,
};
static const uint8_t kDRBGEntropy2[48] = {
0xc7, 0x16, 0x1c, 0xa3, 0x6c, 0x23, 0x09, 0xb7, 0x16, 0xe9, 0x85, 0x9b,
0xb9, 0x6c, 0x6d, 0x49, 0xbd, 0xc8, 0x35, 0x21, 0x03, 0xa1, 0x8c, 0xd2,
0x4e, 0xf4, 0x2e, 0xc9, 0x7e, 0xf4, 0x6b, 0xf4, 0x46, 0xeb, 0x1a, 0x45,
0x76, 0xc1, 0x86, 0xe9, 0x35, 0x18, 0x03, 0x76, 0x3a, 0x79, 0x12, 0xfe,
};
static const uint8_t kDRBGReseedOutput[64] = {
0x00, 0xf2, 0x05, 0xaa, 0xfd, 0x11, 0x6c, 0x77, 0xbc, 0x81, 0x86,
0x99, 0xca, 0x51, 0xcf, 0x80, 0x15, 0x9f, 0x02, 0x9e, 0x0b, 0xcd,
0x26, 0xc8, 0x4b, 0x87, 0x8a, 0x15, 0x1a, 0xdd, 0xf2, 0xf3, 0xeb,
0x94, 0x0b, 0x08, 0xc8, 0xc9, 0x57, 0xa4, 0x0b, 0x4b, 0x0f, 0x13,
0xde, 0x7c, 0x0c, 0x6a, 0xac, 0x34, 0x4a, 0x9a, 0xf2, 0xd0, 0x83,
0x02, 0x05, 0x17, 0xc9, 0x81, 0x8f, 0x2a, 0x81, 0x92,
};
CTR_DRBG_STATE drbg;
if (!CTR_DRBG_init(&drbg, kDRBGEntropy, kDRBGPersonalization,
sizeof(kDRBGPersonalization)) ||
!CTR_DRBG_generate(&drbg, output, sizeof(kDRBGOutput), kDRBGAD,
sizeof(kDRBGAD)) ||
!check_test(kDRBGOutput, output, sizeof(kDRBGOutput),
"DRBG Generate KAT") ||
!CTR_DRBG_reseed(&drbg, kDRBGEntropy2, kDRBGAD, sizeof(kDRBGAD)) ||
!CTR_DRBG_generate(&drbg, output, sizeof(kDRBGReseedOutput), kDRBGAD,
sizeof(kDRBGAD)) ||
!check_test(kDRBGReseedOutput, output, sizeof(kDRBGReseedOutput),
"DRBG-reseed KAT")) {
fprintf(stderr, "CTR-DRBG failed.\n");
goto err;
}
CTR_DRBG_clear(&drbg);
CTR_DRBG_STATE kZeroDRBG;
memset(&kZeroDRBG, 0, sizeof(kZeroDRBG));
if (!check_test(&kZeroDRBG, &drbg, sizeof(drbg), "DRBG Clear KAT")) {
goto err;
}
// TLS KDF KAT
static const char kTLSLabel[] = "FIPS self test";
static const uint8_t kTLSSeed1[16] = {
0x8f, 0x0d, 0xe8, 0xb6, 0x90, 0x8f, 0xb1, 0xd2,
0x6d, 0x51, 0xf4, 0x79, 0x18, 0x63, 0x51, 0x65,
};
static const uint8_t kTLSSeed2[16] = {
0x7d, 0x24, 0x1a, 0x9d, 0x3c, 0x59, 0xbf, 0x3c,
0x31, 0x1e, 0x2b, 0x21, 0x41, 0x8d, 0x32, 0x81,
};
static const uint8_t kTLS10Secret[32] = {
0xab, 0xc3, 0x65, 0x7b, 0x09, 0x4c, 0x76, 0x28, 0xa0, 0xb2, 0x82,
0x99, 0x6f, 0xe7, 0x5a, 0x75, 0xf4, 0x98, 0x4f, 0xd9, 0x4d, 0x4e,
0xcc, 0x2f, 0xcf, 0x53, 0xa2, 0xc4, 0x69, 0xa3, 0xf7, 0x31,
};
static const uint8_t kTLS10Output[32] = {
0x69, 0x7c, 0x4e, 0x2c, 0xee, 0x82, 0xb1, 0xd2, 0x8b, 0xac, 0x90,
0x7a, 0xa1, 0x8a, 0x81, 0xfe, 0xc5, 0x58, 0x45, 0x57, 0x61, 0x2f,
0x7a, 0x8d, 0x80, 0xfb, 0x44, 0xd8, 0x81, 0x60, 0xe5, 0xf8,
};
uint8_t tls10_output[sizeof(kTLS10Output)];
if (!CRYPTO_tls1_prf(EVP_md5_sha1(), tls10_output, sizeof(tls10_output),
kTLS10Secret, sizeof(kTLS10Secret), kTLSLabel,
sizeof(kTLSLabel), kTLSSeed1, sizeof(kTLSSeed1),
kTLSSeed2, sizeof(kTLSSeed2)) ||
!check_test(kTLS10Output, tls10_output, sizeof(kTLS10Output),
"TLS10-KDF KAT")) {
fprintf(stderr, "TLS KDF failed.\n");
goto err;
}
static const uint8_t kTLS12Secret[32] = {
0xc5, 0x43, 0x8e, 0xe2, 0x6f, 0xd4, 0xac, 0xbd, 0x25, 0x9f, 0xc9,
0x18, 0x55, 0xdc, 0x69, 0xbf, 0x88, 0x4e, 0xe2, 0x93, 0x22, 0xfc,
0xbf, 0xd2, 0x96, 0x6a, 0x46, 0x23, 0xd4, 0x2e, 0xc7, 0x81,
};
static const uint8_t kTLS12Output[32] = {
0xee, 0x4a, 0xcd, 0x3f, 0xa3, 0xd3, 0x55, 0x89, 0x9e, 0x6f, 0xf1,
0x38, 0x46, 0x9d, 0x2b, 0x33, 0xaa, 0x7f, 0xc4, 0x7f, 0x51, 0x85,
0x8a, 0xf3, 0x13, 0x84, 0xbf, 0x53, 0x6a, 0x65, 0x37, 0x51,
};
uint8_t tls12_output[sizeof(kTLS12Output)];
if (!CRYPTO_tls1_prf(EVP_sha256(), tls12_output, sizeof(tls12_output),
kTLS12Secret, sizeof(kTLS12Secret), kTLSLabel,
sizeof(kTLSLabel), kTLSSeed1, sizeof(kTLSSeed1),
kTLSSeed2, sizeof(kTLSSeed2)) ||
!check_test(kTLS12Output, tls12_output, sizeof(kTLS12Output),
"TLS12-KDF KAT")) {
fprintf(stderr, "TLS KDF failed.\n");
goto err;
}
// TLS v1.3: derives a dummy client-early-traffic secret.
static const uint8_t kTLS13Secret[32] = {
0x02, 0x4a, 0x0d, 0x80, 0xf3, 0x57, 0xf2, 0x49, 0x9a, 0x12, 0x44,
0xda, 0xc2, 0x6d, 0xab, 0x66, 0xfc, 0x13, 0xed, 0x85, 0xfc, 0xa7,
0x1d, 0xac, 0xe1, 0x46, 0x21, 0x11, 0x19, 0x52, 0x58, 0x74,
};
static const uint8_t kTLS13Salt[16] = {
0x54, 0x61, 0x11, 0x36, 0x75, 0x91, 0xf0, 0xf8,
0x92, 0xec, 0x70, 0xbd, 0x78, 0x2a, 0xef, 0x61,
};
static const uint8_t kTLS13Label[] = "c e traffic";
static const uint8_t kTLS13ClientHelloHash[32] = {
0x1d, 0xe8, 0x67, 0xed, 0x93, 0x6a, 0x73, 0x65, 0x9b, 0x05, 0xcf,
0x8a, 0x22, 0x77, 0xb7, 0x37, 0x29, 0xf2, 0x44, 0x94, 0x81, 0x6a,
0x83, 0x33, 0x7f, 0x09, 0xbb, 0x6c, 0xc2, 0x6f, 0x48, 0x9c,
};
static const uint8_t kTLS13ExpandLabelOutput[32] = {
0x62, 0x91, 0x52, 0x90, 0x2e, 0xc9, 0xcf, 0x9c, 0x5f, 0x1e, 0x0a,
0xb7, 0x00, 0x33, 0x42, 0x24, 0xc4, 0xe3, 0xba, 0x01, 0x40, 0x32,
0x06, 0xab, 0x09, 0x23, 0x8a, 0xdd, 0x01, 0xa4, 0x05, 0xcd,
};
uint8_t tls13_extract_output[32];
size_t tls13_extract_output_len;
uint8_t tls13_expand_label_output[32];
if (!HKDF_extract(tls13_extract_output, &tls13_extract_output_len,
EVP_sha256(), kTLS13Secret, sizeof(kTLS13Secret),
kTLS13Salt, sizeof(kTLS13Salt)) ||
tls13_extract_output_len != sizeof(tls13_extract_output) ||
!CRYPTO_tls13_hkdf_expand_label(
tls13_expand_label_output, sizeof(tls13_expand_label_output),
EVP_sha256(), tls13_extract_output, sizeof(tls13_extract_output),
kTLS13Label, sizeof(kTLS13Label) - 1, kTLS13ClientHelloHash,
sizeof(kTLS13ClientHelloHash)) ||
!check_test(kTLS13ExpandLabelOutput, tls13_expand_label_output,
sizeof(kTLS13ExpandLabelOutput),
"CRYPTO_tls13_hkdf_expand_label")) {
fprintf(stderr, "TLS13-KDF failed.\n");
goto err;
}
// HKDF
static const uint8_t kHKDFSecret[32] = {
0x68, 0x67, 0x85, 0x04, 0xb9, 0xb3, 0xad, 0xd1, 0x7d, 0x59, 0x67,
0xa1, 0xa7, 0xbd, 0x37, 0x99, 0x3f, 0xd8, 0xa3, 0x3c, 0xe7, 0x30,
0x30, 0x71, 0xf3, 0x9c, 0x09, 0x6d, 0x16, 0x35, 0xb3, 0xc9,
};
static const uint8_t kHKDFSalt[32] = {
0x8a, 0xab, 0x18, 0xb4, 0x9b, 0x0a, 0x17, 0xf9, 0xe8, 0xe6, 0x97,
0x1a, 0x3d, 0xff, 0xda, 0x9b, 0x26, 0x8b, 0x3d, 0x17, 0x78, 0x0a,
0xb3, 0xea, 0x65, 0xdb, 0x2a, 0xc0, 0x29, 0x9c, 0xfa, 0x72,
};
static const uint8_t kHKDFInfo[32] = {
0xe5, 0x6f, 0xf9, 0xe1, 0x18, 0x5e, 0x64, 0x8c, 0x6c, 0x8f, 0xee,
0xc6, 0x93, 0x5a, 0xc5, 0x14, 0x8c, 0xf3, 0xd9, 0x78, 0xd2, 0x3a,
0x86, 0xdd, 0x01, 0xdf, 0xb9, 0xe9, 0x5e, 0xe5, 0x1a, 0x56,
};
static const uint8_t kHKDFOutput[32] = {
0xa6, 0x29, 0xb4, 0xd7, 0xf4, 0xc1, 0x16, 0x64, 0x71, 0x5e, 0xa4,
0xa8, 0xe6, 0x60, 0x8c, 0xf3, 0xc1, 0xa5, 0x03, 0xe2, 0x22, 0xf9,
0x89, 0xe2, 0x12, 0x18, 0xbe, 0xef, 0x16, 0x86, 0xe0, 0xec,
};
uint8_t hkdf_output[sizeof(kHKDFOutput)];
if (!HKDF(hkdf_output, sizeof(hkdf_output), EVP_sha256(), kHKDFSecret,
sizeof(kHKDFSecret), kHKDFSalt, sizeof(kHKDFSalt), kHKDFInfo,
sizeof(kHKDFInfo)) ||
!check_test(kHKDFOutput, hkdf_output, sizeof(kHKDFOutput), "HKDF")) {
fprintf(stderr, "HKDF failed.\n");
goto err;
}
ret = 1;
err:
EVP_AEAD_CTX_cleanup(&aead_ctx);
return ret;
}
int BORINGSSL_self_test(void) {
if (!boringssl_self_test_fast() ||
// When requested to run self tests, also run the lazy tests.
!boringssl_self_test_rsa() ||
!boringssl_self_test_ecc() ||
!boringssl_self_test_ffdh()) {
return 0;
}
return 1;
}
#if defined(BORINGSSL_FIPS)
int boringssl_self_test_startup(void) {
return boringssl_self_test_fast();
}
#endif
#endif // !_MSC_VER