| /* |
| * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2014, Intel Corporation. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) |
| * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
| * (2) University of Haifa, Israel |
| * |
| * Reference: |
| * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with |
| * 256 Bit Primes" |
| */ |
| |
| #include <openssl/ec.h> |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| #include "../../internal.h" |
| #include "internal.h" |
| #include "p256-nistz.h" |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \ |
| !defined(OPENSSL_SMALL) |
| |
| typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; |
| |
| // One converted into the Montgomery domain |
| static const BN_ULONG ONE[P256_LIMBS] = { |
| TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), |
| TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), |
| }; |
| |
| // Precomputed tables for the default generator |
| #include "p256-nistz-table.h" |
| |
| // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in |
| // util.c for details |
| static crypto_word_t booth_recode_w5(crypto_word_t in) { |
| crypto_word_t s, d; |
| |
| s = ~((in >> 5) - 1); |
| d = (1 << 6) - in - 1; |
| d = (d & s) | (in & ~s); |
| d = (d >> 1) + (d & 1); |
| |
| return (d << 1) + (s & 1); |
| } |
| |
| static crypto_word_t booth_recode_w7(crypto_word_t in) { |
| crypto_word_t s, d; |
| |
| s = ~((in >> 7) - 1); |
| d = (1 << 8) - in - 1; |
| d = (d & s) | (in & ~s); |
| d = (d >> 1) + (d & 1); |
| |
| return (d << 1) + (s & 1); |
| } |
| |
| // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is |
| // if |move| is zero. |
| // |
| // WARNING: this breaks the usual convention of constant-time functions |
| // returning masks. |
| static void copy_conditional(BN_ULONG dst[P256_LIMBS], |
| const BN_ULONG src[P256_LIMBS], BN_ULONG move) { |
| BN_ULONG mask1 = ((BN_ULONG)0) - move; |
| BN_ULONG mask2 = ~mask1; |
| |
| dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); |
| dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); |
| dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); |
| dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); |
| if (P256_LIMBS == 8) { |
| dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); |
| dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); |
| dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); |
| dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); |
| } |
| } |
| |
| // is_not_zero returns one iff in != 0 and zero otherwise. |
| // |
| // WARNING: this breaks the usual convention of constant-time functions |
| // returning masks. |
| // |
| // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) |
| // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) |
| // ) |
| // |
| // (declare-fun x () (_ BitVec 64)) |
| // |
| // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) |
| // (check-sat) |
| // |
| // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) |
| // (check-sat) |
| // |
| static BN_ULONG is_not_zero(BN_ULONG in) { |
| in |= (0 - in); |
| in >>= BN_BITS2 - 1; |
| return in; |
| } |
| |
| // ecp_nistz256_mod_inverse_sqr_mont sets |r| to (|in| * 2^-256)^-2 * 2^256 mod |
| // p. That is, |r| is the modular inverse square of |in| for input and output in |
| // the Montgomery domain. |
| static void ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS], |
| const BN_ULONG in[P256_LIMBS]) { |
| // This implements the addition chain described in |
| // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion |
| BN_ULONG x2[P256_LIMBS], x3[P256_LIMBS], x6[P256_LIMBS], x12[P256_LIMBS], |
| x15[P256_LIMBS], x30[P256_LIMBS], x32[P256_LIMBS]; |
| ecp_nistz256_sqr_mont(x2, in); // 2^2 - 2^1 |
| ecp_nistz256_mul_mont(x2, x2, in); // 2^2 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x3, x2); // 2^3 - 2^1 |
| ecp_nistz256_mul_mont(x3, x3, in); // 2^3 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x6, x3); |
| for (int i = 1; i < 3; i++) { |
| ecp_nistz256_sqr_mont(x6, x6); |
| } // 2^6 - 2^3 |
| ecp_nistz256_mul_mont(x6, x6, x3); // 2^6 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x12, x6); |
| for (int i = 1; i < 6; i++) { |
| ecp_nistz256_sqr_mont(x12, x12); |
| } // 2^12 - 2^6 |
| ecp_nistz256_mul_mont(x12, x12, x6); // 2^12 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x15, x12); |
| for (int i = 1; i < 3; i++) { |
| ecp_nistz256_sqr_mont(x15, x15); |
| } // 2^15 - 2^3 |
| ecp_nistz256_mul_mont(x15, x15, x3); // 2^15 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x30, x15); |
| for (int i = 1; i < 15; i++) { |
| ecp_nistz256_sqr_mont(x30, x30); |
| } // 2^30 - 2^15 |
| ecp_nistz256_mul_mont(x30, x30, x15); // 2^30 - 2^0 |
| |
| ecp_nistz256_sqr_mont(x32, x30); |
| ecp_nistz256_sqr_mont(x32, x32); // 2^32 - 2^2 |
| ecp_nistz256_mul_mont(x32, x32, x2); // 2^32 - 2^0 |
| |
| BN_ULONG ret[P256_LIMBS]; |
| ecp_nistz256_sqr_mont(ret, x32); |
| for (int i = 1; i < 31 + 1; i++) { |
| ecp_nistz256_sqr_mont(ret, ret); |
| } // 2^64 - 2^32 |
| ecp_nistz256_mul_mont(ret, ret, in); // 2^64 - 2^32 + 2^0 |
| |
| for (int i = 0; i < 96 + 32; i++) { |
| ecp_nistz256_sqr_mont(ret, ret); |
| } // 2^192 - 2^160 + 2^128 |
| ecp_nistz256_mul_mont(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0 |
| |
| for (int i = 0; i < 32; i++) { |
| ecp_nistz256_sqr_mont(ret, ret); |
| } // 2^224 - 2^192 + 2^160 + 2^64 - 2^32 |
| ecp_nistz256_mul_mont(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0 |
| |
| for (int i = 0; i < 30; i++) { |
| ecp_nistz256_sqr_mont(ret, ret); |
| } // 2^254 - 2^222 + 2^190 + 2^94 - 2^30 |
| ecp_nistz256_mul_mont(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0 |
| |
| ecp_nistz256_sqr_mont(ret, ret); |
| ecp_nistz256_sqr_mont(r, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2 |
| } |
| |
| // r = p * p_scalar |
| static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, |
| const EC_JACOBIAN *p, |
| const EC_SCALAR *p_scalar) { |
| assert(p != NULL); |
| assert(p_scalar != NULL); |
| assert(group->field.N.width == P256_LIMBS); |
| |
| static const size_t kWindowSize = 5; |
| static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; |
| |
| // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should |
| // add no more than 63 bytes of overhead. Thus, |table| should require |
| // ~1599 ((96 * 16) + 63) bytes of stack space. |
| alignas(64) P256_POINT table[16]; |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, p_scalar->words, 32); |
| p_str[32] = 0; |
| |
| // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is |
| // not stored. All other values are actually stored with an offset of -1 in |
| // table. |
| P256_POINT *row = table; |
| assert(group->field.N.width == P256_LIMBS); |
| OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| |
| ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); |
| ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); |
| ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); |
| ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); |
| ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); |
| ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); |
| ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); |
| |
| BN_ULONG tmp[P256_LIMBS]; |
| alignas(32) P256_POINT h; |
| size_t index = 255; |
| crypto_word_t wvalue = p_str[(index - 1) / 8]; |
| wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| |
| ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1); |
| |
| while (index >= 5) { |
| if (index != 255) { |
| size_t off = (index - 1) / 8; |
| |
| wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8; |
| wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| |
| wvalue = booth_recode_w5(wvalue); |
| |
| ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| |
| ecp_nistz256_neg(tmp, h.Y); |
| copy_conditional(h.Y, tmp, (wvalue & 1)); |
| |
| ecp_nistz256_point_add(r, r, &h); |
| } |
| |
| index -= kWindowSize; |
| |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| } |
| |
| // Final window |
| wvalue = p_str[0]; |
| wvalue = (wvalue << 1) & kMask; |
| |
| wvalue = booth_recode_w5(wvalue); |
| |
| ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| |
| ecp_nistz256_neg(tmp, h.Y); |
| copy_conditional(h.Y, tmp, wvalue & 1); |
| |
| ecp_nistz256_point_add(r, r, &h); |
| } |
| |
| static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) { |
| static const size_t kWindowSize = 7; |
| static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| *index = kWindowSize; |
| |
| crypto_word_t wvalue = (p_str[0] << 1) & kMask; |
| return booth_recode_w7(wvalue); |
| } |
| |
| static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) { |
| static const size_t kWindowSize = 7; |
| static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| |
| const size_t off = (*index - 1) / 8; |
| crypto_word_t wvalue = |
| (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8; |
| wvalue = (wvalue >> ((*index - 1) % 8)) & kMask; |
| *index += kWindowSize; |
| |
| return booth_recode_w7(wvalue); |
| } |
| |
| static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *p, |
| const EC_SCALAR *scalar) { |
| alignas(32) P256_POINT out; |
| ecp_nistz256_windowed_mul(group, &out, p, scalar); |
| |
| assert(group->field.N.width == P256_LIMBS); |
| OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_SCALAR *scalar) { |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, scalar->words, 32); |
| p_str[32] = 0; |
| |
| // First window |
| size_t index = 0; |
| crypto_word_t wvalue = calc_first_wvalue(&index, p_str); |
| |
| alignas(32) P256_POINT_AFFINE t; |
| alignas(32) P256_POINT p; |
| ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[0], wvalue >> 1); |
| ecp_nistz256_neg(p.Z, t.Y); |
| copy_conditional(t.Y, p.Z, wvalue & 1); |
| |
| // Convert |t| from affine to Jacobian coordinates. We set Z to zero if |t| |
| // is infinity and |ONE| otherwise. |t| was computed from the table, so it |
| // is infinity iff |wvalue >> 1| is zero. |
| OPENSSL_memcpy(p.X, t.X, sizeof(p.X)); |
| OPENSSL_memcpy(p.Y, t.Y, sizeof(p.Y)); |
| OPENSSL_memset(p.Z, 0, sizeof(p.Z)); |
| copy_conditional(p.Z, ONE, is_not_zero(wvalue >> 1)); |
| |
| for (int i = 1; i < 37; i++) { |
| wvalue = calc_wvalue(&index, p_str); |
| |
| ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[i], wvalue >> 1); |
| |
| alignas(32) BN_ULONG neg_Y[P256_LIMBS]; |
| ecp_nistz256_neg(neg_Y, t.Y); |
| copy_conditional(t.Y, neg_Y, wvalue & 1); |
| |
| // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are the |
| // same non-infinity point. |
| ecp_nistz256_point_add_affine(&p, &p, &t); |
| } |
| |
| assert(group->field.N.width == P256_LIMBS); |
| OPENSSL_memcpy(r->X.words, p.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_points_mul_public(const EC_GROUP *group, |
| EC_JACOBIAN *r, |
| const EC_SCALAR *g_scalar, |
| const EC_JACOBIAN *p_, |
| const EC_SCALAR *p_scalar) { |
| assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL); |
| |
| alignas(32) P256_POINT p; |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, g_scalar->words, 32); |
| p_str[32] = 0; |
| |
| // First window |
| size_t index = 0; |
| size_t wvalue = calc_first_wvalue(&index, p_str); |
| |
| // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
| // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
| // is infinity iff |wvalue >> 1| is zero. |
| if ((wvalue >> 1) != 0) { |
| OPENSSL_memcpy(p.X, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].X, |
| sizeof(p.X)); |
| OPENSSL_memcpy(p.Y, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].Y, |
| sizeof(p.Y)); |
| OPENSSL_memcpy(p.Z, ONE, sizeof(p.Z)); |
| } else { |
| OPENSSL_memset(p.X, 0, sizeof(p.X)); |
| OPENSSL_memset(p.Y, 0, sizeof(p.Y)); |
| OPENSSL_memset(p.Z, 0, sizeof(p.Z)); |
| } |
| |
| if ((wvalue & 1) == 1) { |
| ecp_nistz256_neg(p.Y, p.Y); |
| } |
| |
| for (int i = 1; i < 37; i++) { |
| wvalue = calc_wvalue(&index, p_str); |
| if ((wvalue >> 1) == 0) { |
| continue; |
| } |
| |
| alignas(32) P256_POINT_AFFINE t; |
| OPENSSL_memcpy(&t, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1], |
| sizeof(t)); |
| if ((wvalue & 1) == 1) { |
| ecp_nistz256_neg(t.Y, t.Y); |
| } |
| |
| // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are |
| // the same non-infinity point, so it is important that we compute the |
| // |g_scalar| term before the |p_scalar| term. |
| ecp_nistz256_point_add_affine(&p, &p, &t); |
| } |
| |
| alignas(32) P256_POINT tmp; |
| ecp_nistz256_windowed_mul(group, &tmp, p_, p_scalar); |
| ecp_nistz256_point_add(&p, &p, &tmp); |
| |
| assert(group->field.N.width == P256_LIMBS); |
| OPENSSL_memcpy(r->X.words, p.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static int ecp_nistz256_get_affine(const EC_GROUP *group, |
| const EC_JACOBIAN *point, EC_FELEM *x, |
| EC_FELEM *y) { |
| if (constant_time_declassify_int( |
| ec_GFp_simple_is_at_infinity(group, point))) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| BN_ULONG z_inv2[P256_LIMBS]; |
| assert(group->field.N.width == P256_LIMBS); |
| ecp_nistz256_mod_inverse_sqr_mont(z_inv2, point->Z.words); |
| |
| if (x != NULL) { |
| ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words); |
| } |
| |
| if (y != NULL) { |
| ecp_nistz256_sqr_mont(z_inv2, z_inv2); // z^-4 |
| ecp_nistz256_mul_mont(y->words, point->Y.words, point->Z.words); // y * z |
| ecp_nistz256_mul_mont(y->words, y->words, z_inv2); // y * z^-3 |
| } |
| |
| return 1; |
| } |
| |
| static void ecp_nistz256_add(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *a_, const EC_JACOBIAN *b_) { |
| P256_POINT a, b; |
| OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| ecp_nistz256_point_add(&a, &a, &b); |
| OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_dbl(const EC_GROUP *group, EC_JACOBIAN *r, |
| const EC_JACOBIAN *a_) { |
| P256_POINT a; |
| OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| ecp_nistz256_point_double(&a, &a); |
| OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_inv0_mod_ord(const EC_GROUP *group, EC_SCALAR *out, |
| const EC_SCALAR *in) { |
| // table[i] stores a power of |in| corresponding to the matching enum value. |
| enum { |
| // The following indices specify the power in binary. |
| i_1 = 0, |
| i_10, |
| i_11, |
| i_101, |
| i_111, |
| i_1010, |
| i_1111, |
| i_10101, |
| i_101010, |
| i_101111, |
| // The following indices specify 2^N-1, or N ones in a row. |
| i_x6, |
| i_x8, |
| i_x16, |
| i_x32 |
| }; |
| BN_ULONG table[15][P256_LIMBS]; |
| |
| // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion |
| // |
| // Even though this code path spares 12 squarings, 4.5%, and 13 |
| // multiplications, 25%, the overall sign operation is not that much faster, |
| // not more that 2%. Most of the performance of this function comes from the |
| // scalar operations. |
| |
| // Pre-calculate powers. |
| OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG)); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); |
| ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); |
| ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); |
| ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); |
| ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); |
| |
| // Compute |in| raised to the order-2. |
| ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64); |
| ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]); |
| static const struct { |
| uint8_t p, i; |
| } kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11}, |
| {5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101}, |
| {3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111}, |
| {2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111}, |
| {4, i_111}, {5, i_111}, {5, i_101}, {3, i_11}, |
| {10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11}, |
| {3, i_1}, {7, i_10101}, {6, i_1111}}; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) { |
| ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p); |
| ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]); |
| } |
| } |
| |
| static int ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP *group, |
| EC_SCALAR *out, |
| const EC_SCALAR *in) { |
| #if defined(OPENSSL_X86_64) |
| if (!CRYPTO_is_AVX_capable()) { |
| // No AVX support; fallback to generic code. |
| return ec_simple_scalar_to_montgomery_inv_vartime(group, out, in); |
| } |
| #endif |
| |
| assert(group->order.N.width == P256_LIMBS); |
| if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.N.d)) { |
| return 0; |
| } |
| |
| // The result should be returned in the Montgomery domain. |
| ec_scalar_to_montgomery(group, out, out); |
| return 1; |
| } |
| |
| static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group, |
| const EC_JACOBIAN *p, |
| const EC_SCALAR *r) { |
| if (ec_GFp_simple_is_at_infinity(group, p)) { |
| return 0; |
| } |
| |
| assert(group->order.N.width == P256_LIMBS); |
| assert(group->field.N.width == P256_LIMBS); |
| |
| // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
| // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
| // not. |
| BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS]; |
| ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words); |
| ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont); |
| ecp_nistz256_from_mont(X, p->X.words); |
| |
| if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| return 1; |
| } |
| |
| // During signing the x coefficient is reduced modulo the group order. |
| // Therefore there is a small possibility, less than 1/2^128, that group_order |
| // < p.x < P. in that case we need not only to compare against |r| but also to |
| // compare against r+group_order. |
| BN_ULONG carry = bn_add_words(r_Z2, r->words, group->order.N.d, P256_LIMBS); |
| if (carry == 0 && bn_less_than_words(r_Z2, group->field.N.d, P256_LIMBS)) { |
| // r + group_order < p, so compare (r + group_order) * Z^2 against X. |
| ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont); |
| if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) { |
| out->point_get_affine_coordinates = ecp_nistz256_get_affine; |
| out->add = ecp_nistz256_add; |
| out->dbl = ecp_nistz256_dbl; |
| out->mul = ecp_nistz256_point_mul; |
| out->mul_base = ecp_nistz256_point_mul_base; |
| out->mul_public = ecp_nistz256_points_mul_public; |
| out->felem_mul = ec_GFp_mont_felem_mul; |
| out->felem_sqr = ec_GFp_mont_felem_sqr; |
| out->felem_to_bytes = ec_GFp_mont_felem_to_bytes; |
| out->felem_from_bytes = ec_GFp_mont_felem_from_bytes; |
| out->felem_reduce = ec_GFp_mont_felem_reduce; |
| // TODO(davidben): This should use the specialized field arithmetic |
| // implementation, rather than the generic one. |
| out->felem_exp = ec_GFp_mont_felem_exp; |
| out->scalar_inv0_montgomery = ecp_nistz256_inv0_mod_ord; |
| out->scalar_to_montgomery_inv_vartime = |
| ecp_nistz256_scalar_to_montgomery_inv_vartime; |
| out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate; |
| } |
| |
| #endif /* !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \ |
| !defined(OPENSSL_SMALL) */ |