| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 2000. */ |
| /* ==================================================================== |
| * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/dsa.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../bytestring/internal.h" |
| |
| |
| #define OPENSSL_DSA_MAX_MODULUS_BITS 10000 |
| |
| // This function is in dsa_asn1.c rather than dsa.c because it is reachable from |
| // |EVP_PKEY| parsers. This makes it easier for the static linker to drop most |
| // of the DSA implementation. |
| int dsa_check_key(const DSA *dsa) { |
| if (!dsa->p || !dsa->q || !dsa->g) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
| return 0; |
| } |
| |
| // Fully checking for invalid DSA groups is expensive, so security and |
| // correctness of the signature scheme depend on how |dsa| was computed. I.e. |
| // we leave "assurance of domain parameter validity" from FIPS 186-4 to the |
| // caller. However, we check bounds on all values to avoid DoS vectors even |
| // when domain parameters are invalid. In particular, signing will infinite |
| // loop if |g| is zero. |
| if (BN_is_negative(dsa->p) || BN_is_negative(dsa->q) || BN_is_zero(dsa->p) || |
| BN_is_zero(dsa->q) || !BN_is_odd(dsa->p) || !BN_is_odd(dsa->q) || |
| // |q| must be a prime divisor of |p - 1|, which implies |q < p|. |
| BN_cmp(dsa->q, dsa->p) >= 0 || |
| // |g| is in the multiplicative group of |p|. |
| BN_is_negative(dsa->g) || BN_is_zero(dsa->g) || |
| BN_cmp(dsa->g, dsa->p) >= 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
| return 0; |
| } |
| |
| // FIPS 186-4 allows only three different sizes for q. |
| unsigned q_bits = BN_num_bits(dsa->q); |
| if (q_bits != 160 && q_bits != 224 && q_bits != 256) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE); |
| return 0; |
| } |
| |
| // Bound |dsa->p| to avoid a DoS vector. Note this limit is much larger than |
| // the one in FIPS 186-4, which only allows L = 1024, 2048, and 3072. |
| if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE); |
| return 0; |
| } |
| |
| if (dsa->pub_key != NULL) { |
| // The public key is also in the multiplicative group of |p|. |
| if (BN_is_negative(dsa->pub_key) || BN_is_zero(dsa->pub_key) || |
| BN_cmp(dsa->pub_key, dsa->p) >= 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
| return 0; |
| } |
| } |
| |
| if (dsa->priv_key != NULL) { |
| // The private key is a non-zero element of the scalar field, determined by |
| // |q|. |
| if (BN_is_negative(dsa->priv_key) || |
| constant_time_declassify_int(BN_is_zero(dsa->priv_key)) || |
| constant_time_declassify_int(BN_cmp(dsa->priv_key, dsa->q) >= 0)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int parse_integer(CBS *cbs, BIGNUM **out) { |
| assert(*out == NULL); |
| *out = BN_new(); |
| if (*out == NULL) { |
| return 0; |
| } |
| return BN_parse_asn1_unsigned(cbs, *out); |
| } |
| |
| static int marshal_integer(CBB *cbb, BIGNUM *bn) { |
| if (bn == NULL) { |
| // A DSA object may be missing some components. |
| OPENSSL_PUT_ERROR(DSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| return BN_marshal_asn1(cbb, bn); |
| } |
| |
| DSA_SIG *DSA_SIG_parse(CBS *cbs) { |
| DSA_SIG *ret = DSA_SIG_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| CBS child; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !parse_integer(&child, &ret->r) || |
| !parse_integer(&child, &ret->s) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); |
| DSA_SIG_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| int DSA_SIG_marshal(CBB *cbb, const DSA_SIG *sig) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !marshal_integer(&child, sig->r) || |
| !marshal_integer(&child, sig->s) || |
| !CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| DSA *DSA_parse_public_key(CBS *cbs) { |
| DSA *ret = DSA_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| CBS child; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !parse_integer(&child, &ret->pub_key) || |
| !parse_integer(&child, &ret->p) || |
| !parse_integer(&child, &ret->q) || |
| !parse_integer(&child, &ret->g) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); |
| goto err; |
| } |
| if (!dsa_check_key(ret)) { |
| goto err; |
| } |
| return ret; |
| |
| err: |
| DSA_free(ret); |
| return NULL; |
| } |
| |
| int DSA_marshal_public_key(CBB *cbb, const DSA *dsa) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !marshal_integer(&child, dsa->pub_key) || |
| !marshal_integer(&child, dsa->p) || |
| !marshal_integer(&child, dsa->q) || |
| !marshal_integer(&child, dsa->g) || |
| !CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| DSA *DSA_parse_parameters(CBS *cbs) { |
| DSA *ret = DSA_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| CBS child; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !parse_integer(&child, &ret->p) || |
| !parse_integer(&child, &ret->q) || |
| !parse_integer(&child, &ret->g) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); |
| goto err; |
| } |
| if (!dsa_check_key(ret)) { |
| goto err; |
| } |
| return ret; |
| |
| err: |
| DSA_free(ret); |
| return NULL; |
| } |
| |
| int DSA_marshal_parameters(CBB *cbb, const DSA *dsa) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !marshal_integer(&child, dsa->p) || |
| !marshal_integer(&child, dsa->q) || |
| !marshal_integer(&child, dsa->g) || |
| !CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| DSA *DSA_parse_private_key(CBS *cbs) { |
| DSA *ret = DSA_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| CBS child; |
| uint64_t version; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_uint64(&child, &version)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| if (version != 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_VERSION); |
| goto err; |
| } |
| |
| if (!parse_integer(&child, &ret->p) || |
| !parse_integer(&child, &ret->q) || |
| !parse_integer(&child, &ret->g) || |
| !parse_integer(&child, &ret->pub_key) || |
| !parse_integer(&child, &ret->priv_key) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); |
| goto err; |
| } |
| if (!dsa_check_key(ret)) { |
| goto err; |
| } |
| |
| return ret; |
| |
| err: |
| DSA_free(ret); |
| return NULL; |
| } |
| |
| int DSA_marshal_private_key(CBB *cbb, const DSA *dsa) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_uint64(&child, 0 /* version */) || |
| !marshal_integer(&child, dsa->p) || |
| !marshal_integer(&child, dsa->q) || |
| !marshal_integer(&child, dsa->g) || |
| !marshal_integer(&child, dsa->pub_key) || |
| !marshal_integer(&child, dsa->priv_key) || |
| !CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| DSA_SIG *d2i_DSA_SIG(DSA_SIG **out_sig, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| DSA_SIG *ret = DSA_SIG_parse(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out_sig != NULL) { |
| DSA_SIG_free(*out_sig); |
| *out_sig = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_DSA_SIG(const DSA_SIG *in, uint8_t **outp) { |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !DSA_SIG_marshal(&cbb, in)) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |
| |
| DSA *d2i_DSAPublicKey(DSA **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| DSA *ret = DSA_parse_public_key(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| DSA_free(*out); |
| *out = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_DSAPublicKey(const DSA *in, uint8_t **outp) { |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !DSA_marshal_public_key(&cbb, in)) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |
| |
| DSA *d2i_DSAPrivateKey(DSA **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| DSA *ret = DSA_parse_private_key(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| DSA_free(*out); |
| *out = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_DSAPrivateKey(const DSA *in, uint8_t **outp) { |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !DSA_marshal_private_key(&cbb, in)) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |
| |
| DSA *d2i_DSAparams(DSA **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| DSA *ret = DSA_parse_parameters(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| DSA_free(*out); |
| *out = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_DSAparams(const DSA *in, uint8_t **outp) { |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !DSA_marshal_parameters(&cbb, in)) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |