blob: a1f7bf577744445e31fc58eb0df6257430809300 [file] [log] [blame]
/*
* Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OPENSSL_HEADER_MODES_INTERNAL_H
#define OPENSSL_HEADER_MODES_INTERNAL_H
#include <openssl/base.h>
#include <openssl/aes.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "../../internal.h"
#include "../aes/internal.h"
#if defined(__cplusplus)
extern "C" {
#endif
inline void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16],
const uint8_t b[16]) {
// TODO(davidben): Ideally we'd leave this to the compiler, which could use
// vector registers, etc. But the compiler doesn't know that |in| and |out|
// cannot partially alias. |restrict| is slightly two strict (we allow exact
// aliasing), but perhaps in-place could be a separate function?
static_assert(16 % sizeof(crypto_word_t) == 0,
"block cannot be evenly divided into words");
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) {
CRYPTO_store_word_le(
out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i));
}
}
// CTR.
// CRYPTO_ctr128_encrypt_ctr32 encrypts (or decrypts, it's the same in CTR mode)
// |len| bytes from |in| to |out| using |block| in counter mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ecount_buf| and |*num|, which must be zeroed before the initial
// call. The counter is a 128-bit, big-endian value in |ivec| and is
// incremented by this function. If the counter overflows, it wraps around.
// |ctr| must be a function that performs CTR mode but only deals with the lower
// 32 bits of the counter.
void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t ecount_buf[16], unsigned *num,
ctr128_f ctr);
// GCM.
//
// This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
// not have a |key| pointer that points to the key as upstream's version does.
// Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
// can be safely copied. Additionally, |gcm_key| is split into a separate
// struct.
// gcm_impl_t specifies an assembly implementation of AES-GCM.
enum gcm_impl_t {
gcm_separate = 0, // No combined AES-GCM, but may have AES-CTR and GHASH.
gcm_x86_aesni,
gcm_x86_vaes_avx10_256,
gcm_x86_vaes_avx10_512,
gcm_arm64_aes,
};
typedef struct { uint64_t hi,lo; } u128;
// gmult_func multiplies |Xi| by the GCM key and writes the result back to
// |Xi|.
typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]);
// ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
// |inp|. The result is written back to |Xi| and the |len| argument must be a
// multiple of 16.
typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *inp, size_t len);
typedef struct gcm128_key_st {
u128 Htable[16];
gmult_func gmult;
ghash_func ghash;
AES_KEY aes;
ctr128_f ctr;
block128_f block;
enum gcm_impl_t impl;
} GCM128_KEY;
// GCM128_CONTEXT contains state for a single GCM operation. The structure
// should be zero-initialized before use.
typedef struct {
// The following 5 names follow names in GCM specification
uint8_t Yi[16];
uint8_t EKi[16];
uint8_t EK0[16];
struct {
uint64_t aad;
uint64_t msg;
} len;
uint8_t Xi[16];
unsigned mres, ares;
} GCM128_CONTEXT;
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
// used.
int crypto_gcm_clmul_enabled(void);
#endif
// CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
// |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
// accelerated) functions for performing operations in the GHASH field.
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
u128 out_table[16], const uint8_t gcm_key[16]);
// CRYPTO_gcm128_init_aes_key initialises |gcm_key| to with AES key |key|.
void CRYPTO_gcm128_init_aes_key(GCM128_KEY *gcm_key, const uint8_t *key,
size_t key_bytes);
// CRYPTO_gcm128_init_ctx initializes |ctx| to encrypt with |key| and |iv|.
void CRYPTO_gcm128_init_ctx(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *iv, size_t iv_len);
// CRYPTO_gcm128_aad adds to the authenticated data for an instance of GCM.
// This must be called before and data is encrypted. |key| must be the same
// value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on success
// and zero otherwise.
int CRYPTO_gcm128_aad(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *aad, size_t aad_len);
// CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. |key| must be
// the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on
// success and zero otherwise.
int CRYPTO_gcm128_encrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len);
// CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. |key| must be
// the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on
// success and zero otherwise.
int CRYPTO_gcm128_decrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len);
// CRYPTO_gcm128_finish calculates the authenticator and compares it against
// |len| bytes of |tag|. |key| must be the same value that was passed to
// |CRYPTO_gcm128_init_ctx|. It returns one on success and zero otherwise.
int CRYPTO_gcm128_finish(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *tag, size_t len);
// CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
// The minimum of |len| and 16 bytes are copied into |tag|. |key| must be the
// same value that was passed to |CRYPTO_gcm128_init_ctx|.
void CRYPTO_gcm128_tag(const GCM128_KEY *key, GCM128_CONTEXT *ctx, uint8_t *tag,
size_t len);
// GCM assembly.
void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if !defined(OPENSSL_NO_ASM)
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define GCM_FUNCREF
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
size_t len);
#if defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_64
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
size_t len);
#define HW_GCM
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void gcm_init_vpclmulqdq_avx10(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_vpclmulqdq_avx10(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_vpclmulqdq_avx10_256(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *in, size_t len);
void gcm_ghash_vpclmulqdq_avx10_512(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *in, size_t len);
void aes_gcm_enc_update_vaes_avx10_256(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void aes_gcm_dec_update_vaes_avx10_256(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void aes_gcm_enc_update_vaes_avx10_512(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void aes_gcm_dec_update_vaes_avx10_512(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
#endif // OPENSSL_X86_64
#if defined(OPENSSL_X86)
#define GHASH_ASM_X86
#endif // OPENSSL_X86
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#define GHASH_ASM_ARM
#define GCM_FUNCREF
inline int gcm_pmull_capable(void) { return CRYPTO_is_ARMv8_PMULL_capable(); }
void gcm_init_v8(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
inline int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }
void gcm_init_neon(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if defined(OPENSSL_AARCH64)
#define HW_GCM
// These functions are defined in aesv8-gcm-armv8.pl.
void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out,
void *Xi, uint8_t *ivec, const AES_KEY *key,
const u128 Htable[16]);
void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out,
void *Xi, uint8_t *ivec, const AES_KEY *key,
const u128 Htable[16]);
#endif
#endif
#endif // OPENSSL_NO_ASM
// CBC.
// cbc128_f is the type of a function that performs CBC-mode encryption.
typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], int enc);
// CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. The input need not be a multiple of
// 128 bits long, but the output will round up to the nearest 128 bit multiple,
// zero padding the input if needed. The IV will be updated on return.
void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
// CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. If |len| is not a multiple of 128
// bits then only that many bytes will be written, but a multiple of 128 bits
// is always read from |in|. The IV will be updated on return.
void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
// OFB.
// CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
// |len| bytes from |in| to |out| using |block| in OFB mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ivec| and |*num|, the latter must be zero before the initial
// call.
void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], unsigned *num,
block128_f block);
// CFB.
// CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB mode. There's no requirement that
// |len| be a multiple of any value and any partial blocks are stored in |ivec|
// and |*num|, the latter must be zero before the initial call.
void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], unsigned *num,
int enc, block128_f block);
// CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
unsigned *num, int enc, block128_f block);
// CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
const AES_KEY *key, uint8_t ivec[16],
unsigned *num, int enc, block128_f block);
size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
// POLYVAL.
//
// POLYVAL is a polynomial authenticator that operates over a field very
// similar to the one that GHASH uses. See
// https://www.rfc-editor.org/rfc/rfc8452.html#section-3.
struct polyval_ctx {
uint8_t S[16];
u128 Htable[16];
gmult_func gmult;
ghash_func ghash;
};
// CRYPTO_POLYVAL_init initialises |ctx| using |key|.
void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
// CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
// blocks from |in|. Only a whole number of blocks can be processed so |in_len|
// must be a multiple of 16.
void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
size_t in_len);
// CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_MODES_INTERNAL_H