| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/base.h> |
| |
| #include <limits.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/rsa.h> |
| #include <openssl/bn.h> |
| #include <openssl/rand.h> |
| #include <openssl/mem.h> |
| #include <openssl/evp.h> |
| |
| #include "../fipsmodule/bn/internal.h" |
| #include "../fipsmodule/rsa/internal.h" |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| static void rand_nonzero(uint8_t *out, size_t len) { |
| RAND_bytes(out, len); |
| |
| for (size_t i = 0; i < len; i++) { |
| while (out[i] == 0) { |
| RAND_bytes(out + i, 1); |
| } |
| } |
| } |
| |
| int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, |
| const uint8_t *from, size_t from_len, |
| const uint8_t *param, size_t param_len, |
| const EVP_MD *md, const EVP_MD *mgf1md) { |
| if (md == NULL) { |
| md = EVP_sha1(); |
| } |
| if (mgf1md == NULL) { |
| mgf1md = md; |
| } |
| |
| size_t mdlen = EVP_MD_size(md); |
| |
| if (to_len < 2 * mdlen + 2) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| size_t emlen = to_len - 1; |
| if (from_len > emlen - 2 * mdlen - 1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } |
| |
| if (emlen < 2 * mdlen + 1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| to[0] = 0; |
| uint8_t *seed = to + 1; |
| uint8_t *db = to + mdlen + 1; |
| |
| uint8_t *dbmask = NULL; |
| int ret = 0; |
| if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { |
| goto out; |
| } |
| OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); |
| db[emlen - from_len - mdlen - 1] = 0x01; |
| OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); |
| if (!RAND_bytes(seed, mdlen)) { |
| goto out; |
| } |
| |
| dbmask = OPENSSL_malloc(emlen - mdlen); |
| if (dbmask == NULL) { |
| goto out; |
| } |
| |
| if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { |
| goto out; |
| } |
| for (size_t i = 0; i < emlen - mdlen; i++) { |
| db[i] ^= dbmask[i]; |
| } |
| |
| uint8_t seedmask[EVP_MAX_MD_SIZE]; |
| if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { |
| goto out; |
| } |
| for (size_t i = 0; i < mdlen; i++) { |
| seed[i] ^= seedmask[i]; |
| } |
| ret = 1; |
| |
| out: |
| OPENSSL_free(dbmask); |
| return ret; |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *from, |
| size_t from_len, const uint8_t *param, |
| size_t param_len, const EVP_MD *md, |
| const EVP_MD *mgf1md) { |
| uint8_t *db = NULL; |
| |
| if (md == NULL) { |
| md = EVP_sha1(); |
| } |
| if (mgf1md == NULL) { |
| mgf1md = md; |
| } |
| |
| size_t mdlen = EVP_MD_size(md); |
| |
| // The encoded message is one byte smaller than the modulus to ensure that it |
| // doesn't end up greater than the modulus. Thus there's an extra "+1" here |
| // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. |
| if (from_len < 1 + 2 * mdlen + 1) { |
| // 'from_len' is the length of the modulus, i.e. does not depend on the |
| // particular ciphertext. |
| goto decoding_err; |
| } |
| |
| size_t dblen = from_len - mdlen - 1; |
| db = OPENSSL_malloc(dblen); |
| if (db == NULL) { |
| goto err; |
| } |
| |
| const uint8_t *maskedseed = from + 1; |
| const uint8_t *maskeddb = from + 1 + mdlen; |
| |
| uint8_t seed[EVP_MAX_MD_SIZE]; |
| if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { |
| goto err; |
| } |
| for (size_t i = 0; i < mdlen; i++) { |
| seed[i] ^= maskedseed[i]; |
| } |
| |
| if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { |
| goto err; |
| } |
| for (size_t i = 0; i < dblen; i++) { |
| db[i] ^= maskeddb[i]; |
| } |
| |
| uint8_t phash[EVP_MAX_MD_SIZE]; |
| if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { |
| goto err; |
| } |
| |
| crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); |
| bad |= ~constant_time_is_zero_w(from[0]); |
| |
| crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; |
| size_t one_index = 0; |
| for (size_t i = mdlen; i < dblen; i++) { |
| crypto_word_t equals1 = constant_time_eq_w(db[i], 1); |
| crypto_word_t equals0 = constant_time_eq_w(db[i], 0); |
| one_index = |
| constant_time_select_w(looking_for_one_byte & equals1, i, one_index); |
| looking_for_one_byte = |
| constant_time_select_w(equals1, 0, looking_for_one_byte); |
| bad |= looking_for_one_byte & ~equals0; |
| } |
| |
| bad |= looking_for_one_byte; |
| |
| // Whether the overall padding was valid or not in OAEP is public. |
| if (constant_time_declassify_w(bad)) { |
| goto decoding_err; |
| } |
| |
| // Once the padding is known to be valid, the output length is also public. |
| static_assert(sizeof(size_t) <= sizeof(crypto_word_t), |
| "size_t does not fit in crypto_word_t"); |
| one_index = constant_time_declassify_w(one_index); |
| |
| one_index++; |
| size_t mlen = dblen - one_index; |
| if (max_out < mlen) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| goto err; |
| } |
| |
| OPENSSL_memcpy(out, db + one_index, mlen); |
| *out_len = mlen; |
| OPENSSL_free(db); |
| return 1; |
| |
| decoding_err: |
| // To avoid chosen ciphertext attacks, the error message should not reveal |
| // which kind of decoding error happened. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); |
| err: |
| OPENSSL_free(db); |
| return 0; |
| } |
| |
| static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, |
| const uint8_t *from, size_t from_len) { |
| // See RFC 8017, section 7.2.1. |
| if (to_len < RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } |
| |
| to[0] = 0; |
| to[1] = 2; |
| |
| size_t padding_len = to_len - 3 - from_len; |
| rand_nonzero(to + 2, padding_len); |
| to[2 + padding_len] = 0; |
| OPENSSL_memcpy(to + to_len - from_len, from, from_len); |
| return 1; |
| } |
| |
| static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *from, |
| size_t from_len) { |
| if (from_len == 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
| return 0; |
| } |
| |
| // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography |
| // Standard", section 7.2.2. |
| if (from_len < RSA_PKCS1_PADDING_SIZE) { |
| // |from| is zero-padded to the size of the RSA modulus, a public value, so |
| // this can be rejected in non-constant time. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); |
| crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); |
| |
| crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; |
| for (size_t i = 2; i < from_len; i++) { |
| crypto_word_t equals0 = constant_time_is_zero_w(from[i]); |
| zero_index = |
| constant_time_select_w(looking_for_index & equals0, i, zero_index); |
| looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); |
| } |
| |
| // The input must begin with 00 02. |
| crypto_word_t valid_index = first_byte_is_zero; |
| valid_index &= second_byte_is_two; |
| |
| // We must have found the end of PS. |
| valid_index &= ~looking_for_index; |
| |
| // PS must be at least 8 bytes long, and it starts two bytes into |from|. |
| valid_index &= constant_time_ge_w(zero_index, 2 + 8); |
| |
| // Skip the zero byte. |
| zero_index++; |
| |
| // NOTE: Although this logic attempts to be constant time, the API contracts |
| // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it |
| // impossible to completely avoid Bleichenbacher's attack. Consumers should |
| // use |RSA_PADDING_NONE| and perform the padding check in constant-time |
| // combined with a swap to a random session key or other mitigation. |
| CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index)); |
| CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index)); |
| |
| if (!valid_index) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
| return 0; |
| } |
| |
| const size_t msg_len = from_len - zero_index; |
| if (msg_len > max_out) { |
| // This shouldn't happen because this function is always called with |
| // |max_out| as the key size and |from_len| is bounded by the key size. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(out, &from[zero_index], msg_len); |
| *out_len = msg_len; |
| return 1; |
| } |
| |
| int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return (int)out_len; |
| } |
| |
| int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return (int)out_len; |
| } |
| |
| int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| if (rsa->n == NULL || rsa->e == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| if (!rsa_check_public_key(rsa)) { |
| return 0; |
| } |
| |
| const unsigned rsa_size = RSA_size(rsa); |
| BIGNUM *f, *result; |
| uint8_t *buf = NULL; |
| BN_CTX *ctx = NULL; |
| int i, ret = 0; |
| |
| if (max_out < rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| goto err; |
| } |
| |
| BN_CTX_start(ctx); |
| f = BN_CTX_get(ctx); |
| result = BN_CTX_get(ctx); |
| buf = OPENSSL_malloc(rsa_size); |
| if (!f || !result || !buf) { |
| goto err; |
| } |
| |
| switch (padding) { |
| case RSA_PKCS1_PADDING: |
| i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len); |
| break; |
| case RSA_PKCS1_OAEP_PADDING: |
| // Use the default parameters: SHA-1 for both hashes and no label. |
| i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0, |
| NULL, NULL); |
| break; |
| case RSA_NO_PADDING: |
| i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
| break; |
| default: |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| goto err; |
| } |
| |
| if (i <= 0) { |
| goto err; |
| } |
| |
| if (BN_bin2bn(buf, rsa_size, f) == NULL) { |
| goto err; |
| } |
| |
| if (BN_ucmp(f, rsa->n) >= 0) { |
| // usually the padding functions would catch this |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| goto err; |
| } |
| |
| if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
| !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
| goto err; |
| } |
| |
| // put in leading 0 bytes if the number is less than the length of the |
| // modulus |
| if (!BN_bn2bin_padded(out, rsa_size, result)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| *out_len = rsa_size; |
| ret = 1; |
| |
| err: |
| if (ctx != NULL) { |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| } |
| OPENSSL_free(buf); |
| |
| return ret; |
| } |
| |
| static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, |
| size_t max_out, const uint8_t *in, size_t in_len, |
| int padding) { |
| const unsigned rsa_size = RSA_size(rsa); |
| uint8_t *buf = NULL; |
| int ret = 0; |
| |
| if (max_out < rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (padding == RSA_NO_PADDING) { |
| buf = out; |
| } else { |
| // Allocate a temporary buffer to hold the padded plaintext. |
| buf = OPENSSL_malloc(rsa_size); |
| if (buf == NULL) { |
| goto err; |
| } |
| } |
| |
| if (in_len != rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
| goto err; |
| } |
| |
| if (!rsa_private_transform(rsa, buf, in, rsa_size)) { |
| goto err; |
| } |
| |
| switch (padding) { |
| case RSA_PKCS1_PADDING: |
| ret = |
| rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size); |
| break; |
| case RSA_PKCS1_OAEP_PADDING: |
| // Use the default parameters: SHA-1 for both hashes and no label. |
| ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf, |
| rsa_size, NULL, 0, NULL, NULL); |
| break; |
| case RSA_NO_PADDING: |
| *out_len = rsa_size; |
| ret = 1; |
| break; |
| default: |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| goto err; |
| } |
| |
| CONSTTIME_DECLASSIFY(&ret, sizeof(ret)); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
| } else { |
| CONSTTIME_DECLASSIFY(out, *out_len); |
| } |
| |
| err: |
| if (padding != RSA_NO_PADDING) { |
| OPENSSL_free(buf); |
| } |
| |
| return ret; |
| } |
| |
| int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| if (rsa->meth->decrypt) { |
| return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return (int)out_len; |
| } |
| |
| int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return (int)out_len; |
| } |