blob: c9e0ae02594325a02f7e60201d7be83afbef7eac [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <algorithm>
#include <string>
#include <utility>
#include <gtest/gtest.h>
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../internal.h"
#include "../test/test_util.h"
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <poll.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#if !defined(OPENSSL_WINDOWS)
using Socket = int;
#define INVALID_SOCKET (-1)
static int closesocket(int sock) { return close(sock); }
static std::string LastSocketError() { return strerror(errno); }
#else
using Socket = SOCKET;
static std::string LastSocketError() {
char buf[DECIMAL_SIZE(int) + 1];
snprintf(buf, sizeof(buf), "%d", WSAGetLastError());
return buf;
}
#endif
class OwnedSocket {
public:
OwnedSocket() = default;
explicit OwnedSocket(Socket sock) : sock_(sock) {}
OwnedSocket(OwnedSocket &&other) { *this = std::move(other); }
~OwnedSocket() { reset(); }
OwnedSocket &operator=(OwnedSocket &&other) {
reset(other.release());
return *this;
}
bool is_valid() const { return sock_ != INVALID_SOCKET; }
Socket get() const { return sock_; }
Socket release() { return std::exchange(sock_, INVALID_SOCKET); }
void reset(Socket sock = INVALID_SOCKET) {
if (is_valid()) {
closesocket(sock_);
}
sock_ = sock;
}
private:
Socket sock_ = INVALID_SOCKET;
};
struct SockaddrStorage {
int family() const { return storage.ss_family; }
sockaddr *addr_mut() { return reinterpret_cast<sockaddr *>(&storage); }
const sockaddr *addr() const {
return reinterpret_cast<const sockaddr *>(&storage);
}
sockaddr_in ToIPv4() const {
if (family() != AF_INET || len != sizeof(sockaddr_in)) {
abort();
}
// These APIs were seemingly designed before C's strict aliasing rule, and
// C++'s strict union handling. Make a copy so the compiler does not read
// this as an aliasing violation.
sockaddr_in ret;
OPENSSL_memcpy(&ret, &storage, sizeof(ret));
return ret;
}
sockaddr_in6 ToIPv6() const {
if (family() != AF_INET6 || len != sizeof(sockaddr_in6)) {
abort();
}
// These APIs were seemingly designed before C's strict aliasing rule, and
// C++'s strict union handling. Make a copy so the compiler does not read
// this as an aliasing violation.
sockaddr_in6 ret;
OPENSSL_memcpy(&ret, &storage, sizeof(ret));
return ret;
}
sockaddr_storage storage = {};
socklen_t len = sizeof(storage);
};
static OwnedSocket Bind(int family, const sockaddr *addr, socklen_t addr_len) {
OwnedSocket sock(socket(family, SOCK_STREAM, 0));
if (!sock.is_valid()) {
return OwnedSocket();
}
if (bind(sock.get(), addr, addr_len) != 0) {
return OwnedSocket();
}
return sock;
}
static OwnedSocket ListenLoopback(int backlog) {
// Try binding to IPv6.
sockaddr_in6 sin6;
OPENSSL_memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
if (inet_pton(AF_INET6, "::1", &sin6.sin6_addr) != 1) {
return OwnedSocket();
}
OwnedSocket sock =
Bind(AF_INET6, reinterpret_cast<const sockaddr *>(&sin6), sizeof(sin6));
if (!sock.is_valid()) {
// Try binding to IPv4.
sockaddr_in sin;
OPENSSL_memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
if (inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr) != 1) {
return OwnedSocket();
}
sock = Bind(AF_INET, reinterpret_cast<const sockaddr *>(&sin), sizeof(sin));
}
if (!sock.is_valid()) {
return OwnedSocket();
}
if (listen(sock.get(), backlog) != 0) {
return OwnedSocket();
}
return sock;
}
static bool SocketSetNonBlocking(Socket sock) {
#if defined(OPENSSL_WINDOWS)
u_long arg = 1;
return ioctlsocket(sock, FIONBIO, &arg) == 0;
#else
int flags = fcntl(sock, F_GETFL, 0);
if (flags < 0) {
return false;
}
flags |= O_NONBLOCK;
return fcntl(sock, F_SETFL, flags) == 0;
#endif
}
enum class WaitType { kRead, kWrite };
static bool WaitForSocket(Socket sock, WaitType wait_type) {
// Use an arbitrary 5 second timeout, so the test doesn't hang indefinitely if
// there's an issue.
static const int kTimeoutSeconds = 5;
#if defined(OPENSSL_WINDOWS)
fd_set read_set, write_set;
FD_ZERO(&read_set);
FD_ZERO(&write_set);
fd_set *wait_set = wait_type == WaitType::kRead ? &read_set : &write_set;
FD_SET(sock, wait_set);
timeval timeout;
timeout.tv_sec = kTimeoutSeconds;
timeout.tv_usec = 0;
if (select(0 /* unused on Windows */, &read_set, &write_set, nullptr,
&timeout) <= 0) {
return false;
}
return FD_ISSET(sock, wait_set);
#else
short events = wait_type == WaitType::kRead ? POLLIN : POLLOUT;
pollfd fd = {/*fd=*/sock, events, /*revents=*/0};
return poll(&fd, 1, kTimeoutSeconds * 1000) == 1 && (fd.revents & events);
#endif
}
TEST(BIOTest, SocketConnect) {
static const char kTestMessage[] = "test";
OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1);
ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError();
SockaddrStorage addr;
ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0)
<< LastSocketError();
char hostname[80];
if (addr.family() == AF_INET6) {
snprintf(hostname, sizeof(hostname), "[::1]:%d",
ntohs(addr.ToIPv6().sin6_port));
} else {
snprintf(hostname, sizeof(hostname), "127.0.0.1:%d",
ntohs(addr.ToIPv4().sin_port));
}
// Connect to it with a connect BIO.
bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname));
ASSERT_TRUE(bio);
// Write a test message to the BIO. This is assumed to be smaller than the
// transport buffer.
ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)))
<< LastSocketError();
// Accept the socket.
OwnedSocket sock(accept(listening_sock.get(), addr.addr_mut(), &addr.len));
ASSERT_TRUE(sock.is_valid()) << LastSocketError();
// Check the same message is read back out.
char buf[sizeof(kTestMessage)];
ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
recv(sock.get(), buf, sizeof(buf), 0))
<< LastSocketError();
EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf)));
}
TEST(BIOTest, SocketNonBlocking) {
OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1);
ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError();
// Connect to |listening_sock|.
SockaddrStorage addr;
ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0)
<< LastSocketError();
OwnedSocket connect_sock(socket(addr.family(), SOCK_STREAM, 0));
ASSERT_TRUE(connect_sock.is_valid()) << LastSocketError();
ASSERT_EQ(connect(connect_sock.get(), addr.addr(), addr.len), 0)
<< LastSocketError();
ASSERT_TRUE(SocketSetNonBlocking(connect_sock.get())) << LastSocketError();
bssl::UniquePtr<BIO> connect_bio(
BIO_new_socket(connect_sock.get(), BIO_NOCLOSE));
ASSERT_TRUE(connect_bio);
// Make a corresponding accepting socket.
OwnedSocket accept_sock(
accept(listening_sock.get(), addr.addr_mut(), &addr.len));
ASSERT_TRUE(accept_sock.is_valid()) << LastSocketError();
ASSERT_TRUE(SocketSetNonBlocking(accept_sock.get())) << LastSocketError();
bssl::UniquePtr<BIO> accept_bio(
BIO_new_socket(accept_sock.get(), BIO_NOCLOSE));
ASSERT_TRUE(accept_bio);
// Exchange data through the socket.
static const char kTestMessage[] = "hello, world";
// Reading from |accept_bio| should not block.
char buf[sizeof(kTestMessage)];
int ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
EXPECT_EQ(ret, -1);
EXPECT_TRUE(BIO_should_read(accept_bio.get())) << LastSocketError();
// Writing to |connect_bio| should eventually overflow the transport buffers
// and also give a retryable error.
int bytes_written = 0;
for (;;) {
ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage));
if (ret <= 0) {
EXPECT_EQ(ret, -1);
EXPECT_TRUE(BIO_should_write(connect_bio.get())) << LastSocketError();
break;
}
bytes_written += ret;
}
EXPECT_GT(bytes_written, 0);
// |accept_bio| should readable. Drain it. Note data is not always available
// from loopback immediately, notably on macOS, so wait for the socket first.
int bytes_read = 0;
while (bytes_read < bytes_written) {
ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
<< LastSocketError();
ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
ASSERT_GT(ret, 0);
bytes_read += ret;
}
// |connect_bio| should become writeable again.
ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kWrite))
<< LastSocketError();
ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage));
EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret);
ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
<< LastSocketError();
ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret);
EXPECT_EQ(Bytes(buf), Bytes(kTestMessage));
// Close one socket. We should get an EOF out the other.
connect_bio.reset();
connect_sock.reset();
ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
<< LastSocketError();
ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
EXPECT_EQ(ret, 0) << LastSocketError();
EXPECT_FALSE(BIO_should_read(accept_bio.get()));
}
TEST(BIOTest, Printf) {
// Test a short output, a very long one, and various sizes around
// 256 (the size of the buffer) to ensure edge cases are correct.
static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023};
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
for (size_t length : kLengths) {
SCOPED_TRACE(length);
std::string in(length, 'a');
int ret = BIO_printf(bio.get(), "test %s", in.c_str());
ASSERT_GE(ret, 0);
EXPECT_EQ(5 + length, static_cast<size_t>(ret));
const uint8_t *contents;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ("test " + in,
std::string(reinterpret_cast<const char *>(contents), len));
ASSERT_TRUE(BIO_reset(bio.get()));
}
}
TEST(BIOTest, ReadASN1) {
static const size_t kLargeASN1PayloadLen = 8000;
struct ASN1Test {
bool should_succeed;
std::vector<uint8_t> input;
// suffix_len is the number of zeros to append to |input|.
size_t suffix_len;
// expected_len, if |should_succeed| is true, is the expected length of the
// ASN.1 element.
size_t expected_len;
size_t max_len;
} kASN1Tests[] = {
{true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100},
{false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100},
{false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100},
{false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100},
// Test a large payload.
{true,
{0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
kLargeASN1PayloadLen,
4 + kLargeASN1PayloadLen,
kLargeASN1PayloadLen * 2},
{false /* max_len too short */,
{0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
kLargeASN1PayloadLen,
4 + kLargeASN1PayloadLen,
3 + kLargeASN1PayloadLen},
// Test an indefinite-length input.
{true,
{0x30, 0x80},
kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 2,
kLargeASN1PayloadLen * 2},
{false /* max_len too short */,
{0x30, 0x80},
kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 2,
2 + kLargeASN1PayloadLen + 1},
};
for (const auto &t : kASN1Tests) {
std::vector<uint8_t> input = t.input;
input.resize(input.size() + t.suffix_len, 0);
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(input.data(), input.size()));
ASSERT_TRUE(bio);
uint8_t *out;
size_t out_len;
int ok = BIO_read_asn1(bio.get(), &out, &out_len, t.max_len);
if (!ok) {
out = nullptr;
}
bssl::UniquePtr<uint8_t> out_storage(out);
ASSERT_EQ(t.should_succeed, (ok == 1));
if (t.should_succeed) {
EXPECT_EQ(Bytes(input.data(), t.expected_len), Bytes(out, out_len));
}
}
}
TEST(BIOTest, MemReadOnly) {
// A memory BIO created from |BIO_new_mem_buf| is a read-only buffer.
static const char kData[] = "abcdefghijklmno";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kData, strlen(kData)));
ASSERT_TRUE(bio);
// Writing to read-only buffers should fail.
EXPECT_EQ(BIO_write(bio.get(), kData, strlen(kData)), -1);
const uint8_t *contents;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(Bytes(contents, len), Bytes(kData));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Read less than the whole buffer.
char buf[6];
int ret = BIO_read(bio.get(), buf, sizeof(buf));
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("abcdef"));
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(Bytes(contents, len), Bytes("ghijklmno"));
EXPECT_EQ(BIO_eof(bio.get()), 0);
ret = BIO_read(bio.get(), buf, sizeof(buf));
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("ghijkl"));
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(Bytes(contents, len), Bytes("mno"));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Read the remainder of the buffer.
ret = BIO_read(bio.get(), buf, sizeof(buf));
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("mno"));
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(Bytes(contents, len), Bytes(""));
EXPECT_EQ(BIO_eof(bio.get()), 1);
// By default, reading from a consumed read-only buffer returns EOF.
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0);
EXPECT_FALSE(BIO_should_read(bio.get()));
// A memory BIO can be configured to return an error instead of EOF. This is
// error is returned as retryable. (This is not especially useful here. It
// makes more sense for a writable BIO.)
EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1);
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
EXPECT_TRUE(BIO_should_read(bio.get()));
// Read exactly the right number of bytes, to test the boundary condition is
// correct.
bio.reset(BIO_new_mem_buf("abc", 3));
ASSERT_TRUE(bio);
ret = BIO_read(bio.get(), buf, 3);
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("abc"));
EXPECT_EQ(BIO_eof(bio.get()), 1);
}
TEST(BIOTest, MemWritable) {
// A memory BIO created from |BIO_new| is writable.
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
auto check_bio_contents = [&](Bytes b) {
const uint8_t *contents;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(Bytes(contents, len), b);
char *contents_c;
long len_l = BIO_get_mem_data(bio.get(), &contents_c);
ASSERT_GE(len_l, 0);
EXPECT_EQ(Bytes(contents_c, len_l), b);
BUF_MEM *buf;
ASSERT_EQ(BIO_get_mem_ptr(bio.get(), &buf), 1);
EXPECT_EQ(Bytes(buf->data, buf->length), b);
};
// It is initially empty.
check_bio_contents(Bytes(""));
EXPECT_EQ(BIO_eof(bio.get()), 1);
// Reading from it should default to returning a retryable error.
char buf[32];
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
EXPECT_TRUE(BIO_should_read(bio.get()));
// This can be configured to return an EOF.
EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), 0), 1);
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0);
EXPECT_FALSE(BIO_should_read(bio.get()));
// Restore the default. A writable memory |BIO| is typically used in this mode
// so additional data can be written when exhausted.
EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1);
// Writes append to the buffer.
ASSERT_EQ(BIO_write(bio.get(), "abcdef", 6), 6);
check_bio_contents(Bytes("abcdef"));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Writes can include embedded NULs.
ASSERT_EQ(BIO_write(bio.get(), "\0ghijk", 6), 6);
check_bio_contents(Bytes("abcdef\0ghijk", 12));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Do a partial read.
int ret = BIO_read(bio.get(), buf, 4);
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("abcd"));
check_bio_contents(Bytes("ef\0ghijk", 8));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Reads and writes may alternate.
ASSERT_EQ(BIO_write(bio.get(), "lmnopq", 6), 6);
check_bio_contents(Bytes("ef\0ghijklmnopq", 14));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// Reads may consume embedded NULs.
ret = BIO_read(bio.get(), buf, 4);
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("ef\0g", 4));
check_bio_contents(Bytes("hijklmnopq"));
EXPECT_EQ(BIO_eof(bio.get()), 0);
// The read buffer exceeds the |BIO|, so we consume everything.
ret = BIO_read(bio.get(), buf, sizeof(buf));
ASSERT_GT(ret, 0);
EXPECT_EQ(Bytes(buf, ret), Bytes("hijklmnopq"));
check_bio_contents(Bytes(""));
EXPECT_EQ(BIO_eof(bio.get()), 1);
// The |BIO| is now empty.
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
EXPECT_TRUE(BIO_should_read(bio.get()));
// Repeat the above, reading exactly the right number of bytes, to test the
// boundary condition is correct.
ASSERT_EQ(BIO_write(bio.get(), "abc", 3), 3);
ret = BIO_read(bio.get(), buf, 3);
EXPECT_EQ(Bytes(buf, ret), Bytes("abc"));
EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
EXPECT_TRUE(BIO_should_read(bio.get()));
EXPECT_EQ(BIO_eof(bio.get()), 1);
}
TEST(BIOTest, Gets) {
const struct {
std::string bio;
int gets_len;
std::string gets_result;
} kGetsTests[] = {
// BIO_gets should stop at the first newline. If the buffer is too small,
// stop there instead. Note the buffer size
// includes a trailing NUL.
{"123456789\n123456789", 5, "1234"},
{"123456789\n123456789", 9, "12345678"},
{"123456789\n123456789", 10, "123456789"},
{"123456789\n123456789", 11, "123456789\n"},
{"123456789\n123456789", 12, "123456789\n"},
{"123456789\n123456789", 256, "123456789\n"},
// If we run out of buffer, read the whole buffer.
{"12345", 5, "1234"},
{"12345", 6, "12345"},
{"12345", 10, "12345"},
// NUL bytes do not terminate gets.
{std::string("abc\0def\nghi", 11), 256, std::string("abc\0def\n", 8)},
// An output size of one means we cannot read any bytes. Only the trailing
// NUL is included.
{"12345", 1, ""},
// Empty line.
{"\nabcdef", 256, "\n"},
// Empty BIO.
{"", 256, ""},
};
for (const auto& t : kGetsTests) {
SCOPED_TRACE(t.bio);
SCOPED_TRACE(t.gets_len);
auto check_bio_gets = [&](BIO *bio) {
std::vector<char> buf(t.gets_len, 'a');
int ret = BIO_gets(bio, buf.data(), t.gets_len);
ASSERT_GE(ret, 0);
// |BIO_gets| should write a NUL terminator, not counted in the return
// value.
EXPECT_EQ(Bytes(buf.data(), ret + 1),
Bytes(t.gets_result.data(), t.gets_result.size() + 1));
// The remaining data should still be in the BIO.
buf.resize(t.bio.size() + 1);
ret = BIO_read(bio, buf.data(), static_cast<int>(buf.size()));
ASSERT_GE(ret, 0);
EXPECT_EQ(Bytes(buf.data(), ret),
Bytes(t.bio.substr(t.gets_result.size())));
};
{
SCOPED_TRACE("memory");
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.bio.data(), t.bio.size()));
ASSERT_TRUE(bio);
check_bio_gets(bio.get());
}
struct FileCloser {
void operator()(FILE *f) const { fclose(f); }
};
using ScopedFILE = std::unique_ptr<FILE, FileCloser>;
ScopedFILE file(tmpfile());
#if defined(OPENSSL_ANDROID)
// On Android, when running from an APK, |tmpfile| does not work. See
// b/36991167#comment8.
if (!file) {
fprintf(stderr, "tmpfile failed: %s (%d). Skipping file-based tests.\n",
strerror(errno), errno);
continue;
}
#else
ASSERT_TRUE(file);
#endif
if (!t.bio.empty()) {
ASSERT_EQ(1u,
fwrite(t.bio.data(), t.bio.size(), /*nitems=*/1, file.get()));
ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET));
}
// TODO(crbug.com/boringssl/585): If the line has an embedded NUL, file
// BIOs do not currently report the answer correctly.
if (t.bio.find('\0') == std::string::npos) {
SCOPED_TRACE("file");
bssl::UniquePtr<BIO> bio(BIO_new_fp(file.get(), BIO_NOCLOSE));
ASSERT_TRUE(bio);
check_bio_gets(bio.get());
}
ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET));
{
SCOPED_TRACE("fd");
#if defined(OPENSSL_WINDOWS)
int fd = _fileno(file.get());
#else
int fd = fileno(file.get());
#endif
bssl::UniquePtr<BIO> bio(BIO_new_fd(fd, BIO_NOCLOSE));
ASSERT_TRUE(bio);
check_bio_gets(bio.get());
}
}
// Negative and zero lengths should not output anything, even a trailing NUL.
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf("12345", -1));
ASSERT_TRUE(bio);
char c = 'a';
EXPECT_EQ(0, BIO_gets(bio.get(), &c, -1));
EXPECT_EQ(0, BIO_gets(bio.get(), &c, 0));
EXPECT_EQ(c, 'a');
}
// Run through the tests twice, swapping |bio1| and |bio2|, for symmetry.
class BIOPairTest : public testing::TestWithParam<bool> {};
TEST_P(BIOPairTest, TestPair) {
BIO *bio1, *bio2;
ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10));
bssl::UniquePtr<BIO> free_bio1(bio1), free_bio2(bio2);
if (GetParam()) {
std::swap(bio1, bio2);
}
// Check initial states.
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
// Data written in one end may be read out the other.
uint8_t buf[20];
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Attempting to write more than 10 bytes will write partially.
EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(-1, BIO_write(bio1, "z", 1));
EXPECT_TRUE(BIO_should_write(bio1));
ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Unsuccessful reads update the read request.
EXPECT_EQ(-1, BIO_read(bio2, buf, 5));
EXPECT_TRUE(BIO_should_read(bio2));
EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1));
// The read request is clamped to the size of the buffer.
EXPECT_EQ(-1, BIO_read(bio2, buf, 20));
EXPECT_TRUE(BIO_should_read(bio2));
EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1));
// Data may be written and read in chunks.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(5, BIO_write(bio1, "67890___", 8));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(3, BIO_read(bio2, buf, 3));
EXPECT_EQ(Bytes("123"), Bytes(buf, 3));
EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Successful reads reset the read request.
EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
// Test writes and reads starting in the middle of the ring buffer and
// wrapping to front.
EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8));
EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(3, BIO_read(bio2, buf, 3));
EXPECT_EQ(Bytes("abc"), Bytes(buf, 3));
EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8));
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10));
EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
// Data may flow from both ends in parallel.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_EQ(5, BIO_write(bio2, "67890", 5));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
EXPECT_EQ(Bytes("67890"), Bytes(buf, 5));
// Closing the write end causes an EOF on the read half, after draining.
EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
EXPECT_TRUE(BIO_shutdown_wr(bio1));
ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf)));
// A closed write end may not be written to.
EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
EXPECT_EQ(-1, BIO_write(bio1, "_____", 5));
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err));
EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err));
// The other end is still functional.
EXPECT_EQ(5, BIO_write(bio2, "12345", 5));
ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
}
INSTANTIATE_TEST_SUITE_P(All, BIOPairTest, testing::Values(false, true));