| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <algorithm> |
| #include <string> |
| #include <utility> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bio.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| #include "../test/test_util.h" |
| |
| #if !defined(OPENSSL_WINDOWS) |
| #include <arpa/inet.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <netinet/in.h> |
| #include <poll.h> |
| #include <string.h> |
| #include <sys/socket.h> |
| #include <unistd.h> |
| #else |
| #include <io.h> |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #endif |
| |
| #if !defined(OPENSSL_WINDOWS) |
| using Socket = int; |
| #define INVALID_SOCKET (-1) |
| static int closesocket(int sock) { return close(sock); } |
| static std::string LastSocketError() { return strerror(errno); } |
| #else |
| using Socket = SOCKET; |
| static std::string LastSocketError() { |
| char buf[DECIMAL_SIZE(int) + 1]; |
| snprintf(buf, sizeof(buf), "%d", WSAGetLastError()); |
| return buf; |
| } |
| #endif |
| |
| class OwnedSocket { |
| public: |
| OwnedSocket() = default; |
| explicit OwnedSocket(Socket sock) : sock_(sock) {} |
| OwnedSocket(OwnedSocket &&other) { *this = std::move(other); } |
| ~OwnedSocket() { reset(); } |
| OwnedSocket &operator=(OwnedSocket &&other) { |
| reset(other.release()); |
| return *this; |
| } |
| |
| bool is_valid() const { return sock_ != INVALID_SOCKET; } |
| Socket get() const { return sock_; } |
| Socket release() { return std::exchange(sock_, INVALID_SOCKET); } |
| |
| void reset(Socket sock = INVALID_SOCKET) { |
| if (is_valid()) { |
| closesocket(sock_); |
| } |
| |
| sock_ = sock; |
| } |
| |
| private: |
| Socket sock_ = INVALID_SOCKET; |
| }; |
| |
| struct SockaddrStorage { |
| int family() const { return storage.ss_family; } |
| |
| sockaddr *addr_mut() { return reinterpret_cast<sockaddr *>(&storage); } |
| const sockaddr *addr() const { |
| return reinterpret_cast<const sockaddr *>(&storage); |
| } |
| |
| sockaddr_in ToIPv4() const { |
| if (family() != AF_INET || len != sizeof(sockaddr_in)) { |
| abort(); |
| } |
| // These APIs were seemingly designed before C's strict aliasing rule, and |
| // C++'s strict union handling. Make a copy so the compiler does not read |
| // this as an aliasing violation. |
| sockaddr_in ret; |
| OPENSSL_memcpy(&ret, &storage, sizeof(ret)); |
| return ret; |
| } |
| |
| sockaddr_in6 ToIPv6() const { |
| if (family() != AF_INET6 || len != sizeof(sockaddr_in6)) { |
| abort(); |
| } |
| // These APIs were seemingly designed before C's strict aliasing rule, and |
| // C++'s strict union handling. Make a copy so the compiler does not read |
| // this as an aliasing violation. |
| sockaddr_in6 ret; |
| OPENSSL_memcpy(&ret, &storage, sizeof(ret)); |
| return ret; |
| } |
| |
| sockaddr_storage storage = {}; |
| socklen_t len = sizeof(storage); |
| }; |
| |
| static OwnedSocket Bind(int family, const sockaddr *addr, socklen_t addr_len) { |
| OwnedSocket sock(socket(family, SOCK_STREAM, 0)); |
| if (!sock.is_valid()) { |
| return OwnedSocket(); |
| } |
| |
| if (bind(sock.get(), addr, addr_len) != 0) { |
| return OwnedSocket(); |
| } |
| |
| return sock; |
| } |
| |
| static OwnedSocket ListenLoopback(int backlog) { |
| // Try binding to IPv6. |
| sockaddr_in6 sin6; |
| OPENSSL_memset(&sin6, 0, sizeof(sin6)); |
| sin6.sin6_family = AF_INET6; |
| if (inet_pton(AF_INET6, "::1", &sin6.sin6_addr) != 1) { |
| return OwnedSocket(); |
| } |
| OwnedSocket sock = |
| Bind(AF_INET6, reinterpret_cast<const sockaddr *>(&sin6), sizeof(sin6)); |
| if (!sock.is_valid()) { |
| // Try binding to IPv4. |
| sockaddr_in sin; |
| OPENSSL_memset(&sin, 0, sizeof(sin)); |
| sin.sin_family = AF_INET; |
| if (inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr) != 1) { |
| return OwnedSocket(); |
| } |
| sock = Bind(AF_INET, reinterpret_cast<const sockaddr *>(&sin), sizeof(sin)); |
| } |
| if (!sock.is_valid()) { |
| return OwnedSocket(); |
| } |
| |
| if (listen(sock.get(), backlog) != 0) { |
| return OwnedSocket(); |
| } |
| |
| return sock; |
| } |
| |
| static bool SocketSetNonBlocking(Socket sock) { |
| #if defined(OPENSSL_WINDOWS) |
| u_long arg = 1; |
| return ioctlsocket(sock, FIONBIO, &arg) == 0; |
| #else |
| int flags = fcntl(sock, F_GETFL, 0); |
| if (flags < 0) { |
| return false; |
| } |
| flags |= O_NONBLOCK; |
| return fcntl(sock, F_SETFL, flags) == 0; |
| #endif |
| } |
| |
| enum class WaitType { kRead, kWrite }; |
| |
| static bool WaitForSocket(Socket sock, WaitType wait_type) { |
| // Use an arbitrary 5 second timeout, so the test doesn't hang indefinitely if |
| // there's an issue. |
| static const int kTimeoutSeconds = 5; |
| #if defined(OPENSSL_WINDOWS) |
| fd_set read_set, write_set; |
| FD_ZERO(&read_set); |
| FD_ZERO(&write_set); |
| fd_set *wait_set = wait_type == WaitType::kRead ? &read_set : &write_set; |
| FD_SET(sock, wait_set); |
| timeval timeout; |
| timeout.tv_sec = kTimeoutSeconds; |
| timeout.tv_usec = 0; |
| if (select(0 /* unused on Windows */, &read_set, &write_set, nullptr, |
| &timeout) <= 0) { |
| return false; |
| } |
| return FD_ISSET(sock, wait_set); |
| #else |
| short events = wait_type == WaitType::kRead ? POLLIN : POLLOUT; |
| pollfd fd = {/*fd=*/sock, events, /*revents=*/0}; |
| return poll(&fd, 1, kTimeoutSeconds * 1000) == 1 && (fd.revents & events); |
| #endif |
| } |
| |
| TEST(BIOTest, SocketConnect) { |
| static const char kTestMessage[] = "test"; |
| OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); |
| ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); |
| |
| SockaddrStorage addr; |
| ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) |
| << LastSocketError(); |
| |
| char hostname[80]; |
| if (addr.family() == AF_INET6) { |
| snprintf(hostname, sizeof(hostname), "[::1]:%d", |
| ntohs(addr.ToIPv6().sin6_port)); |
| } else { |
| snprintf(hostname, sizeof(hostname), "127.0.0.1:%d", |
| ntohs(addr.ToIPv4().sin_port)); |
| } |
| |
| // Connect to it with a connect BIO. |
| bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname)); |
| ASSERT_TRUE(bio); |
| |
| // Write a test message to the BIO. This is assumed to be smaller than the |
| // transport buffer. |
| ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)), |
| BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage))) |
| << LastSocketError(); |
| |
| // Accept the socket. |
| OwnedSocket sock(accept(listening_sock.get(), addr.addr_mut(), &addr.len)); |
| ASSERT_TRUE(sock.is_valid()) << LastSocketError(); |
| |
| // Check the same message is read back out. |
| char buf[sizeof(kTestMessage)]; |
| ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)), |
| recv(sock.get(), buf, sizeof(buf), 0)) |
| << LastSocketError(); |
| EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf))); |
| } |
| |
| TEST(BIOTest, SocketNonBlocking) { |
| OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1); |
| ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError(); |
| |
| // Connect to |listening_sock|. |
| SockaddrStorage addr; |
| ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0) |
| << LastSocketError(); |
| OwnedSocket connect_sock(socket(addr.family(), SOCK_STREAM, 0)); |
| ASSERT_TRUE(connect_sock.is_valid()) << LastSocketError(); |
| ASSERT_EQ(connect(connect_sock.get(), addr.addr(), addr.len), 0) |
| << LastSocketError(); |
| ASSERT_TRUE(SocketSetNonBlocking(connect_sock.get())) << LastSocketError(); |
| bssl::UniquePtr<BIO> connect_bio( |
| BIO_new_socket(connect_sock.get(), BIO_NOCLOSE)); |
| ASSERT_TRUE(connect_bio); |
| |
| // Make a corresponding accepting socket. |
| OwnedSocket accept_sock( |
| accept(listening_sock.get(), addr.addr_mut(), &addr.len)); |
| ASSERT_TRUE(accept_sock.is_valid()) << LastSocketError(); |
| ASSERT_TRUE(SocketSetNonBlocking(accept_sock.get())) << LastSocketError(); |
| bssl::UniquePtr<BIO> accept_bio( |
| BIO_new_socket(accept_sock.get(), BIO_NOCLOSE)); |
| ASSERT_TRUE(accept_bio); |
| |
| // Exchange data through the socket. |
| static const char kTestMessage[] = "hello, world"; |
| |
| // Reading from |accept_bio| should not block. |
| char buf[sizeof(kTestMessage)]; |
| int ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, -1); |
| EXPECT_TRUE(BIO_should_read(accept_bio.get())) << LastSocketError(); |
| |
| // Writing to |connect_bio| should eventually overflow the transport buffers |
| // and also give a retryable error. |
| int bytes_written = 0; |
| for (;;) { |
| ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); |
| if (ret <= 0) { |
| EXPECT_EQ(ret, -1); |
| EXPECT_TRUE(BIO_should_write(connect_bio.get())) << LastSocketError(); |
| break; |
| } |
| bytes_written += ret; |
| } |
| EXPECT_GT(bytes_written, 0); |
| |
| // |accept_bio| should readable. Drain it. Note data is not always available |
| // from loopback immediately, notably on macOS, so wait for the socket first. |
| int bytes_read = 0; |
| while (bytes_read < bytes_written) { |
| ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) |
| << LastSocketError(); |
| ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); |
| ASSERT_GT(ret, 0); |
| bytes_read += ret; |
| } |
| |
| // |connect_bio| should become writeable again. |
| ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kWrite)) |
| << LastSocketError(); |
| ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage)); |
| EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret); |
| |
| ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) |
| << LastSocketError(); |
| ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); |
| EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret); |
| EXPECT_EQ(Bytes(buf), Bytes(kTestMessage)); |
| |
| // Close one socket. We should get an EOF out the other. |
| connect_bio.reset(); |
| connect_sock.reset(); |
| |
| ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead)) |
| << LastSocketError(); |
| ret = BIO_read(accept_bio.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, 0) << LastSocketError(); |
| EXPECT_FALSE(BIO_should_read(accept_bio.get())); |
| } |
| |
| TEST(BIOTest, Printf) { |
| // Test a short output, a very long one, and various sizes around |
| // 256 (the size of the buffer) to ensure edge cases are correct. |
| static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023}; |
| |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| |
| for (size_t length : kLengths) { |
| SCOPED_TRACE(length); |
| |
| std::string in(length, 'a'); |
| |
| int ret = BIO_printf(bio.get(), "test %s", in.c_str()); |
| ASSERT_GE(ret, 0); |
| EXPECT_EQ(5 + length, static_cast<size_t>(ret)); |
| |
| const uint8_t *contents; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ("test " + in, |
| std::string(reinterpret_cast<const char *>(contents), len)); |
| |
| ASSERT_TRUE(BIO_reset(bio.get())); |
| } |
| } |
| |
| TEST(BIOTest, ReadASN1) { |
| static const size_t kLargeASN1PayloadLen = 8000; |
| |
| struct ASN1Test { |
| bool should_succeed; |
| std::vector<uint8_t> input; |
| // suffix_len is the number of zeros to append to |input|. |
| size_t suffix_len; |
| // expected_len, if |should_succeed| is true, is the expected length of the |
| // ASN.1 element. |
| size_t expected_len; |
| size_t max_len; |
| } kASN1Tests[] = { |
| {true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100}, |
| {false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100}, |
| {false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100}, |
| {false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100}, |
| |
| // Test a large payload. |
| {true, |
| {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, |
| kLargeASN1PayloadLen, |
| 4 + kLargeASN1PayloadLen, |
| kLargeASN1PayloadLen * 2}, |
| {false /* max_len too short */, |
| {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, |
| kLargeASN1PayloadLen, |
| 4 + kLargeASN1PayloadLen, |
| 3 + kLargeASN1PayloadLen}, |
| |
| // Test an indefinite-length input. |
| {true, |
| {0x30, 0x80}, |
| kLargeASN1PayloadLen + 2, |
| 2 + kLargeASN1PayloadLen + 2, |
| kLargeASN1PayloadLen * 2}, |
| {false /* max_len too short */, |
| {0x30, 0x80}, |
| kLargeASN1PayloadLen + 2, |
| 2 + kLargeASN1PayloadLen + 2, |
| 2 + kLargeASN1PayloadLen + 1}, |
| }; |
| |
| for (const auto &t : kASN1Tests) { |
| std::vector<uint8_t> input = t.input; |
| input.resize(input.size() + t.suffix_len, 0); |
| |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(input.data(), input.size())); |
| ASSERT_TRUE(bio); |
| |
| uint8_t *out; |
| size_t out_len; |
| int ok = BIO_read_asn1(bio.get(), &out, &out_len, t.max_len); |
| if (!ok) { |
| out = nullptr; |
| } |
| bssl::UniquePtr<uint8_t> out_storage(out); |
| |
| ASSERT_EQ(t.should_succeed, (ok == 1)); |
| if (t.should_succeed) { |
| EXPECT_EQ(Bytes(input.data(), t.expected_len), Bytes(out, out_len)); |
| } |
| } |
| } |
| |
| TEST(BIOTest, MemReadOnly) { |
| // A memory BIO created from |BIO_new_mem_buf| is a read-only buffer. |
| static const char kData[] = "abcdefghijklmno"; |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kData, strlen(kData))); |
| ASSERT_TRUE(bio); |
| |
| // Writing to read-only buffers should fail. |
| EXPECT_EQ(BIO_write(bio.get(), kData, strlen(kData)), -1); |
| |
| const uint8_t *contents; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ(Bytes(contents, len), Bytes(kData)); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Read less than the whole buffer. |
| char buf[6]; |
| int ret = BIO_read(bio.get(), buf, sizeof(buf)); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("abcdef")); |
| |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ(Bytes(contents, len), Bytes("ghijklmno")); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| ret = BIO_read(bio.get(), buf, sizeof(buf)); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("ghijkl")); |
| |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ(Bytes(contents, len), Bytes("mno")); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Read the remainder of the buffer. |
| ret = BIO_read(bio.get(), buf, sizeof(buf)); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("mno")); |
| |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ(Bytes(contents, len), Bytes("")); |
| EXPECT_EQ(BIO_eof(bio.get()), 1); |
| |
| // By default, reading from a consumed read-only buffer returns EOF. |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); |
| EXPECT_FALSE(BIO_should_read(bio.get())); |
| |
| // A memory BIO can be configured to return an error instead of EOF. This is |
| // error is returned as retryable. (This is not especially useful here. It |
| // makes more sense for a writable BIO.) |
| EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); |
| EXPECT_TRUE(BIO_should_read(bio.get())); |
| |
| // Read exactly the right number of bytes, to test the boundary condition is |
| // correct. |
| bio.reset(BIO_new_mem_buf("abc", 3)); |
| ASSERT_TRUE(bio); |
| ret = BIO_read(bio.get(), buf, 3); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); |
| EXPECT_EQ(BIO_eof(bio.get()), 1); |
| } |
| |
| TEST(BIOTest, MemWritable) { |
| // A memory BIO created from |BIO_new| is writable. |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| |
| auto check_bio_contents = [&](Bytes b) { |
| const uint8_t *contents; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); |
| EXPECT_EQ(Bytes(contents, len), b); |
| |
| char *contents_c; |
| long len_l = BIO_get_mem_data(bio.get(), &contents_c); |
| ASSERT_GE(len_l, 0); |
| EXPECT_EQ(Bytes(contents_c, len_l), b); |
| |
| BUF_MEM *buf; |
| ASSERT_EQ(BIO_get_mem_ptr(bio.get(), &buf), 1); |
| EXPECT_EQ(Bytes(buf->data, buf->length), b); |
| }; |
| |
| // It is initially empty. |
| check_bio_contents(Bytes("")); |
| EXPECT_EQ(BIO_eof(bio.get()), 1); |
| |
| // Reading from it should default to returning a retryable error. |
| char buf[32]; |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); |
| EXPECT_TRUE(BIO_should_read(bio.get())); |
| |
| // This can be configured to return an EOF. |
| EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), 0), 1); |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0); |
| EXPECT_FALSE(BIO_should_read(bio.get())); |
| |
| // Restore the default. A writable memory |BIO| is typically used in this mode |
| // so additional data can be written when exhausted. |
| EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1); |
| |
| // Writes append to the buffer. |
| ASSERT_EQ(BIO_write(bio.get(), "abcdef", 6), 6); |
| check_bio_contents(Bytes("abcdef")); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Writes can include embedded NULs. |
| ASSERT_EQ(BIO_write(bio.get(), "\0ghijk", 6), 6); |
| check_bio_contents(Bytes("abcdef\0ghijk", 12)); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Do a partial read. |
| int ret = BIO_read(bio.get(), buf, 4); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("abcd")); |
| check_bio_contents(Bytes("ef\0ghijk", 8)); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Reads and writes may alternate. |
| ASSERT_EQ(BIO_write(bio.get(), "lmnopq", 6), 6); |
| check_bio_contents(Bytes("ef\0ghijklmnopq", 14)); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // Reads may consume embedded NULs. |
| ret = BIO_read(bio.get(), buf, 4); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("ef\0g", 4)); |
| check_bio_contents(Bytes("hijklmnopq")); |
| EXPECT_EQ(BIO_eof(bio.get()), 0); |
| |
| // The read buffer exceeds the |BIO|, so we consume everything. |
| ret = BIO_read(bio.get(), buf, sizeof(buf)); |
| ASSERT_GT(ret, 0); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("hijklmnopq")); |
| check_bio_contents(Bytes("")); |
| EXPECT_EQ(BIO_eof(bio.get()), 1); |
| |
| // The |BIO| is now empty. |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); |
| EXPECT_TRUE(BIO_should_read(bio.get())); |
| |
| // Repeat the above, reading exactly the right number of bytes, to test the |
| // boundary condition is correct. |
| ASSERT_EQ(BIO_write(bio.get(), "abc", 3), 3); |
| ret = BIO_read(bio.get(), buf, 3); |
| EXPECT_EQ(Bytes(buf, ret), Bytes("abc")); |
| EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1); |
| EXPECT_TRUE(BIO_should_read(bio.get())); |
| EXPECT_EQ(BIO_eof(bio.get()), 1); |
| } |
| |
| TEST(BIOTest, Gets) { |
| const struct { |
| std::string bio; |
| int gets_len; |
| std::string gets_result; |
| } kGetsTests[] = { |
| // BIO_gets should stop at the first newline. If the buffer is too small, |
| // stop there instead. Note the buffer size |
| // includes a trailing NUL. |
| {"123456789\n123456789", 5, "1234"}, |
| {"123456789\n123456789", 9, "12345678"}, |
| {"123456789\n123456789", 10, "123456789"}, |
| {"123456789\n123456789", 11, "123456789\n"}, |
| {"123456789\n123456789", 12, "123456789\n"}, |
| {"123456789\n123456789", 256, "123456789\n"}, |
| |
| // If we run out of buffer, read the whole buffer. |
| {"12345", 5, "1234"}, |
| {"12345", 6, "12345"}, |
| {"12345", 10, "12345"}, |
| |
| // NUL bytes do not terminate gets. |
| {std::string("abc\0def\nghi", 11), 256, std::string("abc\0def\n", 8)}, |
| |
| // An output size of one means we cannot read any bytes. Only the trailing |
| // NUL is included. |
| {"12345", 1, ""}, |
| |
| // Empty line. |
| {"\nabcdef", 256, "\n"}, |
| // Empty BIO. |
| {"", 256, ""}, |
| }; |
| for (const auto& t : kGetsTests) { |
| SCOPED_TRACE(t.bio); |
| SCOPED_TRACE(t.gets_len); |
| |
| auto check_bio_gets = [&](BIO *bio) { |
| std::vector<char> buf(t.gets_len, 'a'); |
| int ret = BIO_gets(bio, buf.data(), t.gets_len); |
| ASSERT_GE(ret, 0); |
| // |BIO_gets| should write a NUL terminator, not counted in the return |
| // value. |
| EXPECT_EQ(Bytes(buf.data(), ret + 1), |
| Bytes(t.gets_result.data(), t.gets_result.size() + 1)); |
| |
| // The remaining data should still be in the BIO. |
| buf.resize(t.bio.size() + 1); |
| ret = BIO_read(bio, buf.data(), static_cast<int>(buf.size())); |
| ASSERT_GE(ret, 0); |
| EXPECT_EQ(Bytes(buf.data(), ret), |
| Bytes(t.bio.substr(t.gets_result.size()))); |
| }; |
| |
| { |
| SCOPED_TRACE("memory"); |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.bio.data(), t.bio.size())); |
| ASSERT_TRUE(bio); |
| check_bio_gets(bio.get()); |
| } |
| |
| struct FileCloser { |
| void operator()(FILE *f) const { fclose(f); } |
| }; |
| using ScopedFILE = std::unique_ptr<FILE, FileCloser>; |
| ScopedFILE file(tmpfile()); |
| #if defined(OPENSSL_ANDROID) |
| // On Android, when running from an APK, |tmpfile| does not work. See |
| // b/36991167#comment8. |
| if (!file) { |
| fprintf(stderr, "tmpfile failed: %s (%d). Skipping file-based tests.\n", |
| strerror(errno), errno); |
| continue; |
| } |
| #else |
| ASSERT_TRUE(file); |
| #endif |
| |
| if (!t.bio.empty()) { |
| ASSERT_EQ(1u, |
| fwrite(t.bio.data(), t.bio.size(), /*nitems=*/1, file.get())); |
| ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET)); |
| } |
| |
| // TODO(crbug.com/boringssl/585): If the line has an embedded NUL, file |
| // BIOs do not currently report the answer correctly. |
| if (t.bio.find('\0') == std::string::npos) { |
| SCOPED_TRACE("file"); |
| bssl::UniquePtr<BIO> bio(BIO_new_fp(file.get(), BIO_NOCLOSE)); |
| ASSERT_TRUE(bio); |
| check_bio_gets(bio.get()); |
| } |
| |
| ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET)); |
| |
| { |
| SCOPED_TRACE("fd"); |
| #if defined(OPENSSL_WINDOWS) |
| int fd = _fileno(file.get()); |
| #else |
| int fd = fileno(file.get()); |
| #endif |
| bssl::UniquePtr<BIO> bio(BIO_new_fd(fd, BIO_NOCLOSE)); |
| ASSERT_TRUE(bio); |
| check_bio_gets(bio.get()); |
| } |
| } |
| |
| // Negative and zero lengths should not output anything, even a trailing NUL. |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf("12345", -1)); |
| ASSERT_TRUE(bio); |
| char c = 'a'; |
| EXPECT_EQ(0, BIO_gets(bio.get(), &c, -1)); |
| EXPECT_EQ(0, BIO_gets(bio.get(), &c, 0)); |
| EXPECT_EQ(c, 'a'); |
| } |
| |
| // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry. |
| class BIOPairTest : public testing::TestWithParam<bool> {}; |
| |
| TEST_P(BIOPairTest, TestPair) { |
| BIO *bio1, *bio2; |
| ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10)); |
| bssl::UniquePtr<BIO> free_bio1(bio1), free_bio2(bio2); |
| |
| if (GetParam()) { |
| std::swap(bio1, bio2); |
| } |
| |
| // Check initial states. |
| EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); |
| EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); |
| |
| // Data written in one end may be read out the other. |
| uint8_t buf[20]; |
| EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); |
| EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); |
| ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); |
| EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); |
| |
| // Attempting to write more than 10 bytes will write partially. |
| EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13)); |
| EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); |
| EXPECT_EQ(-1, BIO_write(bio1, "z", 1)); |
| EXPECT_TRUE(BIO_should_write(bio1)); |
| ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10)); |
| EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); |
| |
| // Unsuccessful reads update the read request. |
| EXPECT_EQ(-1, BIO_read(bio2, buf, 5)); |
| EXPECT_TRUE(BIO_should_read(bio2)); |
| EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1)); |
| |
| // The read request is clamped to the size of the buffer. |
| EXPECT_EQ(-1, BIO_read(bio2, buf, 20)); |
| EXPECT_TRUE(BIO_should_read(bio2)); |
| EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1)); |
| |
| // Data may be written and read in chunks. |
| EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); |
| EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); |
| EXPECT_EQ(5, BIO_write(bio1, "67890___", 8)); |
| EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); |
| ASSERT_EQ(3, BIO_read(bio2, buf, 3)); |
| EXPECT_EQ(Bytes("123"), Bytes(buf, 3)); |
| EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1)); |
| ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7)); |
| EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); |
| |
| // Successful reads reset the read request. |
| EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); |
| |
| // Test writes and reads starting in the middle of the ring buffer and |
| // wrapping to front. |
| EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8)); |
| EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1)); |
| ASSERT_EQ(3, BIO_read(bio2, buf, 3)); |
| EXPECT_EQ(Bytes("abc"), Bytes(buf, 3)); |
| EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); |
| EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8)); |
| EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); |
| ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10)); |
| EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); |
| |
| // Data may flow from both ends in parallel. |
| EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); |
| EXPECT_EQ(5, BIO_write(bio2, "67890", 5)); |
| ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); |
| ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("67890"), Bytes(buf, 5)); |
| |
| // Closing the write end causes an EOF on the read half, after draining. |
| EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); |
| EXPECT_TRUE(BIO_shutdown_wr(bio1)); |
| ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); |
| EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf))); |
| |
| // A closed write end may not be written to. |
| EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); |
| EXPECT_EQ(-1, BIO_write(bio1, "_____", 5)); |
| |
| uint32_t err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err)); |
| EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err)); |
| |
| // The other end is still functional. |
| EXPECT_EQ(5, BIO_write(bio2, "12345", 5)); |
| ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(All, BIOPairTest, testing::Values(false, true)); |