| /******************************************************************************************** |
| * SIDH: an efficient supersingular isogeny cryptography library |
| * |
| * Abstract: elliptic curve and isogeny functions |
| *********************************************************************************************/ |
| #include "utils.h" |
| #include "isogeny.h" |
| #include "fpx.h" |
| |
| static void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24) |
| { // Doubling of a Montgomery point in projective coordinates (X:Z). |
| // Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C. |
| // Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2). |
| f2elm_t t0, t1; |
| |
| sike_fp2sub(P->X, P->Z, t0); // t0 = X1-Z1 |
| sike_fp2add(P->X, P->Z, t1); // t1 = X1+Z1 |
| sike_fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2 |
| sike_fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2 |
| sike_fp2mul_mont(C24, t0, Q->Z); // Z2 = C24*(X1-Z1)^2 |
| sike_fp2mul_mont(t1, Q->Z, Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2 |
| sike_fp2sub(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2 |
| sike_fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] |
| sike_fp2add(Q->Z, t0, Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2 |
| sike_fp2mul_mont(Q->Z, t1, Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2] |
| } |
| |
| void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24, size_t e) |
| { // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings. |
| // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C. |
| // Output: projective Montgomery x-coordinates Q <- (2^e)*P. |
| |
| memmove(Q, P, sizeof(*P)); |
| for (size_t i = 0; i < e; i++) { |
| xDBL(Q, Q, A24plus, C24); |
| } |
| } |
| |
| void get_4_isog(const point_proj_t P, f2elm_t A24plus, f2elm_t C24, f2elm_t* coeff) |
| { // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4. |
| // Input: projective point of order four P = (X4:Z4). |
| // Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients |
| // that are used to evaluate the isogeny at a point in eval_4_isog(). |
| |
| sike_fp2sub(P->X, P->Z, coeff[1]); // coeff[1] = X4-Z4 |
| sike_fp2add(P->X, P->Z, coeff[2]); // coeff[2] = X4+Z4 |
| sike_fp2sqr_mont(P->Z, coeff[0]); // coeff[0] = Z4^2 |
| sike_fp2add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 2*Z4^2 |
| sike_fp2sqr_mont(coeff[0], C24); // C24 = 4*Z4^4 |
| sike_fp2add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 4*Z4^2 |
| sike_fp2sqr_mont(P->X, A24plus); // A24plus = X4^2 |
| sike_fp2add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2 |
| sike_fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4 |
| } |
| |
| void eval_4_isog(point_proj_t P, f2elm_t* coeff) |
| { // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined |
| // by the 3 coefficients in coeff (computed in the function get_4_isog()). |
| // Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z). |
| // Output: the projective point P = phi(P) = (X:Z) in the codomain. |
| f2elm_t t0, t1; |
| |
| sike_fp2add(P->X, P->Z, t0); // t0 = X+Z |
| sike_fp2sub(P->X, P->Z, t1); // t1 = X-Z |
| sike_fp2mul_mont(t0, coeff[1], P->X); // X = (X+Z)*coeff[1] |
| sike_fp2mul_mont(t1, coeff[2], P->Z); // Z = (X-Z)*coeff[2] |
| sike_fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z) |
| sike_fp2mul_mont(t0, coeff[0], t0); // t0 = coeff[0]*(X+Z)*(X-Z) |
| sike_fp2add(P->X, P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1] |
| sike_fp2sub(P->X, P->Z, P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1] |
| sike_fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 |
| sike_fp2sqr_mont(P->Z, P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 |
| sike_fp2add(t1, t0, P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 |
| sike_fp2sub(P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z) |
| sike_fp2mul_mont(P->X, t1, P->X); // Xfinal |
| sike_fp2mul_mont(P->Z, t0, P->Z); // Zfinal |
| } |
| |
| |
| void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus) |
| { // Tripling of a Montgomery point in projective coordinates (X:Z). |
| // Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. |
| // Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3). |
| f2elm_t t0, t1, t2, t3, t4, t5, t6; |
| |
| sike_fp2sub(P->X, P->Z, t0); // t0 = X-Z |
| sike_fp2sqr_mont(t0, t2); // t2 = (X-Z)^2 |
| sike_fp2add(P->X, P->Z, t1); // t1 = X+Z |
| sike_fp2sqr_mont(t1, t3); // t3 = (X+Z)^2 |
| sike_fp2add(t0, t1, t4); // t4 = 2*X |
| sike_fp2sub(t1, t0, t0); // t0 = 2*Z |
| sike_fp2sqr_mont(t4, t1); // t1 = 4*X^2 |
| sike_fp2sub(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2 |
| sike_fp2sub(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2 |
| sike_fp2mul_mont(t3, A24plus, t5); // t5 = A24plus*(X+Z)^2 |
| sike_fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^3 |
| sike_fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2 |
| sike_fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^3 |
| sike_fp2sub(t2, t3, t3); // t3 = A24minus*(X-Z)^3 - coeff*(X+Z)^3 |
| sike_fp2sub(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2 |
| sike_fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] |
| sike_fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^3 - coeff*(X+Z)^3 |
| sike_fp2sqr_mont(t2, t2); // t2 = t2^2 |
| sike_fp2mul_mont(t4, t2, Q->X); // X3 = 2*X*t2 |
| sike_fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^3 - A24plus*(X+Z)^3 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] |
| sike_fp2sqr_mont(t1, t1); // t1 = t1^2 |
| sike_fp2mul_mont(t0, t1, Q->Z); // Z3 = 2*Z*t1 |
| } |
| |
| void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus, size_t e) |
| { // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings. |
| // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. |
| // Output: projective Montgomery x-coordinates Q <- (3^e)*P. |
| memmove(Q, P, sizeof(*P)); |
| for (size_t i = 0; i < e; i++) { |
| xTPL(Q, Q, A24minus, A24plus); |
| } |
| } |
| |
| void get_3_isog(const point_proj_t P, f2elm_t A24minus, f2elm_t A24plus, f2elm_t* coeff) |
| { // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3. |
| // Input: projective point of order three P = (X3:Z3). |
| // Output: the 3-isogenous Montgomery curve with projective coefficient A/C. |
| f2elm_t t0, t1, t2, t3, t4; |
| |
| sike_fp2sub(P->X, P->Z, coeff[0]); // coeff0 = X-Z |
| sike_fp2sqr_mont(coeff[0], t0); // t0 = (X-Z)^2 |
| sike_fp2add(P->X, P->Z, coeff[1]); // coeff1 = X+Z |
| sike_fp2sqr_mont(coeff[1], t1); // t1 = (X+Z)^2 |
| sike_fp2add(t0, t1, t2); // t2 = (X+Z)^2 + (X-Z)^2 |
| sike_fp2add(coeff[0], coeff[1], t3); // t3 = 2*X |
| sike_fp2sqr_mont(t3, t3); // t3 = 4*X^2 |
| sike_fp2sub(t3, t2, t3); // t3 = 4*X^2 - (X+Z)^2 - (X-Z)^2 |
| sike_fp2add(t1, t3, t2); // t2 = 4*X^2 - (X-Z)^2 |
| sike_fp2add(t3, t0, t3); // t3 = 4*X^2 - (X+Z)^2 |
| sike_fp2add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2 |
| sike_fp2add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2) |
| sike_fp2add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 |
| sike_fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] |
| sike_fp2add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2 |
| sike_fp2add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2) |
| sike_fp2add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2 |
| sike_fp2mul_mont(t3, t4, t4); // t4 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] |
| sike_fp2sub(t4, A24minus, t0); // t0 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] |
| sike_fp2add(A24minus, t0, A24plus); // A24plus = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 |
| } |
| |
| |
| void eval_3_isog(point_proj_t Q, f2elm_t* coeff) |
| { // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and |
| // a point P with 2 coefficients in coeff (computed in the function get_3_isog()). |
| // Inputs: projective points P = (X3:Z3) and Q = (X:Z). |
| // Output: the projective point Q <- phi(Q) = (X3:Z3). |
| f2elm_t t0, t1, t2; |
| |
| sike_fp2add(Q->X, Q->Z, t0); // t0 = X+Z |
| sike_fp2sub(Q->X, Q->Z, t1); // t1 = X-Z |
| sike_fp2mul_mont(t0, coeff[0], t0); // t0 = coeff0*(X+Z) |
| sike_fp2mul_mont(t1, coeff[1], t1); // t1 = coeff1*(X-Z) |
| sike_fp2add(t0, t1, t2); // t2 = coeff0*(X+Z) + coeff1*(X-Z) |
| sike_fp2sub(t1, t0, t0); // t0 = coeff1*(X-Z) - coeff0*(X+Z) |
| sike_fp2sqr_mont(t2, t2); // t2 = [coeff0*(X+Z) + coeff1*(X-Z)]^2 |
| sike_fp2sqr_mont(t0, t0); // t0 = [coeff1*(X-Z) - coeff0*(X+Z)]^2 |
| sike_fp2mul_mont(Q->X, t2, Q->X); // X3final = X*[coeff0*(X+Z) + coeff1*(X-Z)]^2 |
| sike_fp2mul_mont(Q->Z, t0, Q->Z); // Z3final = Z*[coeff1*(X-Z) - coeff0*(X+Z)]^2 |
| } |
| |
| |
| void inv_3_way(f2elm_t z1, f2elm_t z2, f2elm_t z3) |
| { // 3-way simultaneous inversion |
| // Input: z1,z2,z3 |
| // Output: 1/z1,1/z2,1/z3 (override inputs). |
| f2elm_t t0, t1, t2, t3; |
| |
| sike_fp2mul_mont(z1, z2, t0); // t0 = z1*z2 |
| sike_fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3 |
| sike_fp2inv_mont(t1); // t1 = 1/(z1*z2*z3) |
| sike_fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2) |
| sike_fp2mul_mont(t2, z2, t3); // t3 = 1/z1 |
| sike_fp2mul_mont(t2, z1, z2); // z2 = 1/z2 |
| sike_fp2mul_mont(t0, t1, z3); // z3 = 1/z3 |
| sike_fp2copy(t3, z1); // z1 = 1/z1 |
| } |
| |
| |
| void get_A(const f2elm_t xP, const f2elm_t xQ, const f2elm_t xR, f2elm_t A) |
| { // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A. |
| // Input: the x-coordinates xP, xQ, and xR of the points P, Q and R. |
| // Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x. |
| f2elm_t t0, t1, one = F2ELM_INIT; |
| |
| extern const struct params_t p503; |
| sike_fpcopy(p503.mont_one, one->c0); |
| sike_fp2add(xP, xQ, t1); // t1 = xP+xQ |
| sike_fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ |
| sike_fp2mul_mont(xR, t1, A); // A = xR*t1 |
| sike_fp2add(t0, A, A); // A = A+t0 |
| sike_fp2mul_mont(t0, xR, t0); // t0 = t0*xR |
| sike_fp2sub(A, one, A); // A = A-1 |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2add(t1, xR, t1); // t1 = t1+xR |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2sqr_mont(A, A); // A = A^2 |
| sike_fp2inv_mont(t0); // t0 = 1/t0 |
| sike_fp2mul_mont(A, t0, A); // A = A*t0 |
| sike_fp2sub(A, t1, A); // Afinal = A-t1 |
| } |
| |
| |
| void j_inv(const f2elm_t A, const f2elm_t C, f2elm_t jinv) |
| { // Computes the j-invariant of a Montgomery curve with projective constant. |
| // Input: A,C in GF(p^2). |
| // Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x. |
| f2elm_t t0, t1; |
| |
| sike_fp2sqr_mont(A, jinv); // jinv = A^2 |
| sike_fp2sqr_mont(C, t1); // t1 = C^2 |
| sike_fp2add(t1, t1, t0); // t0 = t1+t1 |
| sike_fp2sub(jinv, t0, t0); // t0 = jinv-t0 |
| sike_fp2sub(t0, t1, t0); // t0 = t0-t1 |
| sike_fp2sub(t0, t1, jinv); // jinv = t0-t1 |
| sike_fp2sqr_mont(t1, t1); // t1 = t1^2 |
| sike_fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1 |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2sqr_mont(t0, t1); // t1 = t0^2 |
| sike_fp2mul_mont(t0, t1, t0); // t0 = t0*t1 |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2add(t0, t0, t0); // t0 = t0+t0 |
| sike_fp2inv_mont(jinv); // jinv = 1/jinv |
| sike_fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv |
| } |
| |
| |
| void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t xPQ, const f2elm_t A24) |
| { // Simultaneous doubling and differential addition. |
| // Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4. |
| // Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP. |
| f2elm_t t0, t1, t2; |
| |
| sike_fp2add(P->X, P->Z, t0); // t0 = XP+ZP |
| sike_fp2sub(P->X, P->Z, t1); // t1 = XP-ZP |
| sike_fp2sqr_mont(t0, P->X); // XP = (XP+ZP)^2 |
| sike_fp2sub(Q->X, Q->Z, t2); // t2 = XQ-ZQ |
| sike_fp2correction(t2); |
| sike_fp2add(Q->X, Q->Z, Q->X); // XQ = XQ+ZQ |
| sike_fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ) |
| sike_fp2sqr_mont(t1, P->Z); // ZP = (XP-ZP)^2 |
| sike_fp2mul_mont(t1, Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ) |
| sike_fp2sub(P->X, P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2 |
| sike_fp2mul_mont(P->X, P->Z, P->X); // XP = (XP+ZP)^2*(XP-ZP)^2 |
| sike_fp2mul_mont(t2, A24, Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2] |
| sike_fp2sub(t0, t1, Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ) |
| sike_fp2add(Q->X, P->Z, P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2 |
| sike_fp2add(t0, t1, Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ) |
| sike_fp2mul_mont(P->Z, t2, P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2] |
| sike_fp2sqr_mont(Q->Z, Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 |
| sike_fp2sqr_mont(Q->X, Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2 |
| sike_fp2mul_mont(Q->Z, xPQ, Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 |
| } |