|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // kPrimes contains the first 1024 primes. | 
|  | static const uint16_t kPrimes[] = { | 
|  | 2,    3,    5,    7,    11,   13,   17,   19,   23,   29,   31,   37, | 
|  | 41,   43,   47,   53,   59,   61,   67,   71,   73,   79,   83,   89, | 
|  | 97,   101,  103,  107,  109,  113,  127,  131,  137,  139,  149,  151, | 
|  | 157,  163,  167,  173,  179,  181,  191,  193,  197,  199,  211,  223, | 
|  | 227,  229,  233,  239,  241,  251,  257,  263,  269,  271,  277,  281, | 
|  | 283,  293,  307,  311,  313,  317,  331,  337,  347,  349,  353,  359, | 
|  | 367,  373,  379,  383,  389,  397,  401,  409,  419,  421,  431,  433, | 
|  | 439,  443,  449,  457,  461,  463,  467,  479,  487,  491,  499,  503, | 
|  | 509,  521,  523,  541,  547,  557,  563,  569,  571,  577,  587,  593, | 
|  | 599,  601,  607,  613,  617,  619,  631,  641,  643,  647,  653,  659, | 
|  | 661,  673,  677,  683,  691,  701,  709,  719,  727,  733,  739,  743, | 
|  | 751,  757,  761,  769,  773,  787,  797,  809,  811,  821,  823,  827, | 
|  | 829,  839,  853,  857,  859,  863,  877,  881,  883,  887,  907,  911, | 
|  | 919,  929,  937,  941,  947,  953,  967,  971,  977,  983,  991,  997, | 
|  | 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, | 
|  | 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, | 
|  | 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, | 
|  | 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, | 
|  | 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, | 
|  | 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, | 
|  | 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, | 
|  | 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, | 
|  | 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, | 
|  | 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, | 
|  | 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, | 
|  | 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, | 
|  | 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, | 
|  | 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, | 
|  | 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, | 
|  | 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, | 
|  | 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, | 
|  | 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, | 
|  | 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, | 
|  | 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, | 
|  | 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, | 
|  | 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, | 
|  | 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, | 
|  | 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, | 
|  | 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, | 
|  | 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, | 
|  | 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, | 
|  | 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, | 
|  | 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, | 
|  | 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, | 
|  | 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, | 
|  | 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, | 
|  | 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, | 
|  | 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, | 
|  | 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, | 
|  | 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, | 
|  | 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, | 
|  | 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, | 
|  | 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, | 
|  | 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, | 
|  | 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, | 
|  | 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, | 
|  | 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, | 
|  | 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, | 
|  | 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, | 
|  | 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, | 
|  | 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, | 
|  | 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, | 
|  | 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, | 
|  | 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, | 
|  | 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, | 
|  | 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, | 
|  | 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, | 
|  | 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, | 
|  | 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, | 
|  | 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, | 
|  | 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, | 
|  | 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, | 
|  | 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, | 
|  | 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, | 
|  | 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, | 
|  | 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, | 
|  | 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, | 
|  | 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, | 
|  | 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, | 
|  | 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, | 
|  | 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, | 
|  | 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, | 
|  | 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, | 
|  | 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, | 
|  | 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, | 
|  | 8117, 8123, 8147, 8161, | 
|  | }; | 
|  |  | 
|  | // BN_prime_checks_for_size returns the number of Miller-Rabin iterations | 
|  | // necessary for generating a 'bits'-bit candidate prime. | 
|  | // | 
|  | // | 
|  | // This table is generated using the algorithm of FIPS PUB 186-4 | 
|  | // Digital Signature Standard (DSS), section F.1, page 117. | 
|  | // (https://doi.org/10.6028/NIST.FIPS.186-4) | 
|  | // The following magma script was used to generate the output: | 
|  | // securitybits:=125; | 
|  | // k:=1024; | 
|  | // for t:=1 to 65 do | 
|  | //   for M:=3 to Floor(2*Sqrt(k-1)-1) do | 
|  | //     S:=0; | 
|  | //     // Sum over m | 
|  | //     for m:=3 to M do | 
|  | //       s:=0; | 
|  | //       // Sum over j | 
|  | //       for j:=2 to m do | 
|  | //         s+:=(RealField(32)!2)^-(j+(k-1)/j); | 
|  | //       end for; | 
|  | //       S+:=2^(m-(m-1)*t)*s; | 
|  | //     end for; | 
|  | //     A:=2^(k-2-M*t); | 
|  | //     B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; | 
|  | //     pkt:=2.00743*Log(2)*k*2^-k*(A+B); | 
|  | //     seclevel:=Floor(-Log(2,pkt)); | 
|  | //     if seclevel ge securitybits then | 
|  | //       printf "k: %5o, security: %o bits  (t: %o, M: %o)\n",k,seclevel,t,M; | 
|  | //       break; | 
|  | //     end if; | 
|  | //   end for; | 
|  | //   if seclevel ge securitybits then break; end if; | 
|  | // end for; | 
|  | // | 
|  | // It can be run online at: http://magma.maths.usyd.edu.au/calc | 
|  | // And will output: | 
|  | // k:  1024, security: 129 bits  (t: 6, M: 23) | 
|  | // k is the number of bits of the prime, securitybits is the level we want to | 
|  | // reach. | 
|  | // prime length | RSA key size | # MR tests | security level | 
|  | // -------------+--------------|------------+--------------- | 
|  | //  (b) >= 6394 |     >= 12788 |          3 |        256 bit | 
|  | //  (b) >= 3747 |     >=  7494 |          3 |        192 bit | 
|  | //  (b) >= 1345 |     >=  2690 |          4 |        128 bit | 
|  | //  (b) >= 1080 |     >=  2160 |          5 |        128 bit | 
|  | //  (b) >=  852 |     >=  1704 |          5 |        112 bit | 
|  | //  (b) >=  476 |     >=   952 |          5 |         80 bit | 
|  | //  (b) >=  400 |     >=   800 |          6 |         80 bit | 
|  | //  (b) >=  347 |     >=   694 |          7 |         80 bit | 
|  | //  (b) >=  308 |     >=   616 |          8 |         80 bit | 
|  | //  (b) >=   55 |     >=   110 |         27 |         64 bit | 
|  | //  (b) >=    6 |     >=    12 |         34 |         64 bit | 
|  | static int BN_prime_checks_for_size(int bits) { | 
|  | if (bits >= 3747) { | 
|  | return 3; | 
|  | } | 
|  | if (bits >= 1345) { | 
|  | return 4; | 
|  | } | 
|  | if (bits >= 476) { | 
|  | return 5; | 
|  | } | 
|  | if (bits >= 400) { | 
|  | return 6; | 
|  | } | 
|  | if (bits >= 347) { | 
|  | return 7; | 
|  | } | 
|  | if (bits >= 308) { | 
|  | return 8; | 
|  | } | 
|  | if (bits >= 55) { | 
|  | return 27; | 
|  | } | 
|  | return 34; | 
|  | } | 
|  |  | 
|  | // num_trial_division_primes returns the number of primes to try with trial | 
|  | // division before using more expensive checks. For larger numbers, the value | 
|  | // of excluding a candidate with trial division is larger. | 
|  | static size_t num_trial_division_primes(const BIGNUM *n) { | 
|  | if (n->width * BN_BITS2 > 1024) { | 
|  | return OPENSSL_ARRAY_SIZE(kPrimes); | 
|  | } | 
|  | return OPENSSL_ARRAY_SIZE(kPrimes) / 2; | 
|  | } | 
|  |  | 
|  | // BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time | 
|  | // primality test. See |BN_primality_test| for details. This number is selected | 
|  | // so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED| | 
|  | // random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values | 
|  | // in range with high probability. | 
|  | // | 
|  | // The following Python script computes the blinding factor needed for the | 
|  | // corresponding iteration count. | 
|  | /* | 
|  | import math | 
|  |  | 
|  | # We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select | 
|  | # witnesses by generating random N-bit numbers. Thus the probability of | 
|  | # selecting one in range is at least sqrt(2)/2. | 
|  | p = math.sqrt(2) / 2 | 
|  |  | 
|  | # Target around 2^-8 probability of the blinding being insufficient given that | 
|  | # key generation is a one-time, noisy operation. | 
|  | epsilon = 2**-8 | 
|  |  | 
|  | def choose(a, b): | 
|  | r = 1 | 
|  | for i in xrange(b): | 
|  | r *= a - i | 
|  | r /= (i + 1) | 
|  | return r | 
|  |  | 
|  | def failure_rate(min_uniform, iterations): | 
|  | """ Returns the probability that, for |iterations| candidate witnesses, fewer | 
|  | than |min_uniform| of them will be uniform. """ | 
|  | prob = 0.0 | 
|  | for i in xrange(min_uniform): | 
|  | prob += (choose(iterations, i) * | 
|  | p**i * (1-p)**(iterations - i)) | 
|  | return prob | 
|  |  | 
|  | for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28): | 
|  | # Find the smallest number of iterations under the target failure rate. | 
|  | iterations = min_uniform | 
|  | while True: | 
|  | prob = failure_rate(min_uniform, iterations) | 
|  | if prob < epsilon: | 
|  | print min_uniform, iterations, prob | 
|  | break | 
|  | iterations += 1 | 
|  |  | 
|  | Output: | 
|  | 3 9 0.00368894873911 | 
|  | 4 11 0.00363319494662 | 
|  | 5 13 0.00336215573898 | 
|  | 6 15 0.00300145783158 | 
|  | 8 19 0.00225214119331 | 
|  | 13 27 0.00385610026955 | 
|  | 19 38 0.0021410539126 | 
|  | 28 52 0.00325405801769 | 
|  |  | 
|  | 16 iterations suffices for 400-bit primes and larger (6 uniform samples needed), | 
|  | which is already well below the minimum acceptable key size for RSA. | 
|  | */ | 
|  | #define BN_PRIME_CHECKS_BLINDED 16 | 
|  |  | 
|  | static int probable_prime(BIGNUM *rnd, int bits); | 
|  | static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, | 
|  | const BIGNUM *rem, BN_CTX *ctx); | 
|  | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, | 
|  | const BIGNUM *rem, BN_CTX *ctx); | 
|  |  | 
|  | BN_GENCB *BN_GENCB_new(void) { | 
|  | return reinterpret_cast<BN_GENCB *>(OPENSSL_zalloc(sizeof(BN_GENCB))); | 
|  | } | 
|  |  | 
|  | void BN_GENCB_free(BN_GENCB *callback) { OPENSSL_free(callback); } | 
|  |  | 
|  | void BN_GENCB_set(BN_GENCB *callback, | 
|  | int (*f)(int event, int n, struct bn_gencb_st *), void *arg) { | 
|  | callback->callback = f; | 
|  | callback->arg = arg; | 
|  | } | 
|  |  | 
|  | int BN_GENCB_call(BN_GENCB *callback, int event, int n) { | 
|  | if (!callback) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return callback->callback(event, n, callback); | 
|  | } | 
|  |  | 
|  | void *BN_GENCB_get_arg(const BN_GENCB *callback) { return callback->arg; } | 
|  |  | 
|  | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | 
|  | const BIGNUM *rem, BN_GENCB *cb) { | 
|  | BIGNUM *t; | 
|  | int i, j, c1 = 0; | 
|  | int checks = BN_prime_checks_for_size(bits); | 
|  |  | 
|  | if (bits < 2) { | 
|  | // There are no prime numbers this small. | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); | 
|  | return 0; | 
|  | } else if (bits == 2 && safe) { | 
|  | // The smallest safe prime (7) is three bits. | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); | 
|  | if (ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | bssl::BN_CTXScope scope(ctx.get()); | 
|  | t = BN_CTX_get(ctx.get()); | 
|  | if (!t) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | loop: | 
|  | // make a random number and set the top and bottom bits | 
|  | if (add == NULL) { | 
|  | if (!probable_prime(ret, bits)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (safe) { | 
|  | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx.get())) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!probable_prime_dh(ret, bits, add, rem, ctx.get())) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) { | 
|  | // aborted | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!safe) { | 
|  | i = BN_is_prime_fasttest_ex(ret, checks, ctx.get(), 0, cb); | 
|  | if (i == -1) { | 
|  | return 0; | 
|  | } else if (i == 0) { | 
|  | goto loop; | 
|  | } | 
|  | } else { | 
|  | // for "safe prime" generation, check that (p-1)/2 is prime. Since a prime | 
|  | // is odd, We just need to divide by 2 | 
|  | if (!BN_rshift1(t, ret)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Interleave |ret| and |t|'s primality tests to avoid paying the full | 
|  | // iteration count on |ret| only to quickly discover |t| is composite. | 
|  | // | 
|  | // TODO(davidben): This doesn't quite work because an iteration count of 1 | 
|  | // still runs the blinding mechanism. | 
|  | for (i = 0; i < checks; i++) { | 
|  | j = BN_is_prime_fasttest_ex(ret, 1, ctx.get(), 0, NULL); | 
|  | if (j == -1) { | 
|  | return 0; | 
|  | } else if (j == 0) { | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | j = BN_is_prime_fasttest_ex(t, 1, ctx.get(), 0, NULL); | 
|  | if (j == -1) { | 
|  | return 0; | 
|  | } else if (j == 0) { | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i)) { | 
|  | return 0; | 
|  | } | 
|  | // We have a safe prime test pass | 
|  | } | 
|  | } | 
|  |  | 
|  | // we have a prime :-) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int bn_trial_division(uint16_t *out, const BIGNUM *bn) { | 
|  | const size_t num_primes = num_trial_division_primes(bn); | 
|  | for (size_t i = 1; i < num_primes; i++) { | 
|  | // During RSA key generation, |bn| may be secret, but only if |bn| was | 
|  | // prime, so it is safe to leak failed trial divisions. | 
|  | if (constant_time_declassify_int(bn_mod_u16_consttime(bn, kPrimes[i]) == | 
|  | 0)) { | 
|  | *out = kPrimes[i]; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bn_odd_number_is_obviously_composite(const BIGNUM *bn) { | 
|  | uint16_t prime; | 
|  | return bn_trial_division(&prime, bn) && !BN_is_word(bn, prime); | 
|  | } | 
|  |  | 
|  | int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin, const BN_MONT_CTX *mont, | 
|  | BN_CTX *ctx) { | 
|  | // This function corresponds to steps 1 through 3 of FIPS 186-4, C.3.1. | 
|  | const BIGNUM *w = &mont->N; | 
|  | // Note we do not call |BN_CTX_start| in this function. We intentionally | 
|  | // allocate values in the containing scope so they outlive this function. | 
|  | miller_rabin->w1 = BN_CTX_get(ctx); | 
|  | miller_rabin->m = BN_CTX_get(ctx); | 
|  | miller_rabin->one_mont = BN_CTX_get(ctx); | 
|  | miller_rabin->w1_mont = BN_CTX_get(ctx); | 
|  | if (miller_rabin->w1 == NULL ||        // | 
|  | miller_rabin->m == NULL ||         // | 
|  | miller_rabin->one_mont == NULL ||  // | 
|  | miller_rabin->w1_mont == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See FIPS 186-4, C.3.1, steps 1 through 3. | 
|  | if (!bn_usub_consttime(miller_rabin->w1, w, BN_value_one())) { | 
|  | return 0; | 
|  | } | 
|  | miller_rabin->a = BN_count_low_zero_bits(miller_rabin->w1); | 
|  | if (!bn_rshift_secret_shift(miller_rabin->m, miller_rabin->w1, | 
|  | miller_rabin->a, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | miller_rabin->w_bits = BN_num_bits(w); | 
|  |  | 
|  | // Precompute some values in Montgomery form. | 
|  | if (!bn_one_to_montgomery(miller_rabin->one_mont, mont, ctx) || | 
|  | // w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R, | 
|  | // with a subtraction. (|one_mont| cannot be zero.) | 
|  | !bn_usub_consttime(miller_rabin->w1_mont, w, miller_rabin->one_mont)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int bn_miller_rabin_iteration(const BN_MILLER_RABIN *miller_rabin, | 
|  | int *out_is_possibly_prime, const BIGNUM *b, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx) { | 
|  | // This function corresponds to steps 4.3 through 4.5 of FIPS 186-4, C.3.1. | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  |  | 
|  | // Step 4.3. We use Montgomery-encoding for better performance and to avoid | 
|  | // timing leaks. | 
|  | const BIGNUM *w = &mont->N; | 
|  | BIGNUM *z = BN_CTX_get(ctx); | 
|  | crypto_word_t is_possibly_prime; | 
|  | if (z == NULL || | 
|  | !BN_mod_exp_mont_consttime(z, b, miller_rabin->m, w, ctx, mont) || | 
|  | !BN_to_montgomery(z, z, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // is_possibly_prime is all ones if we have determined |b| is not a composite | 
|  | // witness for |w|. This is equivalent to going to step 4.7 in the original | 
|  | // algorithm. To avoid timing leaks, we run the algorithm to the end for prime | 
|  | // inputs. | 
|  | is_possibly_prime = 0; | 
|  |  | 
|  | // Step 4.4. If z = 1 or z = w-1, b is not a composite witness and w is still | 
|  | // possibly prime. | 
|  | is_possibly_prime = BN_equal_consttime(z, miller_rabin->one_mont) | | 
|  | BN_equal_consttime(z, miller_rabin->w1_mont); | 
|  | is_possibly_prime = 0 - is_possibly_prime;  // Make it all zeros or all ones. | 
|  |  | 
|  | // Step 4.5. | 
|  | // | 
|  | // To avoid leaking |a|, we run the loop to |w_bits| and mask off all | 
|  | // iterations once |j| = |a|. | 
|  | for (int j = 1; j < miller_rabin->w_bits; j++) { | 
|  | if (constant_time_declassify_w(constant_time_eq_int(j, miller_rabin->a) & | 
|  | ~is_possibly_prime)) { | 
|  | // If the loop is done and we haven't seen z = 1 or z = w-1 yet, the | 
|  | // value is composite and we can break in variable time. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Step 4.5.1. | 
|  | if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Step 4.5.2. If z = w-1 and the loop is not done, this is not a composite | 
|  | // witness. | 
|  | crypto_word_t z_is_w1_mont = BN_equal_consttime(z, miller_rabin->w1_mont); | 
|  | z_is_w1_mont = 0 - z_is_w1_mont;    // Make it all zeros or all ones. | 
|  | is_possibly_prime |= z_is_w1_mont;  // Go to step 4.7 if |z_is_w1_mont|. | 
|  |  | 
|  | // Step 4.5.3. If z = 1 and the loop is not done, the previous value of z | 
|  | // was not -1. There are no non-trivial square roots of 1 modulo a prime, so | 
|  | // w is composite and we may exit in variable time. | 
|  | if (constant_time_declassify_w( | 
|  | BN_equal_consttime(z, miller_rabin->one_mont) & | 
|  | ~is_possibly_prime)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_is_possibly_prime = constant_time_declassify_w(is_possibly_prime) & 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_primality_test(int *out_is_probably_prime, const BIGNUM *w, int checks, | 
|  | BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) { | 
|  | // This function's secrecy and performance requirements come from RSA key | 
|  | // generation. We generate RSA keys by selecting two large, secret primes with | 
|  | // rejection sampling. | 
|  | // | 
|  | // We thus treat |w| as secret if turns out to be a large prime. However, if | 
|  | // |w| is composite, we treat this and |w| itself as public. (Conversely, if | 
|  | // |w| is prime, that it is prime is public. Only the value is secret.) This | 
|  | // is fine for RSA key generation, but note it is important that we use | 
|  | // rejection sampling, with each candidate prime chosen independently. This | 
|  | // would not work for, e.g., an algorithm which looked for primes in | 
|  | // consecutive integers. These assumptions allow us to discard composites | 
|  | // quickly. We additionally treat |w| as public when it is a small prime to | 
|  | // simplify trial decryption and some edge cases. | 
|  | // | 
|  | // One RSA key generation will call this function on exactly two primes and | 
|  | // many more composites. The overall cost is a combination of several factors: | 
|  | // | 
|  | // 1. Checking if |w| is divisible by a small prime is much faster than | 
|  | //    learning it is composite by Miller-Rabin (see below for details on that | 
|  | //    cost). Trial division by p saves 1/p of Miller-Rabin calls, so this is | 
|  | //    worthwhile until p exceeds the ratio of the two costs. | 
|  | // | 
|  | // 2. For a random (i.e. non-adversarial) candidate large prime and candidate | 
|  | //    witness, the probability of false witness is very low. (This is why FIPS | 
|  | //    186-4 only requires a few iterations.) Thus composites not discarded by | 
|  | //    trial decryption, in practice, cost one Miller-Rabin iteration. Only the | 
|  | //    two actual primes cost the full iteration count. | 
|  | // | 
|  | // 3. A Miller-Rabin iteration is a modular exponentiation plus |a| additional | 
|  | //    modular squares, where |a| is the number of factors of two in |w-1|. |a| | 
|  | //    is likely small (the distribution falls exponentially), but it is also | 
|  | //    potentially secret, so we loop up to its log(w) upper bound when |w| is | 
|  | //    prime. When |w| is composite, we break early, so only two calls pay this | 
|  | //    cost. (Note that all calls pay the modular exponentiation which is, | 
|  | //    itself, log(w) modular multiplications and squares.) | 
|  | // | 
|  | // 4. While there are only two prime calls, they multiplicatively pay the full | 
|  | //    costs of (2) and (3). | 
|  | // | 
|  | // 5. After the primes are chosen, RSA keys derive some values from the | 
|  | //    primes, but this cost is negligible in comparison. | 
|  |  | 
|  | *out_is_probably_prime = 0; | 
|  |  | 
|  | if (BN_cmp(w, BN_value_one()) <= 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!BN_is_odd(w)) { | 
|  | // The only even prime is two. | 
|  | *out_is_probably_prime = BN_is_word(w, 2); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Miller-Rabin does not work for three. | 
|  | if (BN_is_word(w, 3)) { | 
|  | *out_is_probably_prime = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (do_trial_division) { | 
|  | // Perform additional trial division checks to discard small primes. | 
|  | uint16_t prime; | 
|  | if (bn_trial_division(&prime, w)) { | 
|  | *out_is_probably_prime = BN_is_word(w, prime); | 
|  | return 1; | 
|  | } | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, -1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (checks == BN_prime_checks_for_generation) { | 
|  | checks = BN_prime_checks_for_size(BN_num_bits(w)); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BN_CTX> new_ctx; | 
|  | if (ctx == nullptr) { | 
|  | new_ctx.reset(BN_CTX_new()); | 
|  | if (new_ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | ctx = new_ctx.get(); | 
|  | } | 
|  |  | 
|  | // See C.3.1 from FIPS 186-4. | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *b = BN_CTX_get(ctx); | 
|  | bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_consttime(w, ctx)); | 
|  | BN_MILLER_RABIN miller_rabin; | 
|  | crypto_word_t uniform_iterations = 0; | 
|  | if (b == nullptr || mont == nullptr || | 
|  | // Steps 1-3. | 
|  | !bn_miller_rabin_init(&miller_rabin, mont.get(), ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The following loop performs in inner iteration of the Miller-Rabin | 
|  | // Primality test (Step 4). | 
|  | // | 
|  | // The algorithm as specified in FIPS 186-4 leaks information on |w|, the RSA | 
|  | // private key. Instead, we run through each iteration unconditionally, | 
|  | // performing modular multiplications, masking off any effects to behave | 
|  | // equivalently to the specified algorithm. | 
|  | // | 
|  | // We also blind the number of values of |b| we try. Steps 4.1–4.2 say to | 
|  | // discard out-of-range values. To avoid leaking information on |w|, we use | 
|  | // |bn_rand_secret_range| which, rather than discarding bad values, adjusts | 
|  | // them to be in range. Though not uniformly selected, these adjusted values | 
|  | // are still usable as Miller-Rabin checks. | 
|  | // | 
|  | // Miller-Rabin is already probabilistic, so we could reach the desired | 
|  | // confidence levels by just suitably increasing the iteration count. However, | 
|  | // to align with FIPS 186-4, we use a more pessimal analysis: we do not count | 
|  | // the non-uniform values towards the iteration count. As a result, this | 
|  | // function is more complex and has more timing risk than necessary. | 
|  | // | 
|  | // We count both total iterations and uniform ones and iterate until we've | 
|  | // reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively. | 
|  | // If the latter is large enough, it will be the limiting factor with high | 
|  | // probability and we won't leak information. | 
|  | // | 
|  | // Note this blinding does not impact most calls when picking primes because | 
|  | // composites are rejected early. Only the two secret primes see extra work. | 
|  |  | 
|  | // Using |constant_time_lt_w| seems to prevent the compiler from optimizing | 
|  | // this into two jumps. | 
|  | for (int i = 1; constant_time_declassify_w( | 
|  | (i <= BN_PRIME_CHECKS_BLINDED) | | 
|  | constant_time_lt_w(uniform_iterations, checks)); | 
|  | i++) { | 
|  | // Step 4.1-4.2 | 
|  | int is_uniform; | 
|  | if (!bn_rand_secret_range(b, &is_uniform, 2, miller_rabin.w1)) { | 
|  | return 0; | 
|  | } | 
|  | uniform_iterations += is_uniform; | 
|  |  | 
|  | // Steps 4.3-4.5 | 
|  | int is_possibly_prime = 0; | 
|  | if (!bn_miller_rabin_iteration(&miller_rabin, &is_possibly_prime, b, | 
|  | mont.get(), ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!is_possibly_prime) { | 
|  | // Step 4.6. We did not see z = w-1 before z = 1, so w must be composite. | 
|  | *out_is_probably_prime = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Step 4.7 | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | declassify_assert(uniform_iterations >= (crypto_word_t)checks); | 
|  | *out_is_probably_prime = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, | 
|  | BN_GENCB *cb) { | 
|  | return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb); | 
|  | } | 
|  |  | 
|  | int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx, | 
|  | int do_trial_division, BN_GENCB *cb) { | 
|  | int is_probably_prime; | 
|  | if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division, | 
|  | cb)) { | 
|  | return -1; | 
|  | } | 
|  | return is_probably_prime; | 
|  | } | 
|  |  | 
|  | int BN_enhanced_miller_rabin_primality_test( | 
|  | enum bn_primality_result_t *out_result, const BIGNUM *w, int checks, | 
|  | BN_CTX *ctx, BN_GENCB *cb) { | 
|  | // Enhanced Miller-Rabin is only valid on odd integers greater than 3. | 
|  | if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (checks == BN_prime_checks_for_generation) { | 
|  | checks = BN_prime_checks_for_size(BN_num_bits(w)); | 
|  | } | 
|  |  | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *w1 = BN_CTX_get(ctx); | 
|  | if (w1 == nullptr || !BN_copy(w1, w) || !BN_sub_word(w1, 1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Write w1 as m*2^a (Steps 1 and 2). | 
|  | int a = 0; | 
|  | while (!BN_is_bit_set(w1, a)) { | 
|  | a++; | 
|  | } | 
|  | BIGNUM *m = BN_CTX_get(ctx); | 
|  | if (m == nullptr || !BN_rshift(m, w1, a)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BIGNUM *b = BN_CTX_get(ctx); | 
|  | BIGNUM *g = BN_CTX_get(ctx); | 
|  | BIGNUM *z = BN_CTX_get(ctx); | 
|  | BIGNUM *x = BN_CTX_get(ctx); | 
|  | BIGNUM *x1 = BN_CTX_get(ctx); | 
|  | if (b == nullptr || g == nullptr || z == nullptr || x == nullptr || | 
|  | x1 == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Montgomery setup for computations mod w | 
|  | bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_for_modulus(w, ctx)); | 
|  | if (mont == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The following loop performs in inner iteration of the Enhanced Miller-Rabin | 
|  | // Primality test (Step 4). | 
|  | for (int i = 1; i <= checks; i++) { | 
|  | // Step 4.1-4.2 | 
|  | if (!BN_rand_range_ex(b, 2, w1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Step 4.3-4.4 | 
|  | if (!BN_gcd(g, b, w, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (BN_cmp_word(g, 1) > 0) { | 
|  | *out_result = bn_composite; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Step 4.5 | 
|  | if (!BN_mod_exp_mont(z, b, m, w, ctx, mont.get())) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Step 4.6 | 
|  | if (BN_is_one(z) || BN_cmp(z, w1) == 0) { | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | // Step 4.7 | 
|  | for (int j = 1; j < a; j++) { | 
|  | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (BN_cmp(z, w1) == 0) { | 
|  | goto loop; | 
|  | } | 
|  | if (BN_is_one(z)) { | 
|  | goto composite; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step 4.8-4.9 | 
|  | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Step 4.10-4.11 | 
|  | if (!BN_is_one(z) && !BN_copy(x, z)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | composite: | 
|  | // Step 4.12-4.14 | 
|  | if (!BN_copy(x1, x) || !BN_sub_word(x1, 1) || !BN_gcd(g, x1, w, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (BN_cmp_word(g, 1) > 0) { | 
|  | *out_result = bn_composite; | 
|  | } else { | 
|  | *out_result = bn_non_prime_power_composite; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | loop: | 
|  | // Step 4.15 | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_result = bn_probably_prime; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int probable_prime(BIGNUM *rnd, int bits) { | 
|  | do { | 
|  | if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) { | 
|  | return 0; | 
|  | } | 
|  | } while (bn_odd_number_is_obviously_composite(rnd)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, | 
|  | const BIGNUM *rem, BN_CTX *ctx) { | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *t1; | 
|  | if ((t1 = BN_CTX_get(ctx)) == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // we need ((rnd-rem) % add) == 0 | 
|  | if (!BN_mod(t1, rnd, add, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (!BN_sub(rnd, rnd, t1)) { | 
|  | return 0; | 
|  | } | 
|  | if (rem == nullptr) { | 
|  | if (!BN_add_word(rnd, 1)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!BN_add(rnd, rnd, rem)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | // we now have a random number 'rand' to test. | 
|  |  | 
|  | size_t num_primes = num_trial_division_primes(rnd); | 
|  | loop: | 
|  | for (size_t i = 1; i < num_primes; i++) { | 
|  | // check that rnd is a prime | 
|  | if (bn_mod_u16_consttime(rnd, kPrimes[i]) <= 1) { | 
|  | if (!BN_add(rnd, rnd, add)) { | 
|  | return 0; | 
|  | } | 
|  | goto loop; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, | 
|  | const BIGNUM *rem, BN_CTX *ctx) { | 
|  | bits--; | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *t1 = BN_CTX_get(ctx); | 
|  | BIGNUM *q = BN_CTX_get(ctx); | 
|  | BIGNUM *qadd = BN_CTX_get(ctx); | 
|  | if (qadd == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_rshift1(qadd, padd)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // we need ((rnd-rem) % add) == 0 | 
|  | if (!BN_mod(t1, q, qadd, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_sub(q, q, t1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rem == NULL) { | 
|  | if (!BN_add_word(q, 1)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!BN_rshift1(t1, rem)) { | 
|  | return 0; | 
|  | } | 
|  | if (!BN_add(q, q, t1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // we now have a random number 'rand' to test. | 
|  | if (!BN_lshift1(p, q)) { | 
|  | return 0; | 
|  | } | 
|  | if (!BN_add_word(p, 1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t num_primes = num_trial_division_primes(p); | 
|  | loop: | 
|  | for (size_t i = 1; i < num_primes; i++) { | 
|  | // check that p and q are prime | 
|  | // check that for p and q | 
|  | // gcd(p-1,primes) == 1 (except for 2) | 
|  | if (bn_mod_u16_consttime(p, kPrimes[i]) == 0 || | 
|  | bn_mod_u16_consttime(q, kPrimes[i]) == 0) { | 
|  | if (!BN_add(p, p, padd)) { | 
|  | return 0; | 
|  | } | 
|  | if (!BN_add(q, q, qadd)) { | 
|  | return 0; | 
|  | } | 
|  | goto loop; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } |