| /* |
| * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2012, Intel Corporation. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) |
| * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
| * (2) University of Haifa, Israel |
| */ |
| |
| #include "rsaz_exp.h" |
| |
| #if defined(RSAZ_ENABLED) |
| |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| // one is 1 in RSAZ's representation. |
| alignas(64) static const BN_ULONG one[40] = { |
| 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| // two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is |
| // 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22). |
| alignas(64) static const BN_ULONG two80[40] = { |
| 0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16], |
| const BN_ULONG base_norm[16], |
| const BN_ULONG exponent[16], |
| const BN_ULONG m_norm[16], const BN_ULONG RR[16], |
| BN_ULONG k0, |
| BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) { |
| OPENSSL_STATIC_ASSERT(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0, |
| "MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH is too small"); |
| assert((uintptr_t)storage % 64 == 0); |
| |
| BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s; |
| // Note |R2| aliases |table_s|. |
| if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) { |
| result = storage; |
| a_inv = storage + 40; |
| m = storage + 40 * 2; // should not cross page |
| } else { |
| m = storage; // should not cross page |
| result = storage + 40; |
| a_inv = storage + 40 * 2; |
| } |
| |
| rsaz_1024_norm2red_avx2(m, m_norm); |
| rsaz_1024_norm2red_avx2(a_inv, base_norm); |
| rsaz_1024_norm2red_avx2(R2, RR); |
| |
| // Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix, |
| // giving R = 2^(36*29) = 2^1044. |
| rsaz_1024_mul_avx2(R2, R2, R2, m, k0); |
| // R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052 |
| rsaz_1024_mul_avx2(R2, R2, two80, m, k0); |
| // R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2 |
| |
| // table[0] = 1 |
| rsaz_1024_mul_avx2(result, R2, one, m, k0); |
| // table[1] = a_inv^1 |
| rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0); |
| |
| rsaz_1024_scatter5_avx2(table_s, result, 0); |
| rsaz_1024_scatter5_avx2(table_s, a_inv, 1); |
| |
| // table[2] = a_inv^2 |
| rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 2); |
| #if 0 |
| // This is almost 2x smaller and less than 1% slower. |
| for (int index = 3; index < 32; index++) { |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, index); |
| } |
| #else |
| // table[4] = a_inv^4 |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 4); |
| // table[8] = a_inv^8 |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 8); |
| // table[16] = a_inv^16 |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 16); |
| // table[17] = a_inv^17 |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 17); |
| |
| // table[3] |
| rsaz_1024_gather5_avx2(result, table_s, 2); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 3); |
| // table[6] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 6); |
| // table[12] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 12); |
| // table[24] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 24); |
| // table[25] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 25); |
| |
| // table[5] |
| rsaz_1024_gather5_avx2(result, table_s, 4); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 5); |
| // table[10] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 10); |
| // table[20] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 20); |
| // table[21] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 21); |
| |
| // table[7] |
| rsaz_1024_gather5_avx2(result, table_s, 6); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 7); |
| // table[14] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 14); |
| // table[28] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 28); |
| // table[29] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 29); |
| |
| // table[9] |
| rsaz_1024_gather5_avx2(result, table_s, 8); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 9); |
| // table[18] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 18); |
| // table[19] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 19); |
| |
| // table[11] |
| rsaz_1024_gather5_avx2(result, table_s, 10); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 11); |
| // table[22] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 22); |
| // table[23] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 23); |
| |
| // table[13] |
| rsaz_1024_gather5_avx2(result, table_s, 12); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 13); |
| // table[26] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 26); |
| // table[27] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 27); |
| |
| // table[15] |
| rsaz_1024_gather5_avx2(result, table_s, 14); |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 15); |
| // table[30] |
| rsaz_1024_sqr_avx2(result, result, m, k0, 1); |
| rsaz_1024_scatter5_avx2(table_s, result, 30); |
| // table[31] |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| rsaz_1024_scatter5_avx2(table_s, result, 31); |
| #endif |
| |
| const uint8_t *p_str = (const uint8_t *)exponent; |
| |
| // load first window |
| int wvalue = p_str[127] >> 3; |
| rsaz_1024_gather5_avx2(result, table_s, wvalue); |
| |
| int index = 1014; |
| while (index > -1) { // Loop for the remaining 127 windows. |
| |
| rsaz_1024_sqr_avx2(result, result, m, k0, 5); |
| |
| uint16_t wvalue_16; |
| memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16)); |
| wvalue = wvalue_16; |
| wvalue = (wvalue >> (index % 8)) & 31; |
| index -= 5; |
| |
| rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| } |
| |
| // Square four times. |
| rsaz_1024_sqr_avx2(result, result, m, k0, 4); |
| |
| wvalue = p_str[0] & 15; |
| |
| rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|. |
| rsaz_1024_mul_avx2(result, result, a_inv, m, k0); |
| |
| // Convert from Montgomery. |
| rsaz_1024_mul_avx2(result, result, one, m, k0); |
| |
| rsaz_1024_red2norm_avx2(result_norm, result); |
| |
| OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG)); |
| } |
| |
| #endif // RSAZ_ENABLED |