blob: 9333a9dbc85d57dcfc446bebb4ea141715284e42 [file] [log] [blame]
// Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
namespace {
inline uint64_t ToMicros(const OPENSSL_timeval& now) {
uint64_t us = now.tv_sec;
us *= 1000000;
us += now.tv_usec;
return us;
}
} // namespace
DTLS1_STATE::DTLS1_STATE()
: has_change_cipher_spec(false),
outgoing_messages_complete(false),
flight_has_reply(false),
handshake_write_overflow(false),
handshake_read_overflow(false),
sending_flight(false),
sending_ack(false),
pending_flush(false),
queued_key_update(QueuedKeyUpdate::kNone) {}
DTLS1_STATE::~DTLS1_STATE() {}
bool DTLS1_STATE::Init() {
// Set up the initial epochs.
read_epoch.aead = SSLAEADContext::CreateNullCipher();
write_epoch.aead = SSLAEADContext::CreateNullCipher();
if (read_epoch.aead == nullptr || write_epoch.aead == nullptr) {
return false;
}
return true;
}
bool dtls1_new(SSL *ssl) {
if (!tls_new(ssl)) {
return false;
}
UniquePtr<DTLS1_STATE> d1 = MakeUnique<DTLS1_STATE>();
if (!d1 || !d1->Init()) {
tls_free(ssl);
return false;
}
ssl->d1 = d1.release();
return true;
}
void dtls1_free(SSL *ssl) {
tls_free(ssl);
if (ssl == nullptr) {
return;
}
Delete(ssl->d1);
ssl->d1 = nullptr;
}
void DTLSTimer::StartMicroseconds(OPENSSL_timeval now, uint64_t microseconds) {
start_time_ = ToMicros(now);
duration_ = microseconds;
}
void DTLSTimer::Stop() { duration_ = kNever; }
bool DTLSTimer::IsExpired(OPENSSL_timeval now) const {
return MicrosecondsRemaining(now) == 0;
}
bool DTLSTimer::IsSet() const {
return duration_ != kNever;
}
uint64_t DTLSTimer::MicrosecondsRemaining(OPENSSL_timeval now) const {
if (!IsSet()) {
return kNever;
}
uint64_t now_us = ToMicros(now);
uint64_t expire_us = start_time_ + duration_;
if (now_us > expire_us) {
return 0;
}
uint64_t remain_us = expire_us - now_us;
// If remaining time is less than 15 ms, return 0 to prevent issues because of
// small divergences with socket timeouts.
if (remain_us < 15000) {
return 0;
}
return remain_us;
}
void dtls1_stop_timer(SSL *ssl) {
ssl->d1->num_timeouts = 0;
ssl->d1->retransmit_timer.Stop();
ssl->d1->timeout_duration_ms = ssl->initial_timeout_duration_ms;
}
BSSL_NAMESPACE_END
using namespace bssl;
void DTLSv1_set_initial_timeout_duration(SSL *ssl, uint32_t duration_ms) {
if (!SSL_is_dtls(ssl)) {
return;
}
// Modify the initial value for next flight.
ssl->initial_timeout_duration_ms = duration_ms;
// Retransmit timer increase by factor of 2 at each timeout.
uint32_t timeout_duration_ms = duration_ms << ssl->d1->num_timeouts;
if (timeout_duration_ms < duration_ms) {
timeout_duration_ms = uint32_t{60000};
} else {
timeout_duration_ms = std::min(timeout_duration_ms, uint32_t{60000});
}
// Modify the value used for next timeout.
ssl->d1->timeout_duration_ms = timeout_duration_ms;
// Modify retransmit timer.
if (ssl->d1->retransmit_timer.IsSet()) {
ssl->d1->retransmit_timer.UpdateDuration(uint64_t{timeout_duration_ms} *
1000);
}
// Modify ack timer.
if (ssl->d1->ack_timer.IsSet()) {
ssl->d1->ack_timer.UpdateDuration(uint64_t{timeout_duration_ms} * 1000 / 4);
}
}
int DTLSv1_get_timeout(const SSL *ssl, struct timeval *out) {
if (!SSL_is_dtls(ssl)) {
return 0;
}
OPENSSL_timeval now = ssl_ctx_get_current_time(ssl->ctx.get());
uint64_t remaining_usec =
ssl->d1->retransmit_timer.MicrosecondsRemaining(now);
remaining_usec =
std::min(remaining_usec, ssl->d1->ack_timer.MicrosecondsRemaining(now));
if (remaining_usec == DTLSTimer::kNever) {
return 0; // No timeout is set.
}
uint64_t remaining_sec = remaining_usec / 1000000;
remaining_usec %= 1000000;
// |timeval| uses |time_t|, which may be 32-bit.
const auto kTvSecMax = std::numeric_limits<decltype(out->tv_sec)>::max();
if (remaining_sec > static_cast<uint64_t>(kTvSecMax)) {
out->tv_sec = kTvSecMax; // Saturate the output.
out->tv_usec = 999999;
} else {
out->tv_sec = static_cast<decltype(out->tv_sec)>(remaining_sec);
}
out->tv_usec = remaining_usec;
return 1;
}
int DTLSv1_handle_timeout(SSL *ssl) {
ssl_reset_error_state(ssl);
if (!SSL_is_dtls(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return -1;
}
if (!ssl->d1->ack_timer.IsSet() && !ssl->d1->retransmit_timer.IsSet()) {
// No timers are running. Don't bother querying the clock.
return 0;
}
OPENSSL_timeval now = ssl_ctx_get_current_time(ssl->ctx.get());
bool any_timer_expired = false;
if (ssl->d1->ack_timer.IsExpired(now)) {
any_timer_expired = true;
ssl->d1->sending_ack = true;
ssl->d1->ack_timer.Stop();
}
if (ssl->d1->retransmit_timer.IsExpired(now)) {
any_timer_expired = true;
ssl->d1->sending_flight = true;
ssl->d1->retransmit_timer.Stop();
ssl->d1->num_timeouts++;
// Reduce MTU after 2 unsuccessful retransmissions.
if (ssl->d1->num_timeouts > DTLS1_MTU_TIMEOUTS &&
!(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_GET_FALLBACK_MTU, 0,
nullptr);
if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
ssl->d1->mtu = (unsigned)mtu;
}
}
}
if (!any_timer_expired) {
return 0;
}
return dtls1_flush(ssl);
}