| #! /usr/bin/env perl |
| # Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # April 2010 |
| # |
| # The module implements "4-bit" GCM GHASH function and underlying |
| # single multiplication operation in GF(2^128). "4-bit" means that it |
| # uses 256 bytes per-key table [+32 bytes shared table]. There is no |
| # experimental performance data available yet. The only approximation |
| # that can be made at this point is based on code size. Inner loop is |
| # 32 instructions long and on single-issue core should execute in <40 |
| # cycles. Having verified that gcc 3.4 didn't unroll corresponding |
| # loop, this assembler loop body was found to be ~3x smaller than |
| # compiler-generated one... |
| # |
| # July 2010 |
| # |
| # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on |
| # Cortex A8 core and ~25 cycles per processed byte (which was observed |
| # to be ~3 times faster than gcc-generated code:-) |
| # |
| # February 2011 |
| # |
| # Profiler-assisted and platform-specific optimization resulted in 7% |
| # improvement on Cortex A8 core and ~23.5 cycles per byte. |
| # |
| # March 2011 |
| # |
| # Add NEON implementation featuring polynomial multiplication, i.e. no |
| # lookup tables involved. On Cortex A8 it was measured to process one |
| # byte in 15 cycles or 55% faster than integer-only code. |
| # |
| # April 2014 |
| # |
| # Switch to multiplication algorithm suggested in paper referred |
| # below and combine it with reduction algorithm from x86 module. |
| # Performance improvement over previous version varies from 65% on |
| # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 |
| # processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63, |
| # Snapdragon S4 - in 9.33. |
| # |
| # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software |
| # Polynomial Multiplication on ARM Processors using the NEON Engine. |
| # |
| # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf |
| |
| # ==================================================================== |
| # Note about "528B" variant. In ARM case it makes lesser sense to |
| # implement it for following reasons: |
| # |
| # - performance improvement won't be anywhere near 50%, because 128- |
| # bit shift operation is neatly fused with 128-bit xor here, and |
| # "538B" variant would eliminate only 4-5 instructions out of 32 |
| # in the inner loop (meaning that estimated improvement is ~15%); |
| # - ARM-based systems are often embedded ones and extra memory |
| # consumption might be unappreciated (for so little improvement); |
| # |
| # Byte order [in]dependence. ========================================= |
| # |
| # Caller is expected to maintain specific *dword* order in Htable, |
| # namely with *least* significant dword of 128-bit value at *lower* |
| # address. This differs completely from C code and has everything to |
| # do with ldm instruction and order in which dwords are "consumed" by |
| # algorithm. *Byte* order within these dwords in turn is whatever |
| # *native* byte order on current platform. See gcm128.c for working |
| # example... |
| |
| # This file was patched in BoringSSL to remove the variable-time 4-bit |
| # implementation. |
| |
| $flavour = shift; |
| if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } |
| else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } |
| |
| if ($flavour && $flavour ne "void") { |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or |
| die "can't locate arm-xlate.pl"; |
| |
| open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; |
| *STDOUT=*OUT; |
| } else { |
| open OUT,">$output"; |
| *STDOUT=*OUT; |
| } |
| |
| $Xi="r0"; # argument block |
| $Htbl="r1"; |
| $inp="r2"; |
| $len="r3"; |
| |
| $code=<<___; |
| #include <openssl/arm_arch.h> |
| |
| @ Silence ARMv8 deprecated IT instruction warnings. This file is used by both |
| @ ARMv7 and ARMv8 processors and does not use ARMv8 instructions. (ARMv8 PMULL |
| @ instructions are in aesv8-armx.pl.) |
| .arch armv7-a |
| |
| .text |
| #if defined(__thumb2__) || defined(__clang__) |
| .syntax unified |
| #define ldrplb ldrbpl |
| #define ldrneb ldrbne |
| #endif |
| #if defined(__thumb2__) |
| .thumb |
| #else |
| .code 32 |
| #endif |
| ___ |
| { |
| my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); |
| my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); |
| my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); |
| |
| sub clmul64x64 { |
| my ($r,$a,$b)=@_; |
| $code.=<<___; |
| vext.8 $t0#lo, $a, $a, #1 @ A1 |
| vmull.p8 $t0, $t0#lo, $b @ F = A1*B |
| vext.8 $r#lo, $b, $b, #1 @ B1 |
| vmull.p8 $r, $a, $r#lo @ E = A*B1 |
| vext.8 $t1#lo, $a, $a, #2 @ A2 |
| vmull.p8 $t1, $t1#lo, $b @ H = A2*B |
| vext.8 $t3#lo, $b, $b, #2 @ B2 |
| vmull.p8 $t3, $a, $t3#lo @ G = A*B2 |
| vext.8 $t2#lo, $a, $a, #3 @ A3 |
| veor $t0, $t0, $r @ L = E + F |
| vmull.p8 $t2, $t2#lo, $b @ J = A3*B |
| vext.8 $r#lo, $b, $b, #3 @ B3 |
| veor $t1, $t1, $t3 @ M = G + H |
| vmull.p8 $r, $a, $r#lo @ I = A*B3 |
| veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 |
| vand $t0#hi, $t0#hi, $k48 |
| vext.8 $t3#lo, $b, $b, #4 @ B4 |
| veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 |
| vand $t1#hi, $t1#hi, $k32 |
| vmull.p8 $t3, $a, $t3#lo @ K = A*B4 |
| veor $t2, $t2, $r @ N = I + J |
| veor $t0#lo, $t0#lo, $t0#hi |
| veor $t1#lo, $t1#lo, $t1#hi |
| veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 |
| vand $t2#hi, $t2#hi, $k16 |
| vext.8 $t0, $t0, $t0, #15 |
| veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 |
| vmov.i64 $t3#hi, #0 |
| vext.8 $t1, $t1, $t1, #14 |
| veor $t2#lo, $t2#lo, $t2#hi |
| vmull.p8 $r, $a, $b @ D = A*B |
| vext.8 $t3, $t3, $t3, #12 |
| vext.8 $t2, $t2, $t2, #13 |
| veor $t0, $t0, $t1 |
| veor $t2, $t2, $t3 |
| veor $r, $r, $t0 |
| veor $r, $r, $t2 |
| ___ |
| } |
| |
| $code.=<<___; |
| #if __ARM_MAX_ARCH__>=7 |
| .arch armv7-a |
| .fpu neon |
| |
| .global gcm_init_neon |
| .type gcm_init_neon,%function |
| .align 4 |
| gcm_init_neon: |
| vld1.64 $IN#hi,[r1]! @ load H |
| vmov.i8 $t0,#0xe1 |
| vld1.64 $IN#lo,[r1] |
| vshl.i64 $t0#hi,#57 |
| vshr.u64 $t0#lo,#63 @ t0=0xc2....01 |
| vdup.8 $t1,$IN#hi[7] |
| vshr.u64 $Hlo,$IN#lo,#63 |
| vshr.s8 $t1,#7 @ broadcast carry bit |
| vshl.i64 $IN,$IN,#1 |
| vand $t0,$t0,$t1 |
| vorr $IN#hi,$Hlo @ H<<<=1 |
| veor $IN,$IN,$t0 @ twisted H |
| vstmia r0,{$IN} |
| |
| ret @ bx lr |
| .size gcm_init_neon,.-gcm_init_neon |
| |
| .global gcm_gmult_neon |
| .type gcm_gmult_neon,%function |
| .align 4 |
| gcm_gmult_neon: |
| vld1.64 $IN#hi,[$Xi]! @ load Xi |
| vld1.64 $IN#lo,[$Xi]! |
| vmov.i64 $k48,#0x0000ffffffffffff |
| vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H |
| vmov.i64 $k32,#0x00000000ffffffff |
| #ifdef __ARMEL__ |
| vrev64.8 $IN,$IN |
| #endif |
| vmov.i64 $k16,#0x000000000000ffff |
| veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing |
| mov $len,#16 |
| b .Lgmult_neon |
| .size gcm_gmult_neon,.-gcm_gmult_neon |
| |
| .global gcm_ghash_neon |
| .type gcm_ghash_neon,%function |
| .align 4 |
| gcm_ghash_neon: |
| vld1.64 $Xl#hi,[$Xi]! @ load Xi |
| vld1.64 $Xl#lo,[$Xi]! |
| vmov.i64 $k48,#0x0000ffffffffffff |
| vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H |
| vmov.i64 $k32,#0x00000000ffffffff |
| #ifdef __ARMEL__ |
| vrev64.8 $Xl,$Xl |
| #endif |
| vmov.i64 $k16,#0x000000000000ffff |
| veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing |
| |
| .Loop_neon: |
| vld1.64 $IN#hi,[$inp]! @ load inp |
| vld1.64 $IN#lo,[$inp]! |
| #ifdef __ARMEL__ |
| vrev64.8 $IN,$IN |
| #endif |
| veor $IN,$Xl @ inp^=Xi |
| .Lgmult_neon: |
| ___ |
| &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo |
| $code.=<<___; |
| veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing |
| ___ |
| &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi) |
| &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi |
| $code.=<<___; |
| veor $Xm,$Xm,$Xl @ Karatsuba post-processing |
| veor $Xm,$Xm,$Xh |
| veor $Xl#hi,$Xl#hi,$Xm#lo |
| veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result |
| |
| @ equivalent of reduction_avx from ghash-x86_64.pl |
| vshl.i64 $t1,$Xl,#57 @ 1st phase |
| vshl.i64 $t2,$Xl,#62 |
| veor $t2,$t2,$t1 @ |
| vshl.i64 $t1,$Xl,#63 |
| veor $t2, $t2, $t1 @ |
| veor $Xl#hi,$Xl#hi,$t2#lo @ |
| veor $Xh#lo,$Xh#lo,$t2#hi |
| |
| vshr.u64 $t2,$Xl,#1 @ 2nd phase |
| veor $Xh,$Xh,$Xl |
| veor $Xl,$Xl,$t2 @ |
| vshr.u64 $t2,$t2,#6 |
| vshr.u64 $Xl,$Xl,#1 @ |
| veor $Xl,$Xl,$Xh @ |
| veor $Xl,$Xl,$t2 @ |
| |
| subs $len,#16 |
| bne .Loop_neon |
| |
| #ifdef __ARMEL__ |
| vrev64.8 $Xl,$Xl |
| #endif |
| sub $Xi,#16 |
| vst1.64 $Xl#hi,[$Xi]! @ write out Xi |
| vst1.64 $Xl#lo,[$Xi] |
| |
| ret @ bx lr |
| .size gcm_ghash_neon,.-gcm_ghash_neon |
| #endif |
| ___ |
| } |
| $code.=<<___; |
| .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 2 |
| ___ |
| |
| foreach (split("\n",$code)) { |
| s/\`([^\`]*)\`/eval $1/geo; |
| |
| s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or |
| s/\bret\b/bx lr/go or |
| s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 |
| |
| print $_,"\n"; |
| } |
| close STDOUT or die "error closing STDOUT"; # enforce flush |