| /* Copyright (c) 2023, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/kyber.h> |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/rand.h> |
| |
| #include "../internal.h" |
| #include "../keccak/internal.h" |
| #include "./internal.h" |
| |
| |
| // See |
| // https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf |
| |
| static void prf(uint8_t *out, size_t out_len, const uint8_t in[33]) { |
| BORINGSSL_keccak(out, out_len, in, 33, boringssl_shake256); |
| } |
| |
| static void hash_h(uint8_t out[32], const uint8_t *in, size_t len) { |
| BORINGSSL_keccak(out, 32, in, len, boringssl_sha3_256); |
| } |
| |
| static void hash_g(uint8_t out[64], const uint8_t *in, size_t len) { |
| BORINGSSL_keccak(out, 64, in, len, boringssl_sha3_512); |
| } |
| |
| static void kdf(uint8_t *out, size_t out_len, const uint8_t *in, size_t len) { |
| BORINGSSL_keccak(out, out_len, in, len, boringssl_shake256); |
| } |
| |
| #define DEGREE 256 |
| #define RANK 3 |
| |
| static const size_t kBarrettMultiplier = 5039; |
| static const unsigned kBarrettShift = 24; |
| static const uint16_t kPrime = 3329; |
| static const int kLog2Prime = 12; |
| static const uint16_t kHalfPrime = (/*kPrime=*/3329 - 1) / 2; |
| static const int kDU = 10; |
| static const int kDV = 4; |
| // kInverseDegree is 128^-1 mod 3329; 128 because kPrime does not have a 512th |
| // root of unity. |
| static const uint16_t kInverseDegree = 3303; |
| static const size_t kEncodedVectorSize = |
| (/*kLog2Prime=*/12 * DEGREE / 8) * RANK; |
| static const size_t kCompressedVectorSize = /*kDU=*/10 * RANK * DEGREE / 8; |
| |
| typedef struct scalar { |
| // On every function entry and exit, 0 <= c < kPrime. |
| uint16_t c[DEGREE]; |
| } scalar; |
| |
| typedef struct vector { |
| scalar v[RANK]; |
| } vector; |
| |
| typedef struct matrix { |
| scalar v[RANK][RANK]; |
| } matrix; |
| |
| // This bit of Python will be referenced in some of the following comments: |
| // |
| // p = 3329 |
| // |
| // def bitreverse(i): |
| // ret = 0 |
| // for n in range(7): |
| // bit = i & 1 |
| // ret <<= 1 |
| // ret |= bit |
| // i >>= 1 |
| // return ret |
| |
| // kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)] |
| static const uint16_t kNTTRoots[128] = { |
| 1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, |
| 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, |
| 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, |
| 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, |
| 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, |
| 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, |
| 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, |
| 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, |
| 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, |
| 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, |
| 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154, |
| }; |
| |
| // kInverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)] |
| static const uint16_t kInverseNTTRoots[128] = { |
| 1, 1600, 40, 749, 2481, 1432, 2699, 687, 1583, 2760, 69, 543, |
| 2532, 3136, 1410, 2267, 2508, 1355, 450, 936, 447, 2794, 1235, 1903, |
| 1996, 1089, 3273, 283, 1853, 1990, 882, 3033, 2419, 2102, 219, 855, |
| 2681, 1848, 712, 682, 927, 1795, 461, 1891, 2877, 2522, 1894, 1010, |
| 1414, 2009, 3296, 464, 2697, 816, 1352, 2679, 1274, 1052, 1025, 2132, |
| 1573, 76, 2998, 3040, 1175, 2444, 394, 1219, 2300, 1455, 2117, 1607, |
| 2443, 554, 1179, 2186, 2303, 2926, 2237, 525, 735, 863, 2768, 1230, |
| 2572, 556, 3010, 2266, 1684, 1239, 780, 2954, 109, 1292, 1031, 1745, |
| 2688, 3061, 992, 2596, 941, 892, 1021, 2390, 642, 1868, 2377, 1482, |
| 1540, 540, 1678, 1626, 279, 314, 1173, 2573, 3096, 48, 667, 1920, |
| 2229, 1041, 2606, 1692, 680, 2746, 568, 3312, |
| }; |
| |
| // kModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)] |
| static const uint16_t kModRoots[128] = { |
| 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, |
| 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, |
| 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, |
| 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, |
| 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, |
| 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, |
| 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, |
| 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, |
| 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, |
| 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, |
| 2110, 1219, 2935, 394, 885, 2444, 2154, 1175, |
| }; |
| |
| // reduce_once reduces 0 <= x < 2*kPrime, mod kPrime. |
| static uint16_t reduce_once(uint16_t x) { |
| assert(x < 2 * kPrime); |
| const uint16_t subtracted = x - kPrime; |
| uint16_t mask = 0u - (subtracted >> 15); |
| // On Aarch64, omitting a |value_barrier_u16| results in a 2x speedup of Kyber |
| // overall and Clang still produces constant-time code using `csel`. On other |
| // platforms & compilers on godbolt that we care about, this code also |
| // produces constant-time output. |
| return (mask & x) | (~mask & subtracted); |
| } |
| |
| // constant time reduce x mod kPrime using Barrett reduction. x must be less |
| // than kPrime + 2×kPrime². |
| static uint16_t reduce(uint32_t x) { |
| assert(x < kPrime + 2u * kPrime * kPrime); |
| uint64_t product = (uint64_t)x * kBarrettMultiplier; |
| uint32_t quotient = (uint32_t)(product >> kBarrettShift); |
| uint32_t remainder = x - quotient * kPrime; |
| return reduce_once(remainder); |
| } |
| |
| static void scalar_zero(scalar *out) { OPENSSL_memset(out, 0, sizeof(*out)); } |
| |
| static void vector_zero(vector *out) { OPENSSL_memset(out, 0, sizeof(*out)); } |
| |
| // In place number theoretic transform of a given scalar. |
| // Note that Kyber's kPrime 3329 does not have a 512th root of unity, so this |
| // transform leaves off the last iteration of the usual FFT code, with the 128 |
| // relevant roots of unity being stored in |kNTTRoots|. This means the output |
| // should be seen as 128 elements in GF(3329^2), with the coefficients of the |
| // elements being consecutive entries in |s->c|. |
| static void scalar_ntt(scalar *s) { |
| int offset = DEGREE; |
| // `int` is used here because using `size_t` throughout caused a ~5% slowdown |
| // with Clang 14 on Aarch64. |
| for (int step = 1; step < DEGREE / 2; step <<= 1) { |
| offset >>= 1; |
| int k = 0; |
| for (int i = 0; i < step; i++) { |
| const uint32_t step_root = kNTTRoots[i + step]; |
| for (int j = k; j < k + offset; j++) { |
| uint16_t odd = reduce(step_root * s->c[j + offset]); |
| uint16_t even = s->c[j]; |
| s->c[j] = reduce_once(odd + even); |
| s->c[j + offset] = reduce_once(even - odd + kPrime); |
| } |
| k += 2 * offset; |
| } |
| } |
| } |
| |
| static void vector_ntt(vector *a) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_ntt(&a->v[i]); |
| } |
| } |
| |
| // In place inverse number theoretic transform of a given scalar, with pairs of |
| // entries of s->v being interpreted as elements of GF(3329^2). Just as with the |
| // number theoretic transform, this leaves off the first step of the normal iFFT |
| // to account for the fact that 3329 does not have a 512th root of unity, using |
| // the precomputed 128 roots of unity stored in |kInverseNTTRoots|. |
| static void scalar_inverse_ntt(scalar *s) { |
| int step = DEGREE / 2; |
| // `int` is used here because using `size_t` throughout caused a ~5% slowdown |
| // with Clang 14 on Aarch64. |
| for (int offset = 2; offset < DEGREE; offset <<= 1) { |
| step >>= 1; |
| int k = 0; |
| for (int i = 0; i < step; i++) { |
| uint32_t step_root = kInverseNTTRoots[i + step]; |
| for (int j = k; j < k + offset; j++) { |
| uint16_t odd = s->c[j + offset]; |
| uint16_t even = s->c[j]; |
| s->c[j] = reduce_once(odd + even); |
| s->c[j + offset] = reduce(step_root * (even - odd + kPrime)); |
| } |
| k += 2 * offset; |
| } |
| } |
| for (int i = 0; i < DEGREE; i++) { |
| s->c[i] = reduce(s->c[i] * kInverseDegree); |
| } |
| } |
| |
| static void vector_inverse_ntt(vector *a) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_inverse_ntt(&a->v[i]); |
| } |
| } |
| |
| static void scalar_add(scalar *lhs, const scalar *rhs) { |
| for (int i = 0; i < DEGREE; i++) { |
| lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]); |
| } |
| } |
| |
| static void scalar_sub(scalar *lhs, const scalar *rhs) { |
| for (int i = 0; i < DEGREE; i++) { |
| lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime); |
| } |
| } |
| |
| // Multiplying two scalars in the number theoretically transformed state. Since |
| // 3329 does not have a 512th root of unity, this means we have to interpret |
| // the 2*ith and (2*i+1)th entries of the scalar as elements of GF(3329)[X]/(X^2 |
| // - 17^(2*bitreverse(i)+1)) The value of 17^(2*bitreverse(i)+1) mod 3329 is |
| // stored in the precomputed |kModRoots| table. Note that our Barrett transform |
| // only allows us to multipy two reduced numbers together, so we need some |
| // intermediate reduction steps, even if an uint64_t could hold 3 multiplied |
| // numbers. |
| static void scalar_mult(scalar *out, const scalar *lhs, const scalar *rhs) { |
| for (int i = 0; i < DEGREE / 2; i++) { |
| uint32_t real_real = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i]; |
| uint32_t img_img = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i + 1]; |
| uint32_t real_img = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i + 1]; |
| uint32_t img_real = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i]; |
| out->c[2 * i] = |
| reduce(real_real + (uint32_t)reduce(img_img) * kModRoots[i]); |
| out->c[2 * i + 1] = reduce(img_real + real_img); |
| } |
| } |
| |
| static void vector_add(vector *lhs, const vector *rhs) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_add(&lhs->v[i], &rhs->v[i]); |
| } |
| } |
| |
| static void matrix_mult(vector *out, const matrix *m, const vector *a) { |
| vector_zero(out); |
| for (int i = 0; i < RANK; i++) { |
| for (int j = 0; j < RANK; j++) { |
| scalar product; |
| scalar_mult(&product, &m->v[i][j], &a->v[j]); |
| scalar_add(&out->v[i], &product); |
| } |
| } |
| } |
| |
| static void matrix_mult_transpose(vector *out, const matrix *m, |
| const vector *a) { |
| vector_zero(out); |
| for (int i = 0; i < RANK; i++) { |
| for (int j = 0; j < RANK; j++) { |
| scalar product; |
| scalar_mult(&product, &m->v[j][i], &a->v[j]); |
| scalar_add(&out->v[i], &product); |
| } |
| } |
| } |
| |
| static void scalar_inner_product(scalar *out, const vector *lhs, |
| const vector *rhs) { |
| scalar_zero(out); |
| for (int i = 0; i < RANK; i++) { |
| scalar product; |
| scalar_mult(&product, &lhs->v[i], &rhs->v[i]); |
| scalar_add(out, &product); |
| } |
| } |
| |
| // Algorithm 1 of the Kyber spec. Rejection samples a Keccak stream to get |
| // uniformly distributed elements. This is used for matrix expansion and only |
| // operates on public inputs. |
| static void scalar_from_keccak_vartime(scalar *out, |
| struct BORINGSSL_keccak_st *keccak_ctx) { |
| assert(keccak_ctx->squeeze_offset == 0); |
| assert(keccak_ctx->rate_bytes == 168); |
| static_assert(168 % 3 == 0, "block and coefficient boundaries do not align"); |
| |
| int done = 0; |
| while (done < DEGREE) { |
| uint8_t block[168]; |
| BORINGSSL_keccak_squeeze(keccak_ctx, block, sizeof(block)); |
| for (size_t i = 0; i < sizeof(block) && done < DEGREE; i += 3) { |
| uint16_t d1 = block[i] + 256 * (block[i + 1] % 16); |
| uint16_t d2 = block[i + 1] / 16 + 16 * block[i + 2]; |
| if (d1 < kPrime) { |
| out->c[done++] = d1; |
| } |
| if (d2 < kPrime && done < DEGREE) { |
| out->c[done++] = d2; |
| } |
| } |
| } |
| } |
| |
| // Algorithm 2 of the Kyber spec, with eta fixed to two and the PRF call |
| // included. Creates binominally distributed elements by sampling 2*|eta| bits, |
| // and setting the coefficient to the count of the first bits minus the count of |
| // the second bits, resulting in a centered binomial distribution. Since eta is |
| // two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4, |
| // and 0 with probability 3/8. |
| static void scalar_centered_binomial_distribution_eta_2_with_prf( |
| scalar *out, const uint8_t input[33]) { |
| uint8_t entropy[128]; |
| static_assert(sizeof(entropy) == 2 * /*kEta=*/2 * DEGREE / 8, ""); |
| prf(entropy, sizeof(entropy), input); |
| |
| for (int i = 0; i < DEGREE; i += 2) { |
| uint8_t byte = entropy[i / 2]; |
| |
| uint16_t value = kPrime; |
| value += (byte & 1) + ((byte >> 1) & 1); |
| value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); |
| out->c[i] = reduce_once(value); |
| |
| byte >>= 4; |
| value = kPrime; |
| value += (byte & 1) + ((byte >> 1) & 1); |
| value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); |
| out->c[i + 1] = reduce_once(value); |
| } |
| } |
| |
| // Generates a secret vector by using |
| // |scalar_centered_binomial_distribution_eta_2_with_prf|, using the given seed |
| // appending and incrementing |counter| for entry of the vector. |
| static void vector_generate_secret_eta_2(vector *out, uint8_t *counter, |
| const uint8_t seed[32]) { |
| uint8_t input[33]; |
| OPENSSL_memcpy(input, seed, 32); |
| for (int i = 0; i < RANK; i++) { |
| input[32] = (*counter)++; |
| scalar_centered_binomial_distribution_eta_2_with_prf(&out->v[i], input); |
| } |
| } |
| |
| // Expands the matrix of a seed for key generation and for encaps-CPA. |
| static void matrix_expand(matrix *out, const uint8_t rho[32]) { |
| uint8_t input[34]; |
| OPENSSL_memcpy(input, rho, 32); |
| for (int i = 0; i < RANK; i++) { |
| for (int j = 0; j < RANK; j++) { |
| input[32] = i; |
| input[33] = j; |
| struct BORINGSSL_keccak_st keccak_ctx; |
| BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake128); |
| BORINGSSL_keccak_absorb(&keccak_ctx, input, sizeof(input)); |
| scalar_from_keccak_vartime(&out->v[i][j], &keccak_ctx); |
| } |
| } |
| } |
| |
| static const uint8_t kMasks[8] = {0x01, 0x03, 0x07, 0x0f, |
| 0x1f, 0x3f, 0x7f, 0xff}; |
| |
| static void scalar_encode(uint8_t *out, const scalar *s, int bits) { |
| assert(bits <= (int)sizeof(*s->c) * 8 && bits != 1); |
| |
| uint8_t out_byte = 0; |
| int out_byte_bits = 0; |
| |
| for (int i = 0; i < DEGREE; i++) { |
| uint16_t element = s->c[i]; |
| int element_bits_done = 0; |
| |
| while (element_bits_done < bits) { |
| int chunk_bits = bits - element_bits_done; |
| int out_bits_remaining = 8 - out_byte_bits; |
| if (chunk_bits >= out_bits_remaining) { |
| chunk_bits = out_bits_remaining; |
| out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits; |
| *out = out_byte; |
| out++; |
| out_byte_bits = 0; |
| out_byte = 0; |
| } else { |
| out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits; |
| out_byte_bits += chunk_bits; |
| } |
| |
| element_bits_done += chunk_bits; |
| element >>= chunk_bits; |
| } |
| } |
| |
| if (out_byte_bits > 0) { |
| *out = out_byte; |
| } |
| } |
| |
| // scalar_encode_1 is |scalar_encode| specialised for |bits| == 1. |
| static void scalar_encode_1(uint8_t out[32], const scalar *s) { |
| for (int i = 0; i < DEGREE; i += 8) { |
| uint8_t out_byte = 0; |
| for (int j = 0; j < 8; j++) { |
| out_byte |= (s->c[i + j] & 1) << j; |
| } |
| *out = out_byte; |
| out++; |
| } |
| } |
| |
| // Encodes an entire vector into 32*|RANK|*|bits| bytes. Note that since 256 |
| // (DEGREE) is divisible by 8, the individual vector entries will always fill a |
| // whole number of bytes, so we do not need to worry about bit packing here. |
| static void vector_encode(uint8_t *out, const vector *a, int bits) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_encode(out + i * bits * DEGREE / 8, &a->v[i], bits); |
| } |
| } |
| |
| // scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in |
| // |out|. It returns one on success and zero if any parsed value is >= |
| // |kPrime|. |
| static int scalar_decode(scalar *out, const uint8_t *in, int bits) { |
| assert(bits <= (int)sizeof(*out->c) * 8 && bits != 1); |
| |
| uint8_t in_byte = 0; |
| int in_byte_bits_left = 0; |
| |
| for (int i = 0; i < DEGREE; i++) { |
| uint16_t element = 0; |
| int element_bits_done = 0; |
| |
| while (element_bits_done < bits) { |
| if (in_byte_bits_left == 0) { |
| in_byte = *in; |
| in++; |
| in_byte_bits_left = 8; |
| } |
| |
| int chunk_bits = bits - element_bits_done; |
| if (chunk_bits > in_byte_bits_left) { |
| chunk_bits = in_byte_bits_left; |
| } |
| |
| element |= (in_byte & kMasks[chunk_bits - 1]) << element_bits_done; |
| in_byte_bits_left -= chunk_bits; |
| in_byte >>= chunk_bits; |
| |
| element_bits_done += chunk_bits; |
| } |
| |
| if (element >= kPrime) { |
| return 0; |
| } |
| out->c[i] = element; |
| } |
| |
| return 1; |
| } |
| |
| // scalar_decode_1 is |scalar_decode| specialised for |bits| == 1. |
| static void scalar_decode_1(scalar *out, const uint8_t in[32]) { |
| for (int i = 0; i < DEGREE; i += 8) { |
| uint8_t in_byte = *in; |
| in++; |
| for (int j = 0; j < 8; j++) { |
| out->c[i + j] = in_byte & 1; |
| in_byte >>= 1; |
| } |
| } |
| } |
| |
| // Decodes 32*|RANK|*|bits| bytes from |in| into |out|. It returns one on |
| // success or zero if any parsed value is >= |kPrime|. |
| static int vector_decode(vector *out, const uint8_t *in, int bits) { |
| for (int i = 0; i < RANK; i++) { |
| if (!scalar_decode(&out->v[i], in + i * bits * DEGREE / 8, bits)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| // Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping |
| // numbers close to each other together. The formula used is |
| // round(2^|bits|/kPrime*x) mod 2^|bits|. |
| // Uses Barrett reduction to achieve constant time. Since we need both the |
| // remainder (for rounding) and the quotient (as the result), we cannot use |
| // |reduce| here, but need to do the Barrett reduction directly. |
| static uint16_t compress(uint16_t x, int bits) { |
| uint32_t shifted = (uint32_t)x << bits; |
| uint64_t product = (uint64_t)shifted * kBarrettMultiplier; |
| uint32_t quotient = (uint32_t)(product >> kBarrettShift); |
| uint32_t remainder = shifted - quotient * kPrime; |
| |
| // Adjust the quotient to round correctly: |
| // 0 <= remainder <= kHalfPrime round to 0 |
| // kHalfPrime < remainder <= kPrime + kHalfPrime round to 1 |
| // kPrime + kHalfPrime < remainder < 2 * kPrime round to 2 |
| assert(remainder < 2u * kPrime); |
| quotient += 1 & constant_time_lt_w(kHalfPrime, remainder); |
| quotient += 1 & constant_time_lt_w(kPrime + kHalfPrime, remainder); |
| return quotient & ((1 << bits) - 1); |
| } |
| |
| // Decompresses |x| by using an equi-distant representative. The formula is |
| // round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us to |
| // implement this logic using only bit operations. |
| static uint16_t decompress(uint16_t x, int bits) { |
| uint32_t product = (uint32_t)x * kPrime; |
| uint32_t power = 1 << bits; |
| // This is |product| % power, since |power| is a power of 2. |
| uint32_t remainder = product & (power - 1); |
| // This is |product| / power, since |power| is a power of 2. |
| uint32_t lower = product >> bits; |
| // The rounding logic works since the first half of numbers mod |power| have a |
| // 0 as first bit, and the second half has a 1 as first bit, since |power| is |
| // a power of 2. As a 12 bit number, |remainder| is always positive, so we |
| // will shift in 0s for a right shift. |
| return lower + (remainder >> (bits - 1)); |
| } |
| |
| static void scalar_compress(scalar *s, int bits) { |
| for (int i = 0; i < DEGREE; i++) { |
| s->c[i] = compress(s->c[i], bits); |
| } |
| } |
| |
| static void scalar_decompress(scalar *s, int bits) { |
| for (int i = 0; i < DEGREE; i++) { |
| s->c[i] = decompress(s->c[i], bits); |
| } |
| } |
| |
| static void vector_compress(vector *a, int bits) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_compress(&a->v[i], bits); |
| } |
| } |
| |
| static void vector_decompress(vector *a, int bits) { |
| for (int i = 0; i < RANK; i++) { |
| scalar_decompress(&a->v[i], bits); |
| } |
| } |
| |
| struct public_key { |
| vector t; |
| uint8_t rho[32]; |
| uint8_t public_key_hash[32]; |
| matrix m; |
| }; |
| |
| static struct public_key *public_key_from_external( |
| const struct KYBER_public_key *external) { |
| static_assert(sizeof(struct KYBER_public_key) >= sizeof(struct public_key), |
| "Kyber public key is too small"); |
| static_assert(alignof(struct KYBER_public_key) >= alignof(struct public_key), |
| "Kyber public key align incorrect"); |
| return (struct public_key *)external; |
| } |
| |
| struct private_key { |
| struct public_key pub; |
| vector s; |
| uint8_t fo_failure_secret[32]; |
| }; |
| |
| static struct private_key *private_key_from_external( |
| const struct KYBER_private_key *external) { |
| static_assert(sizeof(struct KYBER_private_key) >= sizeof(struct private_key), |
| "Kyber private key too small"); |
| static_assert( |
| alignof(struct KYBER_private_key) >= alignof(struct private_key), |
| "Kyber private key align incorrect"); |
| return (struct private_key *)external; |
| } |
| |
| // Calls |KYBER_generate_key_external_entropy| with random bytes from |
| // |RAND_bytes|. |
| void KYBER_generate_key(uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES], |
| struct KYBER_private_key *out_private_key) { |
| uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY]; |
| RAND_bytes(entropy, sizeof(entropy)); |
| KYBER_generate_key_external_entropy(out_encoded_public_key, out_private_key, |
| entropy); |
| } |
| |
| static int kyber_marshal_public_key(CBB *out, const struct public_key *pub) { |
| uint8_t *vector_output; |
| if (!CBB_add_space(out, &vector_output, kEncodedVectorSize)) { |
| return 0; |
| } |
| vector_encode(vector_output, &pub->t, kLog2Prime); |
| if (!CBB_add_bytes(out, pub->rho, sizeof(pub->rho))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| // Algorithms 4 and 7 of the Kyber spec. Algorithms are combined since key |
| // generation is not part of the FO transform, and the spec uses Algorithm 7 to |
| // specify the actual key format. |
| void KYBER_generate_key_external_entropy( |
| uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES], |
| struct KYBER_private_key *out_private_key, |
| const uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY]) { |
| struct private_key *priv = private_key_from_external(out_private_key); |
| uint8_t hashed[64]; |
| hash_g(hashed, entropy, 32); |
| const uint8_t *const rho = hashed; |
| const uint8_t *const sigma = hashed + 32; |
| OPENSSL_memcpy(priv->pub.rho, hashed, sizeof(priv->pub.rho)); |
| matrix_expand(&priv->pub.m, rho); |
| uint8_t counter = 0; |
| vector_generate_secret_eta_2(&priv->s, &counter, sigma); |
| vector_ntt(&priv->s); |
| vector error; |
| vector_generate_secret_eta_2(&error, &counter, sigma); |
| vector_ntt(&error); |
| matrix_mult_transpose(&priv->pub.t, &priv->pub.m, &priv->s); |
| vector_add(&priv->pub.t, &error); |
| |
| CBB cbb; |
| CBB_init_fixed(&cbb, out_encoded_public_key, KYBER_PUBLIC_KEY_BYTES); |
| if (!kyber_marshal_public_key(&cbb, &priv->pub)) { |
| abort(); |
| } |
| |
| hash_h(priv->pub.public_key_hash, out_encoded_public_key, |
| KYBER_PUBLIC_KEY_BYTES); |
| OPENSSL_memcpy(priv->fo_failure_secret, entropy + 32, 32); |
| } |
| |
| void KYBER_public_from_private(struct KYBER_public_key *out_public_key, |
| const struct KYBER_private_key *private_key) { |
| struct public_key *const pub = public_key_from_external(out_public_key); |
| const struct private_key *const priv = private_key_from_external(private_key); |
| *pub = priv->pub; |
| } |
| |
| // Algorithm 5 of the Kyber spec. Encrypts a message with given randomness to |
| // the ciphertext in |out|. Without applying the Fujisaki-Okamoto transform this |
| // would not result in a CCA secure scheme, since lattice schemes are vulnerable |
| // to decryption failure oracles. |
| static void encrypt_cpa(uint8_t out[KYBER_CIPHERTEXT_BYTES], |
| const struct public_key *pub, const uint8_t message[32], |
| const uint8_t randomness[32]) { |
| uint8_t counter = 0; |
| vector secret; |
| vector_generate_secret_eta_2(&secret, &counter, randomness); |
| vector_ntt(&secret); |
| vector error; |
| vector_generate_secret_eta_2(&error, &counter, randomness); |
| uint8_t input[33]; |
| OPENSSL_memcpy(input, randomness, 32); |
| input[32] = counter; |
| scalar scalar_error; |
| scalar_centered_binomial_distribution_eta_2_with_prf(&scalar_error, input); |
| vector u; |
| matrix_mult(&u, &pub->m, &secret); |
| vector_inverse_ntt(&u); |
| vector_add(&u, &error); |
| scalar v; |
| scalar_inner_product(&v, &pub->t, &secret); |
| scalar_inverse_ntt(&v); |
| scalar_add(&v, &scalar_error); |
| scalar expanded_message; |
| scalar_decode_1(&expanded_message, message); |
| scalar_decompress(&expanded_message, 1); |
| scalar_add(&v, &expanded_message); |
| vector_compress(&u, kDU); |
| vector_encode(out, &u, kDU); |
| scalar_compress(&v, kDV); |
| scalar_encode(out + kCompressedVectorSize, &v, kDV); |
| } |
| |
| // Calls KYBER_encap_external_entropy| with random bytes from |RAND_bytes| |
| void KYBER_encap(uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES], |
| uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], |
| const struct KYBER_public_key *public_key) { |
| uint8_t entropy[KYBER_ENCAP_ENTROPY]; |
| RAND_bytes(entropy, KYBER_ENCAP_ENTROPY); |
| KYBER_encap_external_entropy(out_ciphertext, out_shared_secret, public_key, |
| entropy); |
| } |
| |
| // Algorithm 8 of the Kyber spec, safe for line 2 of the spec. The spec there |
| // hashes the output of the system's random number generator, since the FO |
| // transform will reveal it to the decrypting party. There is no reason to do |
| // this when a secure random number generator is used. When an insecure random |
| // number generator is used, the caller should switch to a secure one before |
| // calling this method. |
| void KYBER_encap_external_entropy( |
| uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES], |
| uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], |
| const struct KYBER_public_key *public_key, |
| const uint8_t entropy[KYBER_ENCAP_ENTROPY]) { |
| const struct public_key *pub = public_key_from_external(public_key); |
| uint8_t input[64]; |
| OPENSSL_memcpy(input, entropy, KYBER_ENCAP_ENTROPY); |
| OPENSSL_memcpy(input + KYBER_ENCAP_ENTROPY, pub->public_key_hash, |
| sizeof(input) - KYBER_ENCAP_ENTROPY); |
| uint8_t prekey_and_randomness[64]; |
| hash_g(prekey_and_randomness, input, sizeof(input)); |
| encrypt_cpa(out_ciphertext, pub, entropy, prekey_and_randomness + 32); |
| hash_h(prekey_and_randomness + 32, out_ciphertext, KYBER_CIPHERTEXT_BYTES); |
| kdf(out_shared_secret, KYBER_SHARED_SECRET_BYTES, prekey_and_randomness, |
| sizeof(prekey_and_randomness)); |
| } |
| |
| // Algorithm 6 of the Kyber spec. |
| static void decrypt_cpa(uint8_t out[32], const struct private_key *priv, |
| const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES]) { |
| vector u; |
| vector_decode(&u, ciphertext, kDU); |
| vector_decompress(&u, kDU); |
| vector_ntt(&u); |
| scalar v; |
| scalar_decode(&v, ciphertext + kCompressedVectorSize, kDV); |
| scalar_decompress(&v, kDV); |
| scalar mask; |
| scalar_inner_product(&mask, &priv->s, &u); |
| scalar_inverse_ntt(&mask); |
| scalar_sub(&v, &mask); |
| scalar_compress(&v, 1); |
| scalar_encode_1(out, &v); |
| } |
| |
| // Algorithm 9 of the Kyber spec, performing the FO transform by running |
| // encrypt_cpa on the decrypted message. The spec does not allow the decryption |
| // failure to be passed on to the caller, and instead returns a result that is |
| // deterministic but unpredictable to anyone without knowledge of the private |
| // key. |
| void KYBER_decap(uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], |
| const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES], |
| const struct KYBER_private_key *private_key) { |
| const struct private_key *priv = private_key_from_external(private_key); |
| uint8_t decrypted[64]; |
| decrypt_cpa(decrypted, priv, ciphertext); |
| OPENSSL_memcpy(decrypted + 32, priv->pub.public_key_hash, |
| sizeof(decrypted) - 32); |
| uint8_t prekey_and_randomness[64]; |
| hash_g(prekey_and_randomness, decrypted, sizeof(decrypted)); |
| uint8_t expected_ciphertext[KYBER_CIPHERTEXT_BYTES]; |
| encrypt_cpa(expected_ciphertext, &priv->pub, decrypted, |
| prekey_and_randomness + 32); |
| uint8_t mask = |
| constant_time_eq_int_8(CRYPTO_memcmp(ciphertext, expected_ciphertext, |
| sizeof(expected_ciphertext)), |
| 0); |
| uint8_t input[64]; |
| for (int i = 0; i < 32; i++) { |
| input[i] = constant_time_select_8(mask, prekey_and_randomness[i], |
| priv->fo_failure_secret[i]); |
| } |
| hash_h(input + 32, ciphertext, KYBER_CIPHERTEXT_BYTES); |
| kdf(out_shared_secret, KYBER_SHARED_SECRET_BYTES, input, sizeof(input)); |
| } |
| |
| int KYBER_marshal_public_key(CBB *out, |
| const struct KYBER_public_key *public_key) { |
| return kyber_marshal_public_key(out, public_key_from_external(public_key)); |
| } |
| |
| // kyber_parse_public_key_no_hash parses |in| into |pub| but doesn't calculate |
| // the value of |pub->public_key_hash|. |
| static int kyber_parse_public_key_no_hash(struct public_key *pub, CBS *in) { |
| CBS t_bytes; |
| if (!CBS_get_bytes(in, &t_bytes, kEncodedVectorSize) || |
| !vector_decode(&pub->t, CBS_data(&t_bytes), kLog2Prime) || |
| !CBS_copy_bytes(in, pub->rho, sizeof(pub->rho))) { |
| return 0; |
| } |
| matrix_expand(&pub->m, pub->rho); |
| return 1; |
| } |
| |
| int KYBER_parse_public_key(struct KYBER_public_key *public_key, CBS *in) { |
| struct public_key *pub = public_key_from_external(public_key); |
| CBS orig_in = *in; |
| if (!kyber_parse_public_key_no_hash(pub, in) || // |
| CBS_len(in) != 0) { |
| return 0; |
| } |
| hash_h(pub->public_key_hash, CBS_data(&orig_in), CBS_len(&orig_in)); |
| return 1; |
| } |
| |
| int KYBER_marshal_private_key(CBB *out, |
| const struct KYBER_private_key *private_key) { |
| const struct private_key *const priv = private_key_from_external(private_key); |
| uint8_t *s_output; |
| if (!CBB_add_space(out, &s_output, kEncodedVectorSize)) { |
| return 0; |
| } |
| vector_encode(s_output, &priv->s, kLog2Prime); |
| if (!kyber_marshal_public_key(out, &priv->pub) || |
| !CBB_add_bytes(out, priv->pub.public_key_hash, |
| sizeof(priv->pub.public_key_hash)) || |
| !CBB_add_bytes(out, priv->fo_failure_secret, |
| sizeof(priv->fo_failure_secret))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int KYBER_parse_private_key(struct KYBER_private_key *out_private_key, |
| CBS *in) { |
| struct private_key *const priv = private_key_from_external(out_private_key); |
| |
| CBS s_bytes; |
| if (!CBS_get_bytes(in, &s_bytes, kEncodedVectorSize) || |
| !vector_decode(&priv->s, CBS_data(&s_bytes), kLog2Prime) || |
| !kyber_parse_public_key_no_hash(&priv->pub, in) || |
| !CBS_copy_bytes(in, priv->pub.public_key_hash, |
| sizeof(priv->pub.public_key_hash)) || |
| !CBS_copy_bytes(in, priv->fo_failure_secret, |
| sizeof(priv->fo_failure_secret)) || |
| CBS_len(in) != 0) { |
| return 0; |
| } |
| return 1; |
| } |