|  | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | 
|  | * and Bodo Moeller for the OpenSSL project. */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). */ | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  |  | 
|  | /* Returns 'ret' such that | 
|  | *      ret^2 == a (mod p), | 
|  | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course | 
|  | * in Algebraic Computational Number Theory", algorithm 1.5.1). | 
|  | * 'p' must be prime! */ | 
|  | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { | 
|  | BIGNUM *ret = in; | 
|  | int err = 1; | 
|  | int r; | 
|  | BIGNUM *A, *b, *q, *t, *x, *y; | 
|  | int e, i, j; | 
|  |  | 
|  | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | 
|  | if (BN_abs_is_word(p, 2)) { | 
|  | if (ret == NULL) { | 
|  | ret = BN_new(); | 
|  | } | 
|  | if (ret == NULL) { | 
|  | goto end; | 
|  | } | 
|  | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | 
|  | if (ret != in) { | 
|  | BN_free(ret); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME); | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | if (BN_is_zero(a) || BN_is_one(a)) { | 
|  | if (ret == NULL) { | 
|  | ret = BN_new(); | 
|  | } | 
|  | if (ret == NULL) { | 
|  | goto end; | 
|  | } | 
|  | if (!BN_set_word(ret, BN_is_one(a))) { | 
|  | if (ret != in) { | 
|  | BN_free(ret); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | A = BN_CTX_get(ctx); | 
|  | b = BN_CTX_get(ctx); | 
|  | q = BN_CTX_get(ctx); | 
|  | t = BN_CTX_get(ctx); | 
|  | x = BN_CTX_get(ctx); | 
|  | y = BN_CTX_get(ctx); | 
|  | if (y == NULL) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (ret == NULL) { | 
|  | ret = BN_new(); | 
|  | } | 
|  | if (ret == NULL) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* A = a mod p */ | 
|  | if (!BN_nnmod(A, a, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* now write  |p| - 1  as  2^e*q  where  q  is odd */ | 
|  | e = 1; | 
|  | while (!BN_is_bit_set(p, e)) { | 
|  | e++; | 
|  | } | 
|  | /* we'll set  q  later (if needed) */ | 
|  |  | 
|  | if (e == 1) { | 
|  | /* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse | 
|  | * modulo  (|p|-1)/2,  and square roots can be computed | 
|  | * directly by modular exponentiation. | 
|  | * We have | 
|  | *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2), | 
|  | * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1. | 
|  | */ | 
|  | if (!BN_rshift(q, p, 2)) { | 
|  | goto end; | 
|  | } | 
|  | q->neg = 0; | 
|  | if (!BN_add_word(q, 1) || | 
|  | !BN_mod_exp(ret, A, q, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | err = 0; | 
|  | goto vrfy; | 
|  | } | 
|  |  | 
|  | if (e == 2) { | 
|  | /* |p| == 5  (mod 8) | 
|  | * | 
|  | * In this case  2  is always a non-square since | 
|  | * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime. | 
|  | * So if  a  really is a square, then  2*a  is a non-square. | 
|  | * Thus for | 
|  | *      b := (2*a)^((|p|-5)/8), | 
|  | *      i := (2*a)*b^2 | 
|  | * we have | 
|  | *     i^2 = (2*a)^((1 + (|p|-5)/4)*2) | 
|  | *         = (2*a)^((p-1)/2) | 
|  | *         = -1; | 
|  | * so if we set | 
|  | *      x := a*b*(i-1), | 
|  | * then | 
|  | *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | 
|  | *         = a^2 * b^2 * (-2*i) | 
|  | *         = a*(-i)*(2*a*b^2) | 
|  | *         = a*(-i)*i | 
|  | *         = a. | 
|  | * | 
|  | * (This is due to A.O.L. Atkin, | 
|  | * <URL: | 
|  | *http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | 
|  | * November 1992.) | 
|  | */ | 
|  |  | 
|  | /* t := 2*a */ | 
|  | if (!BN_mod_lshift1_quick(t, A, p)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* b := (2*a)^((|p|-5)/8) */ | 
|  | if (!BN_rshift(q, p, 3)) { | 
|  | goto end; | 
|  | } | 
|  | q->neg = 0; | 
|  | if (!BN_mod_exp(b, t, q, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* y := b^2 */ | 
|  | if (!BN_mod_sqr(y, b, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* t := (2*a)*b^2 - 1*/ | 
|  | if (!BN_mod_mul(t, t, y, p, ctx) || | 
|  | !BN_sub_word(t, 1)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* x = a*b*t */ | 
|  | if (!BN_mod_mul(x, A, b, p, ctx) || | 
|  | !BN_mod_mul(x, x, t, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (!BN_copy(ret, x)) { | 
|  | goto end; | 
|  | } | 
|  | err = 0; | 
|  | goto vrfy; | 
|  | } | 
|  |  | 
|  | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | 
|  | * First, find some  y  that is not a square. */ | 
|  | if (!BN_copy(q, p)) { | 
|  | goto end; /* use 'q' as temp */ | 
|  | } | 
|  | q->neg = 0; | 
|  | i = 2; | 
|  | do { | 
|  | /* For efficiency, try small numbers first; | 
|  | * if this fails, try random numbers. | 
|  | */ | 
|  | if (i < 22) { | 
|  | if (!BN_set_word(y, i)) { | 
|  | goto end; | 
|  | } | 
|  | } else { | 
|  | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) { | 
|  | goto end; | 
|  | } | 
|  | if (BN_ucmp(y, p) >= 0) { | 
|  | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | /* now 0 <= y < |p| */ | 
|  | if (BN_is_zero(y)) { | 
|  | if (!BN_set_word(y, i)) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | 
|  | if (r < -1) { | 
|  | goto end; | 
|  | } | 
|  | if (r == 0) { | 
|  | /* m divides p */ | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME); | 
|  | goto end; | 
|  | } | 
|  | } while (r == 1 && ++i < 82); | 
|  |  | 
|  | if (r != -1) { | 
|  | /* Many rounds and still no non-square -- this is more likely | 
|  | * a bug than just bad luck. | 
|  | * Even if  p  is not prime, we should have found some  y | 
|  | * such that r == -1. | 
|  | */ | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_TOO_MANY_ITERATIONS); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Here's our actual 'q': */ | 
|  | if (!BN_rshift(q, q, e)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Now that we have some non-square, we can find an element | 
|  | * of order  2^e  by computing its q'th power. */ | 
|  | if (!BN_mod_exp(y, y, q, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | if (BN_is_one(y)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Now we know that (if  p  is indeed prime) there is an integer | 
|  | * k,  0 <= k < 2^e,  such that | 
|  | * | 
|  | *      a^q * y^k == 1   (mod p). | 
|  | * | 
|  | * As  a^q  is a square and  y  is not,  k  must be even. | 
|  | * q+1  is even, too, so there is an element | 
|  | * | 
|  | *     X := a^((q+1)/2) * y^(k/2), | 
|  | * | 
|  | * and it satisfies | 
|  | * | 
|  | *     X^2 = a^q * a     * y^k | 
|  | *         = a, | 
|  | * | 
|  | * so it is the square root that we are looking for. | 
|  | */ | 
|  |  | 
|  | /* t := (q-1)/2  (note that  q  is odd) */ | 
|  | if (!BN_rshift1(t, q)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* x := a^((q-1)/2) */ | 
|  | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ | 
|  | { | 
|  | if (!BN_nnmod(t, A, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | if (BN_is_zero(t)) { | 
|  | /* special case: a == 0  (mod p) */ | 
|  | BN_zero(ret); | 
|  | err = 0; | 
|  | goto end; | 
|  | } else if (!BN_one(x)) { | 
|  | goto end; | 
|  | } | 
|  | } else { | 
|  | if (!BN_mod_exp(x, A, t, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | if (BN_is_zero(x)) { | 
|  | /* special case: a == 0  (mod p) */ | 
|  | BN_zero(ret); | 
|  | err = 0; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* b := a*x^2  (= a^q) */ | 
|  | if (!BN_mod_sqr(b, x, p, ctx) || | 
|  | !BN_mod_mul(b, b, A, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* x := a*x    (= a^((q+1)/2)) */ | 
|  | if (!BN_mod_mul(x, x, A, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E | 
|  | * where  E  refers to the original value of  e,  which we | 
|  | * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2). | 
|  | * | 
|  | * We have  a*b = x^2, | 
|  | *    y^2^(e-1) = -1, | 
|  | *    b^2^(e-1) = 1. | 
|  | */ | 
|  |  | 
|  | if (BN_is_one(b)) { | 
|  | if (!BN_copy(ret, x)) { | 
|  | goto end; | 
|  | } | 
|  | err = 0; | 
|  | goto vrfy; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* find smallest  i  such that  b^(2^i) = 1 */ | 
|  | i = 1; | 
|  | if (!BN_mod_sqr(t, b, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | while (!BN_is_one(t)) { | 
|  | i++; | 
|  | if (i == e) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_NOT_A_SQUARE); | 
|  | goto end; | 
|  | } | 
|  | if (!BN_mod_mul(t, t, t, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* t := y^2^(e - i - 1) */ | 
|  | if (!BN_copy(t, y)) { | 
|  | goto end; | 
|  | } | 
|  | for (j = e - i - 1; j > 0; j--) { | 
|  | if (!BN_mod_sqr(t, t, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | if (!BN_mod_mul(y, t, t, p, ctx) || | 
|  | !BN_mod_mul(x, x, t, p, ctx) || | 
|  | !BN_mod_mul(b, b, y, p, ctx)) { | 
|  | goto end; | 
|  | } | 
|  | e = i; | 
|  | } | 
|  |  | 
|  | vrfy: | 
|  | if (!err) { | 
|  | /* verify the result -- the input might have been not a square | 
|  | * (test added in 0.9.8) */ | 
|  |  | 
|  | if (!BN_mod_sqr(x, ret, p, ctx)) { | 
|  | err = 1; | 
|  | } | 
|  |  | 
|  | if (!err && 0 != BN_cmp(x, A)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_NOT_A_SQUARE); | 
|  | err = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | end: | 
|  | if (err) { | 
|  | if (ret != NULL && ret != in) { | 
|  | BN_clear_free(ret); | 
|  | } | 
|  | ret = NULL; | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) { | 
|  | BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2; | 
|  | int ok = 0, last_delta_valid = 0; | 
|  |  | 
|  | if (in->neg) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_sqrt, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  | if (BN_is_zero(in)) { | 
|  | BN_zero(out_sqrt); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | if (out_sqrt == in) { | 
|  | estimate = BN_CTX_get(ctx); | 
|  | } else { | 
|  | estimate = out_sqrt; | 
|  | } | 
|  | tmp = BN_CTX_get(ctx); | 
|  | last_delta = BN_CTX_get(ctx); | 
|  | delta = BN_CTX_get(ctx); | 
|  | if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_sqrt, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* We estimate that the square root of an n-bit number is 2^{n/2}. */ | 
|  | BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2); | 
|  |  | 
|  | /* This is Newton's method for finding a root of the equation |estimate|^2 - | 
|  | * |in| = 0. */ | 
|  | for (;;) { | 
|  | /* |estimate| = 1/2 * (|estimate| + |in|/|estimate|) */ | 
|  | if (!BN_div(tmp, NULL, in, estimate, ctx) || | 
|  | !BN_add(tmp, tmp, estimate) || | 
|  | !BN_rshift1(estimate, tmp) || | 
|  | /* |tmp| = |estimate|^2 */ | 
|  | !BN_sqr(tmp, estimate, ctx) || | 
|  | /* |delta| = |in| - |tmp| */ | 
|  | !BN_sub(delta, in, tmp)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_sqrt, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | delta->neg = 0; | 
|  | /* The difference between |in| and |estimate| squared is required to always | 
|  | * decrease. This ensures that the loop always terminates, but I don't have | 
|  | * a proof that it always finds the square root for a given square. */ | 
|  | if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | last_delta_valid = 1; | 
|  |  | 
|  | tmp2 = last_delta; | 
|  | last_delta = delta; | 
|  | delta = tmp2; | 
|  | } | 
|  |  | 
|  | if (BN_cmp(tmp, in) != 0) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_sqrt, BN_R_NOT_A_SQUARE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | err: | 
|  | if (ok && out_sqrt == in) { | 
|  | BN_copy(out_sqrt, estimate); | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ok; | 
|  | } |