| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <limits.h> | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | #define asm __asm__ | 
 |  | 
 | #if !defined(OPENSSL_NO_ASM) | 
 | # if defined(__GNUC__) && __GNUC__>=2 | 
 | #  if defined(OPENSSL_X86) | 
 |    /* | 
 |     * There were two reasons for implementing this template: | 
 |     * - GNU C generates a call to a function (__udivdi3 to be exact) | 
 |     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to | 
 |     *   understand why...); | 
 |     * - divl doesn't only calculate quotient, but also leaves | 
 |     *   remainder in %edx which we can definitely use here:-) | 
 |     * | 
 |     *					<appro@fy.chalmers.se> | 
 |     */ | 
 | #undef div_asm | 
 | #  define div_asm(n0,n1,d0)		\ | 
 | 	({  asm volatile (			\ | 
 | 		"divl	%4"			\ | 
 | 		: "=a"(q), "=d"(rem)		\ | 
 | 		: "a"(n1), "d"(n0), "g"(d0)	\ | 
 | 		: "cc");			\ | 
 | 	    q;					\ | 
 | 	}) | 
 | #  define REMAINDER_IS_ALREADY_CALCULATED | 
 | #  elif defined(OPENSSL_X86_64) | 
 |    /* | 
 |     * Same story here, but it's 128-bit by 64-bit division. Wow! | 
 |     *					<appro@fy.chalmers.se> | 
 |     */ | 
 | #  undef div_asm | 
 | #  define div_asm(n0,n1,d0)		\ | 
 | 	({  asm volatile (			\ | 
 | 		"divq	%4"			\ | 
 | 		: "=a"(q), "=d"(rem)		\ | 
 | 		: "a"(n1), "d"(n0), "g"(d0)	\ | 
 | 		: "cc");			\ | 
 | 	    q;					\ | 
 | 	}) | 
 | #  define REMAINDER_IS_ALREADY_CALCULATED | 
 | #  endif /* __<cpu> */ | 
 | # endif /* __GNUC__ */ | 
 | #endif /* OPENSSL_NO_ASM */ | 
 |  | 
 | /* BN_div computes  dv := num / divisor,  rounding towards | 
 |  * zero, and sets up rm  such that  dv*divisor + rm = num  holds. | 
 |  * Thus: | 
 |  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero) | 
 |  *     rm->neg == num->neg                 (unless the remainder is zero) | 
 |  * If 'dv' or 'rm' is NULL, the respective value is not returned. */ | 
 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, | 
 |            BN_CTX *ctx) { | 
 |   int norm_shift, i, loop; | 
 |   BIGNUM *tmp, wnum, *snum, *sdiv, *res; | 
 |   BN_ULONG *resp, *wnump; | 
 |   BN_ULONG d0, d1; | 
 |   int num_n, div_n; | 
 |   int no_branch = 0; | 
 |  | 
 |   /* Invalid zero-padding would have particularly bad consequences | 
 |    * so don't just rely on bn_check_top() here */ | 
 |   if ((num->top > 0 && num->d[num->top - 1] == 0) || | 
 |       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if ((num->flags & BN_FLG_CONSTTIME) != 0 || | 
 |       (divisor->flags & BN_FLG_CONSTTIME) != 0) { | 
 |     no_branch = 1; | 
 |   } | 
 |  | 
 |   if (BN_is_zero(divisor)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!no_branch && BN_ucmp(num, divisor) < 0) { | 
 |     if (rm != NULL) { | 
 |       if (BN_copy(rm, num) == NULL) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     if (dv != NULL) { | 
 |       BN_zero(dv); | 
 |     } | 
 |     return 1; | 
 |   } | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   tmp = BN_CTX_get(ctx); | 
 |   snum = BN_CTX_get(ctx); | 
 |   sdiv = BN_CTX_get(ctx); | 
 |   if (dv == NULL) { | 
 |     res = BN_CTX_get(ctx); | 
 |   } else { | 
 |     res = dv; | 
 |   } | 
 |   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   /* First we normalise the numbers */ | 
 |   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); | 
 |   if (!(BN_lshift(sdiv, divisor, norm_shift))) { | 
 |     goto err; | 
 |   } | 
 |   sdiv->neg = 0; | 
 |   norm_shift += BN_BITS2; | 
 |   if (!(BN_lshift(snum, num, norm_shift))) { | 
 |     goto err; | 
 |   } | 
 |   snum->neg = 0; | 
 |  | 
 |   if (no_branch) { | 
 |     /* Since we don't know whether snum is larger than sdiv, | 
 |      * we pad snum with enough zeroes without changing its | 
 |      * value. | 
 |      */ | 
 |     if (snum->top <= sdiv->top + 1) { | 
 |       if (bn_wexpand(snum, sdiv->top + 2) == NULL) { | 
 |         goto err; | 
 |       } | 
 |       for (i = snum->top; i < sdiv->top + 2; i++) { | 
 |         snum->d[i] = 0; | 
 |       } | 
 |       snum->top = sdiv->top + 2; | 
 |     } else { | 
 |       if (bn_wexpand(snum, snum->top + 1) == NULL) { | 
 |         goto err; | 
 |       } | 
 |       snum->d[snum->top] = 0; | 
 |       snum->top++; | 
 |     } | 
 |   } | 
 |  | 
 |   div_n = sdiv->top; | 
 |   num_n = snum->top; | 
 |   loop = num_n - div_n; | 
 |   /* Lets setup a 'window' into snum | 
 |    * This is the part that corresponds to the current | 
 |    * 'area' being divided */ | 
 |   wnum.neg = 0; | 
 |   wnum.d = &(snum->d[loop]); | 
 |   wnum.top = div_n; | 
 |   /* only needed when BN_ucmp messes up the values between top and max */ | 
 |   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | 
 |  | 
 |   /* Get the top 2 words of sdiv */ | 
 |   /* div_n=sdiv->top; */ | 
 |   d0 = sdiv->d[div_n - 1]; | 
 |   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | 
 |  | 
 |   /* pointer to the 'top' of snum */ | 
 |   wnump = &(snum->d[num_n - 1]); | 
 |  | 
 |   /* Setup to 'res' */ | 
 |   res->neg = (num->neg ^ divisor->neg); | 
 |   if (!bn_wexpand(res, (loop + 1))) { | 
 |     goto err; | 
 |   } | 
 |   res->top = loop - no_branch; | 
 |   resp = &(res->d[loop - 1]); | 
 |  | 
 |   /* space for temp */ | 
 |   if (!bn_wexpand(tmp, (div_n + 1))) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!no_branch) { | 
 |     if (BN_ucmp(&wnum, sdiv) >= 0) { | 
 |       bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); | 
 |       *resp = 1; | 
 |     } else { | 
 |       res->top--; | 
 |     } | 
 |   } | 
 |  | 
 |   /* if res->top == 0 then clear the neg value otherwise decrease | 
 |    * the resp pointer */ | 
 |   if (res->top == 0) { | 
 |     res->neg = 0; | 
 |   } else { | 
 |     resp--; | 
 |   } | 
 |  | 
 |   for (i = 0; i < loop - 1; i++, wnump--, resp--) { | 
 |     BN_ULONG q, l0; | 
 |     /* the first part of the loop uses the top two words of snum and sdiv to | 
 |      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */ | 
 |     BN_ULONG n0, n1, rem = 0; | 
 |  | 
 |     n0 = wnump[0]; | 
 |     n1 = wnump[-1]; | 
 |     if (n0 == d0) { | 
 |       q = BN_MASK2; | 
 |     } else { | 
 |       /* n0 < d0 */ | 
 | #ifdef BN_LLONG | 
 |       BN_ULLONG t2; | 
 |  | 
 | #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(div_asm) | 
 |       q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0); | 
 | #else | 
 |       q = div_asm(n0, n1, d0); | 
 | #endif | 
 |  | 
 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | 
 |       /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0, | 
 |        * isn't it? */ | 
 |       rem = (n1 - q * d0) & BN_MASK2; | 
 | #endif | 
 |  | 
 |       t2 = (BN_ULLONG)d1 * q; | 
 |  | 
 |       for (;;) { | 
 |         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) | 
 |           break; | 
 |         q--; | 
 |         rem += d0; | 
 |         if (rem < d0) | 
 |           break; /* don't let rem overflow */ | 
 |         t2 -= d1; | 
 |       } | 
 | #else /* !BN_LLONG */ | 
 |       BN_ULONG t2l, t2h; | 
 |  | 
 | #if defined(div_asm) | 
 |       q = div_asm(n0, n1, d0); | 
 | #else | 
 |       q = bn_div_words(n0, n1, d0); | 
 | #endif | 
 |  | 
 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | 
 |       rem = (n1 - q * d0) & BN_MASK2; | 
 | #endif | 
 |  | 
 | #if defined(BN_UMULT_LOHI) | 
 |       BN_UMULT_LOHI(t2l, t2h, d1, q); | 
 | #elif defined(BN_UMULT_HIGH) | 
 |       t2l = d1 * q; | 
 |       t2h = BN_UMULT_HIGH(d1, q); | 
 | #else | 
 |       { | 
 |         BN_ULONG ql, qh; | 
 |         t2l = LBITS(d1); | 
 |         t2h = HBITS(d1); | 
 |         ql = LBITS(q); | 
 |         qh = HBITS(q); | 
 |         mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ | 
 |       } | 
 | #endif | 
 |  | 
 |       for (;;) { | 
 |         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) | 
 |           break; | 
 |         q--; | 
 |         rem += d0; | 
 |         if (rem < d0) | 
 |           break; /* don't let rem overflow */ | 
 |         if (t2l < d1) | 
 |           t2h--; | 
 |         t2l -= d1; | 
 |       } | 
 | #endif /* !BN_LLONG */ | 
 |     } | 
 |  | 
 |     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | 
 |     tmp->d[div_n] = l0; | 
 |     wnum.d--; | 
 |     /* ingore top values of the bignums just sub the two | 
 |      * BN_ULONG arrays with bn_sub_words */ | 
 |     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { | 
 |       /* Note: As we have considered only the leading | 
 |        * two BN_ULONGs in the calculation of q, sdiv * q | 
 |        * might be greater than wnum (but then (q-1) * sdiv | 
 |        * is less or equal than wnum) | 
 |        */ | 
 |       q--; | 
 |       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { | 
 |         /* we can't have an overflow here (assuming | 
 |          * that q != 0, but if q == 0 then tmp is | 
 |          * zero anyway) */ | 
 |         (*wnump)++; | 
 |       } | 
 |     } | 
 |     /* store part of the result */ | 
 |     *resp = q; | 
 |   } | 
 |   bn_correct_top(snum); | 
 |   if (rm != NULL) { | 
 |     /* Keep a copy of the neg flag in num because if rm==num | 
 |      * BN_rshift() will overwrite it. | 
 |      */ | 
 |     int neg = num->neg; | 
 |     BN_rshift(rm, snum, norm_shift); | 
 |     if (!BN_is_zero(rm)) { | 
 |       rm->neg = neg; | 
 |     } | 
 |   } | 
 |   if (no_branch) { | 
 |     bn_correct_top(res); | 
 |   } | 
 |   BN_CTX_end(ctx); | 
 |   return 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return 0; | 
 | } | 
 |  | 
 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { | 
 |   if (!(BN_mod(r, m, d, ctx))) { | 
 |     return 0; | 
 |   } | 
 |   if (!r->neg) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   /* now -|d| < r < 0, so we have to set r := r + |d|. */ | 
 |   return (d->neg ? BN_sub : BN_add)(r, r, d); | 
 | } | 
 |  | 
 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   if (!BN_add(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m) { | 
 |   if (!BN_uadd(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_ucmp(r, m) >= 0) { | 
 |     return BN_usub(r, r, m); | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   if (!BN_sub(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative | 
 |  * and less than  m */ | 
 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m) { | 
 |   if (!BN_sub(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   if (r->neg) { | 
 |     return BN_add(r, r, m); | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   BIGNUM *t; | 
 |   int ret = 0; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   t = BN_CTX_get(ctx); | 
 |   if (t == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (a == b) { | 
 |     if (!BN_sqr(t, a, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } else { | 
 |     if (!BN_mul(t, a, b, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!BN_nnmod(r, t, m, ctx)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
 |   if (!BN_sqr(r, a, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* r->neg == 0,  thus we don't need BN_nnmod */ | 
 |   return BN_mod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
 |                   BN_CTX *ctx) { | 
 |   BIGNUM *abs_m = NULL; | 
 |   int ret; | 
 |  | 
 |   if (!BN_nnmod(r, a, m, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (m->neg) { | 
 |     abs_m = BN_dup(m); | 
 |     if (abs_m == NULL) { | 
 |       return 0; | 
 |     } | 
 |     abs_m->neg = 0; | 
 |   } | 
 |  | 
 |   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); | 
 |  | 
 |   if (abs_m) { | 
 |     BN_free(abs_m); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { | 
 |   if (r != a) { | 
 |     if (BN_copy(r, a) == NULL) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   while (n > 0) { | 
 |     int max_shift; | 
 |  | 
 |     /* 0 < r < m */ | 
 |     max_shift = BN_num_bits(m) - BN_num_bits(r); | 
 |     /* max_shift >= 0 */ | 
 |  | 
 |     if (max_shift < 0) { | 
 |       OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (max_shift > n) { | 
 |       max_shift = n; | 
 |     } | 
 |  | 
 |     if (max_shift) { | 
 |       if (!BN_lshift(r, r, max_shift)) { | 
 |         return 0; | 
 |       } | 
 |       n -= max_shift; | 
 |     } else { | 
 |       if (!BN_lshift1(r, r)) { | 
 |         return 0; | 
 |       } | 
 |       --n; | 
 |     } | 
 |  | 
 |     /* BN_num_bits(r) <= BN_num_bits(m) */ | 
 |     if (BN_cmp(r, m) >= 0) { | 
 |       if (!BN_sub(r, r, m)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
 |   if (!BN_lshift1(r, a)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { | 
 |   if (!BN_lshift1(r, a)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_cmp(r, m) >= 0) { | 
 |     return BN_sub(r, r, m); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { | 
 |   BN_ULONG ret = 0; | 
 |   int i, j; | 
 |  | 
 |   w &= BN_MASK2; | 
 |  | 
 |   if (!w) { | 
 |     /* actually this an error (division by zero) */ | 
 |     return (BN_ULONG) - 1; | 
 |   } | 
 |  | 
 |   if (a->top == 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* normalize input (so bn_div_words doesn't complain) */ | 
 |   j = BN_BITS2 - BN_num_bits_word(w); | 
 |   w <<= j; | 
 |   if (!BN_lshift(a, a, j)) { | 
 |     return (BN_ULONG) - 1; | 
 |   } | 
 |  | 
 |   for (i = a->top - 1; i >= 0; i--) { | 
 |     BN_ULONG l, d; | 
 |  | 
 |     l = a->d[i]; | 
 |     d = bn_div_words(ret, l, w); | 
 |     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2; | 
 |     a->d[i] = d; | 
 |   } | 
 |  | 
 |   if ((a->top > 0) && (a->d[a->top - 1] == 0)) { | 
 |     a->top--; | 
 |   } | 
 |  | 
 |   ret >>= j; | 
 |   return ret; | 
 | } | 
 |  | 
 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { | 
 | #ifndef BN_LLONG | 
 |   BN_ULONG ret = 0; | 
 | #else | 
 |   BN_ULLONG ret = 0; | 
 | #endif | 
 |   int i; | 
 |  | 
 |   if (w == 0) { | 
 |     return (BN_ULONG) -1; | 
 |   } | 
 |  | 
 |   w &= BN_MASK2; | 
 |   for (i = a->top - 1; i >= 0; i--) { | 
 | #ifndef BN_LLONG | 
 |     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; | 
 |     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; | 
 | #else | 
 |     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w); | 
 | #endif | 
 |   } | 
 |   return (BN_ULONG)ret; | 
 | } |