blob: d42d127b03a1d30f5bcddfb4275187fa1c3358cb [file] [log] [blame]
/* Copyright 2019 The BoringSSL Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <map>
#include <memory>
#include <string>
#include <vector>
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <string.h>
#include <sys/uio.h>
#include <unistd.h>
#include <cstdarg>
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/cipher.h>
#include <openssl/cmac.h>
#include <openssl/ctrdrbg.h>
#include <openssl/dh.h>
#include <openssl/digest.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/ecdh.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/hkdf.h>
#include <openssl/hmac.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/span.h>
#include "../../../../crypto/fipsmodule/bcm_interface.h"
#include "../../../../crypto/fipsmodule/ec/internal.h"
#include "../../../../crypto/fipsmodule/rand/internal.h"
#include "../../../../crypto/fipsmodule/tls/internal.h"
#include "modulewrapper.h"
namespace bssl {
namespace acvp {
#if defined(OPENSSL_TRUSTY)
#include <trusty_log.h>
#define LOG_ERROR(...) TLOGE(__VA_ARGS__)
#define TLOG_TAG "modulewrapper"
#else
#define LOG_ERROR(...) fprintf(stderr, __VA_ARGS__)
#endif // OPENSSL_TRUSTY
constexpr size_t kMaxArgLength = (1 << 20);
RequestBuffer::~RequestBuffer() = default;
class RequestBufferImpl : public RequestBuffer {
public:
~RequestBufferImpl() = default;
std::vector<uint8_t> buf;
Span<const uint8_t> args[kMaxArgs];
};
// static
std::unique_ptr<RequestBuffer> RequestBuffer::New() {
return std::make_unique<RequestBufferImpl>();
}
static bool ReadAll(int fd, void *in_data, size_t data_len) {
uint8_t *data = reinterpret_cast<uint8_t *>(in_data);
size_t done = 0;
while (done < data_len) {
ssize_t r;
do {
r = read(fd, &data[done], data_len - done);
} while (r == -1 && errno == EINTR);
if (r <= 0) {
return false;
}
done += r;
}
return true;
}
Span<const Span<const uint8_t>> ParseArgsFromFd(int fd,
RequestBuffer *in_buffer) {
RequestBufferImpl *buffer = reinterpret_cast<RequestBufferImpl *>(in_buffer);
uint32_t nums[1 + kMaxArgs];
const Span<const Span<const uint8_t>> empty_span;
if (!ReadAll(fd, nums, sizeof(uint32_t) * 2)) {
return empty_span;
}
const size_t num_args = nums[0];
if (num_args == 0) {
LOG_ERROR("Invalid, zero-argument operation requested.\n");
return empty_span;
} else if (num_args > kMaxArgs) {
LOG_ERROR("Operation requested with %zu args, but %zu is the limit.\n",
num_args, kMaxArgs);
return empty_span;
}
if (num_args > 1 &&
!ReadAll(fd, &nums[2], sizeof(uint32_t) * (num_args - 1))) {
return empty_span;
}
size_t need = 0;
for (size_t i = 0; i < num_args; i++) {
const size_t arg_length = nums[i + 1];
if (i == 0 && arg_length > kMaxNameLength) {
LOG_ERROR("Operation with name of length %zu exceeded limit of %zu.\n",
arg_length, kMaxNameLength);
return empty_span;
} else if (arg_length > kMaxArgLength) {
LOG_ERROR(
"Operation with argument of length %zu exceeded limit of %zu.\n",
arg_length, kMaxArgLength);
return empty_span;
}
// This static_assert confirms that the following addition doesn't
// overflow.
static_assert((kMaxArgs - 1 * kMaxArgLength) + kMaxNameLength > (1 << 30),
"Argument limits permit excessive messages");
need += arg_length;
}
if (need > buffer->buf.size()) {
size_t alloced = need + (need >> 1);
if (alloced < need) {
abort();
}
buffer->buf.resize(alloced);
}
if (!ReadAll(fd, buffer->buf.data(), need)) {
return empty_span;
}
size_t offset = 0;
for (size_t i = 0; i < num_args; i++) {
buffer->args[i] = Span<const uint8_t>(&buffer->buf[offset], nums[i + 1]);
offset += nums[i + 1];
}
return Span<const Span<const uint8_t>>(buffer->args, num_args);
}
// g_reply_buffer contains buffered replies which will be flushed when acvp
// requests.
static std::vector<uint8_t> g_reply_buffer;
bool WriteReplyToBuffer(const std::vector<Span<const uint8_t>> &spans) {
if (spans.size() > kMaxArgs) {
abort();
}
uint8_t buf[4];
CRYPTO_store_u32_le(buf, spans.size());
g_reply_buffer.insert(g_reply_buffer.end(), buf, buf + sizeof(buf));
for (const auto &span : spans) {
CRYPTO_store_u32_le(buf, span.size());
g_reply_buffer.insert(g_reply_buffer.end(), buf, buf + sizeof(buf));
}
for (const auto &span : spans) {
g_reply_buffer.insert(g_reply_buffer.end(), span.begin(), span.end());
}
return true;
}
bool FlushBuffer(int fd) {
size_t done = 0;
while (done < g_reply_buffer.size()) {
ssize_t n;
do {
n = write(fd, g_reply_buffer.data() + done, g_reply_buffer.size() - done);
} while (n < 0 && errno == EINTR);
if (n < 0) {
return false;
}
done += static_cast<size_t>(n);
}
g_reply_buffer.clear();
return true;
}
bool WriteReplyToFd(int fd, const std::vector<Span<const uint8_t>> &spans) {
if (spans.size() > kMaxArgs) {
abort();
}
uint32_t nums[1 + kMaxArgs];
iovec iovs[kMaxArgs + 1];
nums[0] = spans.size();
iovs[0].iov_base = nums;
iovs[0].iov_len = sizeof(uint32_t) * (1 + spans.size());
size_t num_iov = 1;
for (size_t i = 0; i < spans.size(); i++) {
const auto &span = spans[i];
nums[i + 1] = span.size();
if (span.empty()) {
continue;
}
iovs[num_iov].iov_base = const_cast<uint8_t *>(span.data());
iovs[num_iov].iov_len = span.size();
num_iov++;
}
size_t iov_done = 0;
while (iov_done < num_iov) {
ssize_t r;
do {
r = writev(fd, &iovs[iov_done], num_iov - iov_done);
} while (r == -1 && errno == EINTR);
if (r <= 0) {
return false;
}
size_t written = r;
for (size_t i = iov_done; i < num_iov && written > 0; i++) {
iovec &iov = iovs[i];
size_t done = written;
if (done > iov.iov_len) {
done = iov.iov_len;
}
iov.iov_base = reinterpret_cast<uint8_t *>(iov.iov_base) + done;
iov.iov_len -= done;
written -= done;
if (iov.iov_len == 0) {
iov_done++;
}
}
assert(written == 0);
}
return true;
}
static bool GetConfig(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
static constexpr char kConfig[] =
R"([
{
"algorithm": "acvptool",
"features": ["batch"]
},
{
"algorithm": "SHA2-224",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "SHA2-256",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "SHA2-384",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "SHA2-512",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "SHA2-512/256",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "SHA-1",
"revision": "1.0",
"messageLength": [{
"min": 0, "max": 65528, "increment": 8
}]
},
{
"algorithm": "ACVP-AES-ECB",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 192, 256]
},
{
"algorithm": "ACVP-AES-CTR",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 192, 256],
"payloadLen": [{
"min": 8, "max": 128, "increment": 8
}],
"incrementalCounter": true,
"overflowCounter": true,
"performCounterTests": true
},
{
"algorithm": "ACVP-AES-CBC",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 192, 256]
},
{
"algorithm": "ACVP-AES-GCM",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 256],
"payloadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"aadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"tagLen": [32, 64, 96, 104, 112, 120, 128],
"ivLen": [96],
"ivGen": "internal",
"ivGenMode": "8.2.2"
},
{
"algorithm": "ACVP-AES-GCM",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 192, 256],
"payloadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"aadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"tagLen": [32, 64, 96, 104, 112, 120, 128],
"ivLen": [96],
"ivGen": "external"
},
{
"algorithm": "ACVP-AES-GMAC",
"revision": "1.0",
"direction": ["encrypt", "decrypt"],
"keyLen": [128, 192, 256],
"payloadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"aadLen": [{
"min": 0, "max": 65536, "increment": 8
}],
"tagLen": [32, 64, 96, 104, 112, 120, 128],
"ivLen": [96],
"ivGen": "external"
},
{
"algorithm": "ACVP-AES-KW",
"revision": "1.0",
"direction": [
"encrypt",
"decrypt"
],
"kwCipher": [
"cipher"
],
"keyLen": [
128, 192, 256
],
"payloadLen": [{"min": 128, "max": 4096, "increment": 64}]
},
{
"algorithm": "ACVP-AES-KWP",
"revision": "1.0",
"direction": [
"encrypt",
"decrypt"
],
"kwCipher": [
"cipher"
],
"keyLen": [
128, 192, 256
],
"payloadLen": [{"min": 8, "max": 4096, "increment": 8}]
},
{
"algorithm": "ACVP-AES-CCM",
"revision": "1.0",
"direction": [
"encrypt",
"decrypt"
],
"keyLen": [
128
],
"payloadLen": [{"min": 0, "max": 256, "increment": 8}],
"ivLen": [104],
"tagLen": [32, 64],
"aadLen": [{"min": 0, "max": 524288, "increment": 8}]
},
{
"algorithm": "HMAC-SHA-1",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 160, "increment": 8
}]
},
{
"algorithm": "HMAC-SHA2-224",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 224, "increment": 8
}]
},
{
"algorithm": "HMAC-SHA2-256",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 256, "increment": 8
}]
},
{
"algorithm": "HMAC-SHA2-384",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 384, "increment": 8
}]
},
{
"algorithm": "HMAC-SHA2-512",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 512, "increment": 8
}]
},
{
"algorithm": "HMAC-SHA2-512/256",
"revision": "1.0",
"keyLen": [{
"min": 8, "max": 524288, "increment": 8
}],
"macLen": [{
"min": 32, "max": 256, "increment": 8
}]
},
{
"algorithm": "ctrDRBG",
"revision": "1.0",
"predResistanceEnabled": [false],
"reseedImplemented": true,
"capabilities": [{
"mode": "AES-256",
"derFuncEnabled": false,
"entropyInputLen": [384],
"nonceLen": [0],
"persoStringLen": [{"min": 0, "max": 384, "increment": 16}],
"additionalInputLen": [
{"min": 0, "max": 384, "increment": 16}
],
"returnedBitsLen": 2048
}]
},
{
"algorithm": "ECDSA",
"mode": "keyGen",
"revision": "FIPS186-5",
"curve": [
"P-224",
"P-256",
"P-384",
"P-521"
],
"secretGenerationMode": [
"testing candidates"
]
},
{
"algorithm": "ECDSA",
"mode": "keyVer",
"revision": "FIPS186-5",
"curve": [
"P-224",
"P-256",
"P-384",
"P-521"
]
},
{
"algorithm": "ECDSA",
"mode": "sigGen",
"revision": "FIPS186-5",
"capabilities": [{
"curve": [
"P-224",
"P-256",
"P-384",
"P-521"
],
"hashAlg": [
"SHA2-224",
"SHA2-256",
"SHA2-384",
"SHA2-512",
"SHA2-512/256"
]
}]
},
{
"algorithm": "ECDSA",
"mode": "sigVer",
"revision": "FIPS186-5",
"capabilities": [{
"curve": [
"P-224",
"P-256",
"P-384",
"P-521"
],
"hashAlg": [
"SHA2-224",
"SHA2-256",
"SHA2-384",
"SHA2-512",
"SHA2-512/256"
]
}]
},
{
"algorithm": "RSA",
"mode": "keyGen",
"revision": "FIPS186-5",
"infoGeneratedByServer": true,
"pubExpMode": "fixed",
"fixedPubExp": "010001",
"keyFormat": "standard",
"capabilities": [{
"randPQ": "probable",
"properties": [{
"modulo": 2048,
"primeTest": [
"2powSecStr"
]
},{
"modulo": 3072,
"primeTest": [
"2powSecStr"
]
},{
"modulo": 4096,
"primeTest": [
"2powSecStr"
]
}]
}]
},
{
"algorithm": "RSA",
"mode": "sigGen",
"revision": "FIPS186-5",
"capabilities": [{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 2048,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 3072,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 4096,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 2048,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 3072,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 4096,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
}]
},
{
"algorithm": "RSA",
"mode": "sigVer",
"revision": "FIPS186-5",
"pubExpMode": "fixed",
"fixedPubExp": "010001",
"capabilities": [{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 2048,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 3072,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pkcs1v1.5",
"properties": [{
"modulo": 4096,
"hashPair": [{
"hashAlg": "SHA2-224"
}, {
"hashAlg": "SHA2-256"
}, {
"hashAlg": "SHA2-384"
}, {
"hashAlg": "SHA2-512"
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 2048,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 3072,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
},{
"sigType": "pss",
"properties": [{
"maskFunction": ["mgf1"],
"modulo": 4096,
"hashPair": [{
"hashAlg": "SHA2-224",
"saltLen": 28
}, {
"hashAlg": "SHA2-256",
"saltLen": 32
}, {
"hashAlg": "SHA2-384",
"saltLen": 48
}, {
"hashAlg": "SHA2-512",
"saltLen": 64
}, {
"hashAlg": "SHA2-512/256",
"saltLen": 32
}]
}]
}]
},
{
"algorithm": "CMAC-AES",
"acvptoolTestOnly": true,
"revision": "1.0",
"capabilities": [{
"direction": ["gen", "ver"],
"msgLen": [{
"min": 0,
"max": 524288,
"increment": 8
}],
"keyLen": [128, 256],
"macLen": [{
"min": 8,
"max": 128,
"increment": 8
}]
}]
},
{
"algorithm": "KAS-ECC-SSC",
"revision": "Sp800-56Ar3",
"scheme": {
"ephemeralUnified": {
"kasRole": [
"initiator",
"responder"
]
},
"staticUnified": {
"kasRole": [
"initiator",
"responder"
]
}
},
"domainParameterGenerationMethods": [
"P-224",
"P-256",
"P-384",
"P-521"
]
},
{
"algorithm": "KAS-FFC-SSC",
"revision": "Sp800-56Ar3",
"scheme": {
"dhEphem": {
"kasRole": [
"initiator"
]
}
},
"domainParameterGenerationMethods": [
"FB",
"FC"
]
},
{
"algorithm": "KDA",
"mode": "HKDF",
"revision": "Sp800-56Cr1",
"fixedInfoPattern": "uPartyInfo||vPartyInfo",
"encoding": [
"concatenation"
],
"hmacAlg": [
"SHA2-224",
"SHA2-256",
"SHA2-384",
"SHA2-512",
"SHA2-512/256"
],
"macSaltMethods": [
"default",
"random"
],
"l": 2048,
"z": [
{
"min": 224,
"max": 65336,
"increment": 8
}
]
},
{
"algorithm": "TLS-v1.2",
"mode": "KDF",
"revision": "RFC7627",
"hashAlg": [
"SHA2-256",
"SHA2-384",
"SHA2-512"
]
},
{
"algorithm": "TLS-v1.3",
"mode": "KDF",
"revision": "RFC8446",
"hmacAlg": [
"SHA2-256",
"SHA2-384"
],
"runningMode": [
"DHE",
"PSK",
"PSK-DHE"
]
},
{
"algorithm": "ML-DSA",
"mode": "keyGen",
"revision": "FIPS204",
"parameterSets": [
"ML-DSA-65",
"ML-DSA-87"
]
},
{
"algorithm": "ML-DSA",
"mode": "sigGen",
"revision": "FIPS204",
"parameterSets": [
"ML-DSA-65",
"ML-DSA-87"
],
"deterministic": [
true,
false
],
"messageLength": [
{
"min": 8,
"max": 65536,
"increment": 8
}
]
},
{
"algorithm": "ML-DSA",
"mode": "sigVer",
"revision": "FIPS204",
"parameterSets": [
"ML-DSA-65",
"ML-DSA-87"
]
}
])";
return write_reply({Span<const uint8_t>(
reinterpret_cast<const uint8_t *>(kConfig), sizeof(kConfig) - 1)});
}
static bool Flush(const Span<const uint8_t> args[], ReplyCallback write_reply) {
fprintf(
stderr,
"modulewrapper code processed a `flush` command but this must be handled "
"at a higher-level. See the example in main.cc in BoringSSL\n");
abort();
}
template <uint8_t *(*OneShotHash)(const uint8_t *, size_t, uint8_t *),
size_t DigestLength>
static bool Hash(const Span<const uint8_t> args[], ReplyCallback write_reply) {
uint8_t digest[DigestLength];
OneShotHash(args[0].data(), args[0].size(), digest);
return write_reply({Span<const uint8_t>(digest)});
}
template <uint8_t *(*OneShotHash)(const uint8_t *, size_t, uint8_t *),
size_t DigestLength>
static bool HashMCT(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
if (args[0].size() != DigestLength) {
return false;
}
uint8_t buf[DigestLength * 3];
memcpy(buf, args[0].data(), DigestLength);
memcpy(buf + DigestLength, args[0].data(), DigestLength);
memcpy(buf + 2 * DigestLength, args[0].data(), DigestLength);
for (size_t i = 0; i < 1000; i++) {
uint8_t digest[DigestLength];
OneShotHash(buf, sizeof(buf), digest);
memmove(buf, buf + DigestLength, DigestLength * 2);
memcpy(buf + DigestLength * 2, digest, DigestLength);
}
return write_reply(
{Span<const uint8_t>(buf + 2 * DigestLength, DigestLength)});
}
static uint32_t GetIterations(const Span<const uint8_t> iterations_bytes) {
uint32_t iterations;
if (iterations_bytes.size() != sizeof(iterations)) {
LOG_ERROR(
"Expected %u-byte input for number of iterations, but found %u "
"bytes.\n",
static_cast<unsigned>(sizeof(iterations)),
static_cast<unsigned>(iterations_bytes.size()));
abort();
}
memcpy(&iterations, iterations_bytes.data(), sizeof(iterations));
if (iterations == 0 || iterations == UINT32_MAX) {
LOG_ERROR("Invalid number of iterations: %x.\n",
static_cast<unsigned>(iterations));
abort();
}
return iterations;
}
template <int (*SetKey)(const uint8_t *key, unsigned bits, AES_KEY *out),
void (*Block)(const uint8_t *in, uint8_t *out, const AES_KEY *key)>
static bool AES(const Span<const uint8_t> args[], ReplyCallback write_reply) {
AES_KEY key;
if (SetKey(args[0].data(), args[0].size() * 8, &key) != 0) {
return false;
}
if (args[1].size() % AES_BLOCK_SIZE != 0) {
return false;
}
std::vector<uint8_t> result(args[1].begin(), args[1].end());
const uint32_t iterations = GetIterations(args[2]);
std::vector<uint8_t> prev_result;
for (uint32_t j = 0; j < iterations; j++) {
if (j == iterations - 1) {
prev_result = result;
}
for (size_t i = 0; i < args[1].size(); i += AES_BLOCK_SIZE) {
Block(result.data() + i, result.data() + i, &key);
}
}
return write_reply(
{Span<const uint8_t>(result), Span<const uint8_t>(prev_result)});
}
template <int (*SetKey)(const uint8_t *key, unsigned bits, AES_KEY *out),
int Direction>
static bool AES_CBC(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
AES_KEY key;
if (SetKey(args[0].data(), args[0].size() * 8, &key) != 0) {
return false;
}
if (args[1].size() % AES_BLOCK_SIZE != 0 || args[1].empty() ||
args[2].size() != AES_BLOCK_SIZE) {
return false;
}
std::vector<uint8_t> input(args[1].begin(), args[1].end());
std::vector<uint8_t> iv(args[2].begin(), args[2].end());
const uint32_t iterations = GetIterations(args[3]);
std::vector<uint8_t> result(input.size());
std::vector<uint8_t> prev_result, prev_input;
for (uint32_t j = 0; j < iterations; j++) {
prev_result = result;
if (j > 0) {
if (Direction == AES_ENCRYPT) {
iv = result;
} else {
iv = prev_input;
}
}
// AES_cbc_encrypt will mutate the given IV, but we need it later.
uint8_t iv_copy[AES_BLOCK_SIZE];
memcpy(iv_copy, iv.data(), sizeof(iv_copy));
AES_cbc_encrypt(input.data(), result.data(), input.size(), &key, iv_copy,
Direction);
if (Direction == AES_DECRYPT) {
prev_input = input;
}
if (j == 0) {
input = iv;
} else {
input = prev_result;
}
}
return write_reply(
{Span<const uint8_t>(result), Span<const uint8_t>(prev_result)});
}
static bool AES_CTR(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
static const uint32_t kOneIteration = 1;
if (args[3].size() != sizeof(kOneIteration) ||
memcmp(args[3].data(), &kOneIteration, sizeof(kOneIteration))) {
LOG_ERROR("Only a single iteration supported with AES-CTR\n");
return false;
}
AES_KEY key;
if (AES_set_encrypt_key(args[0].data(), args[0].size() * 8, &key) != 0) {
return false;
}
if (args[2].size() != AES_BLOCK_SIZE) {
return false;
}
uint8_t iv[AES_BLOCK_SIZE];
memcpy(iv, args[2].data(), AES_BLOCK_SIZE);
if (GetIterations(args[3]) != 1) {
LOG_ERROR("Multiple iterations of AES-CTR is not supported.\n");
return false;
}
std::vector<uint8_t> out;
out.resize(args[1].size());
unsigned num = 0;
uint8_t ecount_buf[AES_BLOCK_SIZE];
AES_ctr128_encrypt(args[1].data(), out.data(), args[1].size(), &key, iv,
ecount_buf, &num);
return write_reply({Span<const uint8_t>(out)});
}
static bool AESGCMSetup(EVP_AEAD_CTX *ctx, Span<const uint8_t> tag_len_span,
Span<const uint8_t> key) {
if (tag_len_span.size() != sizeof(uint32_t)) {
LOG_ERROR("Tag size value is %u bytes, not an uint32_t\n",
static_cast<unsigned>(tag_len_span.size()));
return false;
}
const uint32_t tag_len_32 = CRYPTO_load_u32_le(tag_len_span.data());
const EVP_AEAD *aead;
switch (key.size()) {
case 16:
aead = EVP_aead_aes_128_gcm();
break;
case 24:
aead = EVP_aead_aes_192_gcm();
break;
case 32:
aead = EVP_aead_aes_256_gcm();
break;
default:
LOG_ERROR("Bad AES-GCM key length %u\n",
static_cast<unsigned>(key.size()));
return false;
}
if (!EVP_AEAD_CTX_init(ctx, aead, key.data(), key.size(), tag_len_32,
nullptr)) {
LOG_ERROR("Failed to setup AES-GCM with tag length %u\n",
static_cast<unsigned>(tag_len_32));
return false;
}
return true;
}
static bool AESGCMRandNonceSetup(EVP_AEAD_CTX *ctx,
Span<const uint8_t> tag_len_span,
Span<const uint8_t> key) {
if (tag_len_span.size() != sizeof(uint32_t)) {
LOG_ERROR("Tag size value is %u bytes, not an uint32_t\n",
static_cast<unsigned>(tag_len_span.size()));
return false;
}
const uint32_t tag_len_32 = CRYPTO_load_u32_le(tag_len_span.data());
const EVP_AEAD *aead;
switch (key.size()) {
case 16:
aead = EVP_aead_aes_128_gcm_randnonce();
break;
case 32:
aead = EVP_aead_aes_256_gcm_randnonce();
break;
default:
LOG_ERROR("Bad AES-GCM key length %u\n",
static_cast<unsigned>(key.size()));
return false;
}
constexpr size_t kNonceLength = 12;
if (!EVP_AEAD_CTX_init(ctx, aead, key.data(), key.size(),
tag_len_32 + kNonceLength, nullptr)) {
LOG_ERROR("Failed to setup AES-GCM with tag length %u\n",
static_cast<unsigned>(tag_len_32));
return false;
}
return true;
}
static bool AESCCMSetup(EVP_AEAD_CTX *ctx, Span<const uint8_t> tag_len_span,
Span<const uint8_t> key) {
uint32_t tag_len_32;
if (tag_len_span.size() != sizeof(tag_len_32)) {
LOG_ERROR("Tag size value is %u bytes, not an uint32_t\n",
static_cast<unsigned>(tag_len_span.size()));
return false;
}
memcpy(&tag_len_32, tag_len_span.data(), sizeof(tag_len_32));
const EVP_AEAD *aead;
switch (tag_len_32) {
case 4:
aead = EVP_aead_aes_128_ccm_bluetooth();
break;
case 8:
aead = EVP_aead_aes_128_ccm_bluetooth_8();
break;
default:
LOG_ERROR(
"AES-CCM only supports 4- and 8-byte tags, but %u was requested\n",
static_cast<unsigned>(tag_len_32));
return false;
}
if (key.size() != 16) {
LOG_ERROR("AES-CCM only supports 128-bit keys, but %u bits were given\n",
static_cast<unsigned>(key.size() * 8));
return false;
}
if (!EVP_AEAD_CTX_init(ctx, aead, key.data(), key.size(), tag_len_32,
nullptr)) {
LOG_ERROR("Failed to setup AES-CCM with tag length %u\n",
static_cast<unsigned>(tag_len_32));
return false;
}
return true;
}
template <bool (*SetupFunc)(EVP_AEAD_CTX *ctx, Span<const uint8_t> tag_len_span,
Span<const uint8_t> key)>
static bool AEADSeal(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> tag_len_span = args[0];
Span<const uint8_t> key = args[1];
Span<const uint8_t> plaintext = args[2];
Span<const uint8_t> nonce = args[3];
Span<const uint8_t> ad = args[4];
bssl::ScopedEVP_AEAD_CTX ctx;
if (!SetupFunc(ctx.get(), tag_len_span, key)) {
return false;
}
if (EVP_AEAD_MAX_OVERHEAD + plaintext.size() < EVP_AEAD_MAX_OVERHEAD) {
return false;
}
std::vector<uint8_t> out(EVP_AEAD_MAX_OVERHEAD + plaintext.size());
size_t out_len;
if (!EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(),
nonce.data(), nonce.size(), plaintext.data(),
plaintext.size(), ad.data(), ad.size())) {
return false;
}
out.resize(out_len);
return write_reply({Span<const uint8_t>(out)});
}
template <bool (*SetupFunc)(EVP_AEAD_CTX *ctx, Span<const uint8_t> tag_len_span,
Span<const uint8_t> key)>
static bool AEADOpen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> tag_len_span = args[0];
Span<const uint8_t> key = args[1];
Span<const uint8_t> ciphertext = args[2];
Span<const uint8_t> nonce = args[3];
Span<const uint8_t> ad = args[4];
bssl::ScopedEVP_AEAD_CTX ctx;
if (!SetupFunc(ctx.get(), tag_len_span, key)) {
return false;
}
std::vector<uint8_t> out(ciphertext.size());
size_t out_len;
uint8_t success_flag[1] = {0};
if (!EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(),
nonce.data(), nonce.size(), ciphertext.data(),
ciphertext.size(), ad.data(), ad.size())) {
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>()});
}
out.resize(out_len);
success_flag[0] = 1;
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>(out)});
}
static bool AESPaddedKeyWrapSetup(AES_KEY *out, bool decrypt,
Span<const uint8_t> key) {
if ((decrypt ? AES_set_decrypt_key : AES_set_encrypt_key)(
key.data(), key.size() * 8, out) != 0) {
LOG_ERROR("Invalid AES key length for AES-KW(P): %u\n",
static_cast<unsigned>(key.size()));
return false;
}
return true;
}
static bool AESKeyWrapSetup(AES_KEY *out, bool decrypt, Span<const uint8_t> key,
Span<const uint8_t> input) {
if (!AESPaddedKeyWrapSetup(out, decrypt, key)) {
return false;
}
if (input.size() % 8) {
LOG_ERROR("Invalid AES-KW input length: %u\n",
static_cast<unsigned>(input.size()));
return false;
}
return true;
}
static bool AESKeyWrapSeal(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> key = args[1];
Span<const uint8_t> plaintext = args[2];
AES_KEY aes;
if (!AESKeyWrapSetup(&aes, /*decrypt=*/false, key, plaintext) ||
plaintext.size() > INT_MAX - 8) {
return false;
}
std::vector<uint8_t> out(plaintext.size() + 8);
if (AES_wrap_key(&aes, /*iv=*/nullptr, out.data(), plaintext.data(),
plaintext.size()) != static_cast<int>(out.size())) {
LOG_ERROR("AES-KW failed\n");
return false;
}
return write_reply({Span<const uint8_t>(out)});
}
static bool AESKeyWrapOpen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> key = args[1];
Span<const uint8_t> ciphertext = args[2];
AES_KEY aes;
if (!AESKeyWrapSetup(&aes, /*decrypt=*/true, key, ciphertext) ||
ciphertext.size() < 8 || ciphertext.size() > INT_MAX) {
return false;
}
std::vector<uint8_t> out(ciphertext.size() - 8);
uint8_t success_flag[1] = {0};
if (AES_unwrap_key(&aes, /*iv=*/nullptr, out.data(), ciphertext.data(),
ciphertext.size()) != static_cast<int>(out.size())) {
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>()});
}
success_flag[0] = 1;
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>(out)});
}
static bool AESPaddedKeyWrapSeal(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> key = args[1];
Span<const uint8_t> plaintext = args[2];
AES_KEY aes;
if (!AESPaddedKeyWrapSetup(&aes, /*decrypt=*/false, key) ||
plaintext.size() + 15 < 15) {
return false;
}
std::vector<uint8_t> out(plaintext.size() + 15);
size_t out_len;
if (!AES_wrap_key_padded(&aes, out.data(), &out_len, out.size(),
plaintext.data(), plaintext.size())) {
LOG_ERROR("AES-KWP failed\n");
return false;
}
out.resize(out_len);
return write_reply({Span<const uint8_t>(out)});
}
static bool AESPaddedKeyWrapOpen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
Span<const uint8_t> key = args[1];
Span<const uint8_t> ciphertext = args[2];
AES_KEY aes;
if (!AESPaddedKeyWrapSetup(&aes, /*decrypt=*/true, key) ||
ciphertext.size() % 8) {
return false;
}
std::vector<uint8_t> out(ciphertext.size());
size_t out_len;
uint8_t success_flag[1] = {0};
if (!AES_unwrap_key_padded(&aes, out.data(), &out_len, out.size(),
ciphertext.data(), ciphertext.size())) {
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>()});
}
success_flag[0] = 1;
out.resize(out_len);
return write_reply(
{Span<const uint8_t>(success_flag), Span<const uint8_t>(out)});
}
template <bool Encrypt>
static bool TDES(const Span<const uint8_t> args[], ReplyCallback write_reply) {
const EVP_CIPHER *cipher = EVP_des_ede3();
if (args[0].size() != 24) {
LOG_ERROR("Bad key length %u for 3DES.\n",
static_cast<unsigned>(args[0].size()));
return false;
}
bssl::ScopedEVP_CIPHER_CTX ctx;
if (!EVP_CipherInit_ex(ctx.get(), cipher, nullptr, args[0].data(), nullptr,
Encrypt ? 1 : 0) ||
!EVP_CIPHER_CTX_set_padding(ctx.get(), 0)) {
return false;
}
if (args[1].size() % 8) {
LOG_ERROR("Bad input length %u for 3DES.\n",
static_cast<unsigned>(args[1].size()));
return false;
}
std::vector<uint8_t> result(args[1].begin(), args[1].end());
const uint32_t iterations = GetIterations(args[2]);
std::vector<uint8_t> prev_result, prev_prev_result;
for (uint32_t j = 0; j < iterations; j++) {
if (j == iterations - 1) {
prev_result = result;
} else if (iterations >= 2 && j == iterations - 2) {
prev_prev_result = result;
}
int out_len;
if (!EVP_CipherUpdate(ctx.get(), result.data(), &out_len, result.data(),
result.size()) ||
out_len != static_cast<int>(result.size())) {
return false;
}
}
return write_reply({Span<const uint8_t>(result),
Span<const uint8_t>(prev_result),
Span<const uint8_t>(prev_prev_result)});
}
template <bool Encrypt>
static bool TDES_CBC(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const EVP_CIPHER *cipher = EVP_des_ede3_cbc();
if (args[0].size() != 24) {
LOG_ERROR("Bad key length %u for 3DES.\n",
static_cast<unsigned>(args[0].size()));
return false;
}
if (args[1].size() % 8 || args[1].size() == 0) {
LOG_ERROR("Bad input length %u for 3DES.\n",
static_cast<unsigned>(args[1].size()));
return false;
}
std::vector<uint8_t> input(args[1].begin(), args[1].end());
if (args[2].size() != EVP_CIPHER_iv_length(cipher)) {
LOG_ERROR("Bad IV length %u for 3DES.\n",
static_cast<unsigned>(args[2].size()));
return false;
}
std::vector<uint8_t> iv(args[2].begin(), args[2].end());
const uint32_t iterations = GetIterations(args[3]);
std::vector<uint8_t> result(input.size());
std::vector<uint8_t> prev_result, prev_prev_result;
bssl::ScopedEVP_CIPHER_CTX ctx;
if (!EVP_CipherInit_ex(ctx.get(), cipher, nullptr, args[0].data(), iv.data(),
Encrypt ? 1 : 0) ||
!EVP_CIPHER_CTX_set_padding(ctx.get(), 0)) {
return false;
}
for (uint32_t j = 0; j < iterations; j++) {
prev_prev_result = prev_result;
prev_result = result;
int out_len, out_len2;
if (!EVP_CipherInit_ex(ctx.get(), nullptr, nullptr, nullptr, iv.data(),
-1) ||
!EVP_CipherUpdate(ctx.get(), result.data(), &out_len, input.data(),
input.size()) ||
!EVP_CipherFinal_ex(ctx.get(), result.data() + out_len, &out_len2) ||
(out_len + out_len2) != static_cast<int>(result.size())) {
return false;
}
if (Encrypt) {
if (j == 0) {
input = iv;
} else {
input = prev_result;
}
iv = result;
} else {
iv = input;
input = result;
}
}
return write_reply({Span<const uint8_t>(result),
Span<const uint8_t>(prev_result),
Span<const uint8_t>(prev_prev_result)});
}
template <const EVP_MD *HashFunc()>
static bool HMAC(const Span<const uint8_t> args[], ReplyCallback write_reply) {
const EVP_MD *const md = HashFunc();
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (::HMAC(md, args[1].data(), args[1].size(), args[0].data(), args[0].size(),
digest, &digest_len) == nullptr) {
return false;
}
return write_reply({Span<const uint8_t>(digest, digest_len)});
}
template <const EVP_MD *HashFunc()>
static bool HKDF(const Span<const uint8_t> args[], ReplyCallback write_reply) {
const EVP_MD *const md = HashFunc();
const auto key = args[0];
const auto salt = args[1];
const auto info = args[2];
const auto out_len_bytes = args[3];
if (out_len_bytes.size() != sizeof(uint32_t)) {
return false;
}
const uint32_t out_len = CRYPTO_load_u32_le(out_len_bytes.data());
if (out_len > (1 << 24)) {
return false;
}
std::vector<uint8_t> out(out_len);
if (!::HKDF(out.data(), out_len, md, key.data(), key.size(), salt.data(),
salt.size(), info.data(), info.size())) {
return false;
}
return write_reply({out});
}
template <const EVP_MD *HashFunc()>
static bool HKDFExtract(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const EVP_MD *const md = HashFunc();
const auto secret = args[0];
const auto salt = args[1];
std::vector<uint8_t> out(EVP_MD_size(md));
size_t out_len;
if (!HKDF_extract(out.data(), &out_len, md, secret.data(), secret.size(),
salt.data(), salt.size())) {
return false;
}
assert(out_len == out.size());
return write_reply({out});
}
template <const EVP_MD *HashFunc()>
static bool HKDFExpandLabel(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const EVP_MD *const md = HashFunc();
const auto out_len_bytes = args[0];
const auto secret = args[1];
const auto label = args[2];
const auto hash = args[3];
if (out_len_bytes.size() != sizeof(uint32_t)) {
return false;
}
const uint32_t out_len = CRYPTO_load_u32_le(out_len_bytes.data());
if (out_len > (1 << 24)) {
return false;
}
std::vector<uint8_t> out(out_len);
if (!CRYPTO_tls13_hkdf_expand_label(out.data(), out_len, md, secret.data(),
secret.size(), label.data(), label.size(),
hash.data(), hash.size())) {
return false;
}
return write_reply({out});
}
template <bool WithReseed>
static bool DRBG(const Span<const uint8_t> args[], ReplyCallback write_reply) {
const auto out_len_bytes = args[0];
const auto entropy = args[1];
const auto personalisation = args[2];
Span<const uint8_t> reseed_additional_data, reseed_entropy, additional_data1,
additional_data2, nonce;
if (!WithReseed) {
additional_data1 = args[3];
additional_data2 = args[4];
nonce = args[5];
} else {
reseed_additional_data = args[3];
reseed_entropy = args[4];
additional_data1 = args[5];
additional_data2 = args[6];
nonce = args[7];
}
uint32_t out_len;
if (out_len_bytes.size() != sizeof(out_len) ||
entropy.size() != CTR_DRBG_ENTROPY_LEN ||
(!reseed_entropy.empty() &&
reseed_entropy.size() != CTR_DRBG_ENTROPY_LEN) ||
// nonces are not supported
nonce.size() != 0) {
return false;
}
memcpy(&out_len, out_len_bytes.data(), sizeof(out_len));
if (out_len > (1 << 24)) {
return false;
}
std::vector<uint8_t> out(out_len);
CTR_DRBG_STATE drbg;
if (!CTR_DRBG_init(&drbg, entropy.data(), personalisation.data(),
personalisation.size()) ||
(!reseed_entropy.empty() &&
!CTR_DRBG_reseed(&drbg, reseed_entropy.data(),
reseed_additional_data.data(),
reseed_additional_data.size())) ||
!CTR_DRBG_generate(&drbg, out.data(), out_len, additional_data1.data(),
additional_data1.size()) ||
!CTR_DRBG_generate(&drbg, out.data(), out_len, additional_data2.data(),
additional_data2.size())) {
return false;
}
return write_reply({Span<const uint8_t>(out)});
}
static bool StringEq(Span<const uint8_t> a, const char *b) {
const size_t len = strlen(b);
return a.size() == len && memcmp(a.data(), b, len) == 0;
}
static bssl::UniquePtr<EC_KEY> ECKeyFromName(Span<const uint8_t> name) {
int nid;
if (StringEq(name, "P-224")) {
nid = NID_secp224r1;
} else if (StringEq(name, "P-256")) {
nid = NID_X9_62_prime256v1;
} else if (StringEq(name, "P-384")) {
nid = NID_secp384r1;
} else if (StringEq(name, "P-521")) {
nid = NID_secp521r1;
} else {
return nullptr;
}
return bssl::UniquePtr<EC_KEY>(EC_KEY_new_by_curve_name(nid));
}
static std::vector<uint8_t> BIGNUMBytes(const BIGNUM *bn) {
const size_t len = BN_num_bytes(bn);
std::vector<uint8_t> ret(len);
BN_bn2bin(bn, ret.data());
return ret;
}
static std::pair<std::vector<uint8_t>, std::vector<uint8_t>> GetPublicKeyBytes(
const EC_KEY *key) {
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key),
EC_KEY_get0_public_key(key), x.get(),
y.get(), /*ctx=*/nullptr)) {
abort();
}
std::vector<uint8_t> x_bytes = BIGNUMBytes(x.get());
std::vector<uint8_t> y_bytes = BIGNUMBytes(y.get());
return std::make_pair(std::move(x_bytes), std::move(y_bytes));
}
static bool ECDSAKeyGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]);
if (!key || !EC_KEY_generate_key_fips(key.get())) {
return false;
}
const auto pub_key = GetPublicKeyBytes(key.get());
std::vector<uint8_t> d_bytes =
BIGNUMBytes(EC_KEY_get0_private_key(key.get()));
return write_reply({Span<const uint8_t>(d_bytes),
Span<const uint8_t>(pub_key.first),
Span<const uint8_t>(pub_key.second)});
}
static bssl::UniquePtr<BIGNUM> BytesToBIGNUM(Span<const uint8_t> bytes) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
BN_bin2bn(bytes.data(), bytes.size(), bn.get());
return bn;
}
static bool ECDSAKeyVer(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]);
if (!key) {
return false;
}
bssl::UniquePtr<BIGNUM> x(BytesToBIGNUM(args[1]));
bssl::UniquePtr<BIGNUM> y(BytesToBIGNUM(args[2]));
uint8_t reply[1];
if (!EC_KEY_set_public_key_affine_coordinates(key.get(), x.get(), y.get()) ||
!EC_KEY_check_fips(key.get())) {
reply[0] = 0;
} else {
reply[0] = 1;
}
return write_reply({Span<const uint8_t>(reply)});
}
static const EVP_MD *HashFromName(Span<const uint8_t> name) {
if (StringEq(name, "SHA-1")) {
return EVP_sha1();
} else if (StringEq(name, "SHA2-224")) {
return EVP_sha224();
} else if (StringEq(name, "SHA2-256")) {
return EVP_sha256();
} else if (StringEq(name, "SHA2-384")) {
return EVP_sha384();
} else if (StringEq(name, "SHA2-512")) {
return EVP_sha512();
} else if (StringEq(name, "SHA2-512/256")) {
return EVP_sha512_256();
} else {
return nullptr;
}
}
static bool ECDSASigGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]);
bssl::UniquePtr<BIGNUM> d = BytesToBIGNUM(args[1]);
const EVP_MD *hash = HashFromName(args[2]);
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!key || !hash ||
!EVP_Digest(args[3].data(), args[3].size(), digest, &digest_len, hash,
/*impl=*/nullptr) ||
!EC_KEY_set_private_key(key.get(), d.get())) {
return false;
}
bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_do_sign(digest, digest_len, key.get()));
if (!sig) {
return false;
}
std::vector<uint8_t> r_bytes(BIGNUMBytes(sig->r));
std::vector<uint8_t> s_bytes(BIGNUMBytes(sig->s));
return write_reply(
{Span<const uint8_t>(r_bytes), Span<const uint8_t>(s_bytes)});
}
static bool ECDSASigVer(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]);
const EVP_MD *hash = HashFromName(args[1]);
auto msg = args[2];
bssl::UniquePtr<BIGNUM> x(BytesToBIGNUM(args[3]));
bssl::UniquePtr<BIGNUM> y(BytesToBIGNUM(args[4]));
bssl::UniquePtr<BIGNUM> r(BytesToBIGNUM(args[5]));
bssl::UniquePtr<BIGNUM> s(BytesToBIGNUM(args[6]));
ECDSA_SIG sig;
sig.r = r.get();
sig.s = s.get();
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!key || !hash ||
!EVP_Digest(msg.data(), msg.size(), digest, &digest_len, hash,
/*impl=*/nullptr)) {
return false;
}
uint8_t reply[1];
if (!EC_KEY_set_public_key_affine_coordinates(key.get(), x.get(), y.get()) ||
!EC_KEY_check_fips(key.get()) ||
!ECDSA_do_verify(digest, digest_len, &sig, key.get())) {
reply[0] = 0;
} else {
reply[0] = 1;
}
return write_reply({Span<const uint8_t>(reply)});
}
static bool CMAC_AES(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
uint8_t mac[16];
if (!AES_CMAC(mac, args[1].data(), args[1].size(), args[2].data(),
args[2].size())) {
return false;
}
uint32_t mac_len;
if (args[0].size() != sizeof(mac_len)) {
return false;
}
memcpy(&mac_len, args[0].data(), sizeof(mac_len));
if (mac_len > sizeof(mac)) {
return false;
}
return write_reply({Span<const uint8_t>(mac, mac_len)});
}
static bool CMAC_AESVerify(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
// This function is just for testing since libcrypto doesn't do the
// verification itself. The regcap doesn't advertise "ver" support.
uint8_t mac[16];
if (!AES_CMAC(mac, args[0].data(), args[0].size(), args[1].data(),
args[1].size()) ||
args[2].size() > sizeof(mac)) {
return false;
}
const uint8_t ok = (OPENSSL_memcmp(mac, args[2].data(), args[2].size()) == 0);
return write_reply({Span<const uint8_t>(&ok, sizeof(ok))});
}
static std::map<unsigned, bssl::UniquePtr<RSA>> &CachedRSAKeys() {
static std::map<unsigned, bssl::UniquePtr<RSA>> keys;
return keys;
}
static RSA *GetRSAKey(unsigned bits) {
auto it = CachedRSAKeys().find(bits);
if (it != CachedRSAKeys().end()) {
return it->second.get();
}
bssl::UniquePtr<RSA> key(RSA_new());
if (!RSA_generate_key_fips(key.get(), bits, nullptr)) {
abort();
}
RSA *const ret = key.get();
CachedRSAKeys().emplace(static_cast<unsigned>(bits), std::move(key));
return ret;
}
static bool RSAKeyGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
uint32_t bits;
if (args[0].size() != sizeof(bits)) {
return false;
}
memcpy(&bits, args[0].data(), sizeof(bits));
bssl::UniquePtr<RSA> key(RSA_new());
if (!RSA_generate_key_fips(key.get(), bits, nullptr)) {
LOG_ERROR("RSA_generate_key_fips failed for modulus length %u.\n", bits);
return false;
}
const BIGNUM *n, *e, *d, *p, *q;
RSA_get0_key(key.get(), &n, &e, &d);
RSA_get0_factors(key.get(), &p, &q);
if (!write_reply({BIGNUMBytes(e), BIGNUMBytes(p), BIGNUMBytes(q),
BIGNUMBytes(n), BIGNUMBytes(d)})) {
return false;
}
CachedRSAKeys().emplace(static_cast<unsigned>(bits), std::move(key));
return true;
}
template <const EVP_MD *(MDFunc)(), bool UsePSS>
static bool RSASigGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
uint32_t bits;
if (args[0].size() != sizeof(bits)) {
return false;
}
memcpy(&bits, args[0].data(), sizeof(bits));
const Span<const uint8_t> msg = args[1];
RSA *const key = GetRSAKey(bits);
const EVP_MD *const md = MDFunc();
uint8_t digest_buf[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!EVP_Digest(msg.data(), msg.size(), digest_buf, &digest_len, md, NULL)) {
return false;
}
std::vector<uint8_t> sig(RSA_size(key));
size_t sig_len;
if (UsePSS) {
if (!RSA_sign_pss_mgf1(key, &sig_len, sig.data(), sig.size(), digest_buf,
digest_len, md, md, -1)) {
return false;
}
} else {
unsigned sig_len_u;
if (!RSA_sign(EVP_MD_type(md), digest_buf, digest_len, sig.data(),
&sig_len_u, key)) {
return false;
}
sig_len = sig_len_u;
}
sig.resize(sig_len);
return write_reply(
{BIGNUMBytes(RSA_get0_n(key)), BIGNUMBytes(RSA_get0_e(key)), sig});
}
template <const EVP_MD *(MDFunc)(), bool UsePSS>
static bool RSASigVer(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const Span<const uint8_t> n_bytes = args[0];
const Span<const uint8_t> e_bytes = args[1];
const Span<const uint8_t> msg = args[2];
const Span<const uint8_t> sig = args[3];
BIGNUM *n = BN_new();
BIGNUM *e = BN_new();
bssl::UniquePtr<RSA> key(RSA_new());
if (!BN_bin2bn(n_bytes.data(), n_bytes.size(), n) ||
!BN_bin2bn(e_bytes.data(), e_bytes.size(), e) ||
!RSA_set0_key(key.get(), n, e, /*d=*/nullptr)) {
return false;
}
const EVP_MD *const md = MDFunc();
uint8_t digest_buf[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!EVP_Digest(msg.data(), msg.size(), digest_buf, &digest_len, md, NULL)) {
return false;
}
uint8_t ok;
if (UsePSS) {
ok = RSA_verify_pss_mgf1(key.get(), digest_buf, digest_len, md, md, -1,
sig.data(), sig.size());
} else {
ok = RSA_verify(EVP_MD_type(md), digest_buf, digest_len, sig.data(),
sig.size(), key.get());
}
ERR_clear_error();
return write_reply({Span<const uint8_t>(&ok, 1)});
}
template <const EVP_MD *(MDFunc)()>
static bool TLSKDF(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const Span<const uint8_t> out_len_bytes = args[0];
const Span<const uint8_t> secret = args[1];
const Span<const uint8_t> label = args[2];
const Span<const uint8_t> seed1 = args[3];
const Span<const uint8_t> seed2 = args[4];
const EVP_MD *md = MDFunc();
uint32_t out_len;
if (out_len_bytes.size() != sizeof(out_len)) {
return 0;
}
memcpy(&out_len, out_len_bytes.data(), sizeof(out_len));
std::vector<uint8_t> out(static_cast<size_t>(out_len));
if (!CRYPTO_tls1_prf(md, out.data(), out.size(), secret.data(), secret.size(),
reinterpret_cast<const char *>(label.data()),
label.size(), seed1.data(), seed1.size(), seed2.data(),
seed2.size())) {
return 0;
}
return write_reply({out});
}
template <int Nid>
static bool ECDH(const Span<const uint8_t> args[], ReplyCallback write_reply) {
bssl::UniquePtr<BIGNUM> their_x(BytesToBIGNUM(args[0]));
bssl::UniquePtr<BIGNUM> their_y(BytesToBIGNUM(args[1]));
const Span<const uint8_t> private_key = args[2];
bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_new_by_curve_name(Nid));
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
const EC_GROUP *const group = EC_KEY_get0_group(ec_key.get());
bssl::UniquePtr<EC_POINT> their_point(EC_POINT_new(group));
if (!EC_POINT_set_affine_coordinates_GFp(
group, their_point.get(), their_x.get(), their_y.get(), ctx.get())) {
LOG_ERROR("Invalid peer point for ECDH.\n");
return false;
}
if (!private_key.empty()) {
bssl::UniquePtr<BIGNUM> our_k(BytesToBIGNUM(private_key));
if (!EC_KEY_set_private_key(ec_key.get(), our_k.get())) {
LOG_ERROR("EC_KEY_set_private_key failed.\n");
return false;
}
bssl::UniquePtr<EC_POINT> our_pub(EC_POINT_new(group));
if (!EC_POINT_mul(group, our_pub.get(), our_k.get(), nullptr, nullptr,
ctx.get()) ||
!EC_KEY_set_public_key(ec_key.get(), our_pub.get())) {
LOG_ERROR("Calculating public key failed.\n");
return false;
}
} else if (!EC_KEY_generate_key_fips(ec_key.get())) {
LOG_ERROR("EC_KEY_generate_key_fips failed.\n");
return false;
}
// The output buffer is one larger than |EC_MAX_BYTES| so that truncation
// can be detected.
std::vector<uint8_t> output(EC_MAX_BYTES + 1);
const int out_len =
ECDH_compute_key(output.data(), output.size(), their_point.get(),
ec_key.get(), /*kdf=*/nullptr);
if (out_len < 0) {
LOG_ERROR("ECDH_compute_key failed.\n");
return false;
} else if (static_cast<size_t>(out_len) == output.size()) {
LOG_ERROR("ECDH_compute_key output may have been truncated.\n");
return false;
}
output.resize(static_cast<size_t>(out_len));
const EC_POINT *pub = EC_KEY_get0_public_key(ec_key.get());
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
if (!EC_POINT_get_affine_coordinates_GFp(group, pub, x.get(), y.get(),
ctx.get())) {
LOG_ERROR("EC_POINT_get_affine_coordinates_GFp failed.\n");
return false;
}
return write_reply({BIGNUMBytes(x.get()), BIGNUMBytes(y.get()), output});
}
static bool FFDH(const Span<const uint8_t> args[], ReplyCallback write_reply) {
bssl::UniquePtr<BIGNUM> p(BytesToBIGNUM(args[0]));
bssl::UniquePtr<BIGNUM> q(BytesToBIGNUM(args[1]));
bssl::UniquePtr<BIGNUM> g(BytesToBIGNUM(args[2]));
bssl::UniquePtr<BIGNUM> their_pub(BytesToBIGNUM(args[3]));
const Span<const uint8_t> private_key_span = args[4];
const Span<const uint8_t> public_key_span = args[5];
bssl::UniquePtr<DH> dh(DH_new());
if (!DH_set0_pqg(dh.get(), p.get(), q.get(), g.get())) {
LOG_ERROR("DH_set0_pqg failed.\n");
return 0;
}
// DH_set0_pqg took ownership of these values.
p.release();
q.release();
g.release();
if (!private_key_span.empty()) {
bssl::UniquePtr<BIGNUM> private_key(BytesToBIGNUM(private_key_span));
bssl::UniquePtr<BIGNUM> public_key(BytesToBIGNUM(public_key_span));
if (!DH_set0_key(dh.get(), public_key.get(), private_key.get())) {
LOG_ERROR("DH_set0_key failed.\n");
return 0;
}
// DH_set0_key took ownership of these values.
public_key.release();
private_key.release();
} else if (!DH_generate_key(dh.get())) {
LOG_ERROR("DH_generate_key failed.\n");
return false;
}
std::vector<uint8_t> z(DH_size(dh.get()));
if (DH_compute_key_padded(z.data(), their_pub.get(), dh.get()) !=
static_cast<int>(z.size())) {
LOG_ERROR("DH_compute_key_hashed failed.\n");
return false;
}
return write_reply({BIGNUMBytes(DH_get0_pub_key(dh.get())), z});
}
template <typename PrivateKey, size_t PublicKeyBytes,
bcm_status (*KeyGen)(uint8_t *, PrivateKey *, const uint8_t *),
bcm_status (*MarshalPrivateKey)(CBB *, const PrivateKey *)>
static bool MLDSAKeyGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const Span<const uint8_t> seed = args[0];
if (seed.size() != BCM_MLDSA_SEED_BYTES) {
LOG_ERROR("Bad seed size.\n");
return false;
}
auto priv = std::make_unique<PrivateKey>();
uint8_t pub_key_bytes[PublicKeyBytes];
if (KeyGen(pub_key_bytes, priv.get(), seed.data()) != bcm_status::approved) {
LOG_ERROR("ML-DSA key gen failed.\n");
return false;
}
ScopedCBB cbb;
if (!CBB_init(cbb.get(), 1024) ||
MarshalPrivateKey(cbb.get(), priv.get()) != bcm_status::approved ||
!CBB_flush(cbb.get())) {
LOG_ERROR("ML-DSA marshal failed.\n");
return false;
}
return write_reply(
{pub_key_bytes, MakeConstSpan(CBB_data(cbb.get()), CBB_len(cbb.get()))});
}
template <typename PrivateKey, size_t SignatureBytes,
bcm_status (*ParsePrivateKey)(PrivateKey *, CBS *),
bcm_status (*SignInternal)(uint8_t *, const PrivateKey *,
const uint8_t *, size_t, const uint8_t *,
size_t, const uint8_t *, size_t,
const uint8_t *)>
static bool MLDSASigGen(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
CBS cbs = bssl::MakeConstSpan(args[0]);
auto priv = std::make_unique<PrivateKey>();
if (ParsePrivateKey(priv.get(), &cbs) != bcm_status::approved) {
LOG_ERROR("Failed to parse ML-DSA private key.\n");
return false;
}
const Span<const uint8_t> msg = args[1];
const Span<const uint8_t> randomizer = args[2];
if (randomizer.size() != BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES) {
LOG_ERROR("Bad randomizer size.\n");
return false;
}
uint8_t signature[SignatureBytes];
if (SignInternal(signature, priv.get(), msg.data(), msg.size(),
// It's not just an empty context, the context prefix
// is omitted too.
nullptr, 0, nullptr, 0,
randomizer.data()) != bcm_status::approved) {
LOG_ERROR("ML-DSA signing failed.\n");
return false;
}
return write_reply({signature});
}
template <typename PublicKey, size_t SignatureBytes,
bcm_status (*ParsePublicKey)(PublicKey *, CBS *),
bcm_status (*VerifyInternal)(const PublicKey *, const uint8_t *,
const uint8_t *, size_t, const uint8_t *,
size_t, const uint8_t *, size_t)>
static bool MLDSASigVer(const Span<const uint8_t> args[],
ReplyCallback write_reply) {
const Span<const uint8_t> pub_key_bytes = args[0];
const Span<const uint8_t> msg = args[1];
const Span<const uint8_t> signature = args[2];
CBS cbs = bssl::MakeConstSpan(pub_key_bytes);
auto pub = std::make_unique<PublicKey>();
if (ParsePublicKey(pub.get(), &cbs) != bcm_status::approved) {
LOG_ERROR("Failed to parse ML-DSA public key.\n");
return false;
}
if (signature.size() != SignatureBytes) {
LOG_ERROR("Bad signature size.\n");
return false;
}
const uint8_t ok = bcm_success(
VerifyInternal(pub.get(), signature.data(), msg.data(), msg.size(),
// It's not just an empty context, the context
// prefix is omitted too.
nullptr, 0, nullptr, 0));
return write_reply({Span<const uint8_t>(&ok, sizeof(ok))});
}
static constexpr struct {
char name[kMaxNameLength + 1];
uint8_t num_expected_args;
bool (*handler)(const Span<const uint8_t> args[], ReplyCallback write_reply);
} kFunctions[] = {
{"getConfig", 0, GetConfig},
{"flush", 0, Flush},
{"SHA-1", 1, Hash<SHA1, SHA_DIGEST_LENGTH>},
{"SHA2-224", 1, Hash<SHA224, SHA224_DIGEST_LENGTH>},
{"SHA2-256", 1, Hash<SHA256, SHA256_DIGEST_LENGTH>},
{"SHA2-384", 1, Hash<SHA384, SHA384_DIGEST_LENGTH>},
{"SHA2-512", 1, Hash<SHA512, SHA512_DIGEST_LENGTH>},
{"SHA2-512/256", 1, Hash<SHA512_256, SHA512_256_DIGEST_LENGTH>},
{"SHA-1/MCT", 1, HashMCT<SHA1, SHA_DIGEST_LENGTH>},
{"SHA2-224/MCT", 1, HashMCT<SHA224, SHA224_DIGEST_LENGTH>},
{"SHA2-256/MCT", 1, HashMCT<SHA256, SHA256_DIGEST_LENGTH>},
{"SHA2-384/MCT", 1, HashMCT<SHA384, SHA384_DIGEST_LENGTH>},
{"SHA2-512/MCT", 1, HashMCT<SHA512, SHA512_DIGEST_LENGTH>},
{"SHA2-512/256/MCT", 1, HashMCT<SHA512_256, SHA512_256_DIGEST_LENGTH>},
{"AES/encrypt", 3, AES<AES_set_encrypt_key, AES_encrypt>},
{"AES/decrypt", 3, AES<AES_set_decrypt_key, AES_decrypt>},
{"AES-CBC/encrypt", 4, AES_CBC<AES_set_encrypt_key, AES_ENCRYPT>},
{"AES-CBC/decrypt", 4, AES_CBC<AES_set_decrypt_key, AES_DECRYPT>},
{"AES-CTR/encrypt", 4, AES_CTR},
{"AES-CTR/decrypt", 4, AES_CTR},
{"AES-GCM/seal", 5, AEADSeal<AESGCMSetup>},
{"AES-GCM/open", 5, AEADOpen<AESGCMSetup>},
{"AES-GCM-randnonce/seal", 5, AEADSeal<AESGCMRandNonceSetup>},
{"AES-GCM-randnonce/open", 5, AEADOpen<AESGCMRandNonceSetup>},
{"AES-KW/seal", 5, AESKeyWrapSeal},
{"AES-KW/open", 5, AESKeyWrapOpen},
{"AES-KWP/seal", 5, AESPaddedKeyWrapSeal},
{"AES-KWP/open", 5, AESPaddedKeyWrapOpen},
{"AES-CCM/seal", 5, AEADSeal<AESCCMSetup>},
{"AES-CCM/open", 5, AEADOpen<AESCCMSetup>},
{"3DES-ECB/encrypt", 3, TDES<true>},
{"3DES-ECB/decrypt", 3, TDES<false>},
{"3DES-CBC/encrypt", 4, TDES_CBC<true>},
{"3DES-CBC/decrypt", 4, TDES_CBC<false>},
{"HKDF/SHA2-224", 4, HKDF<EVP_sha224>},
{"HKDF/SHA2-256", 4, HKDF<EVP_sha256>},
{"HKDF/SHA2-384", 4, HKDF<EVP_sha384>},
{"HKDF/SHA2-512", 4, HKDF<EVP_sha512>},
{"HKDF/SHA2-512/256", 4, HKDF<EVP_sha512_256>},
{"HKDFExpandLabel/SHA2-256", 4, HKDFExpandLabel<EVP_sha256>},
{"HKDFExpandLabel/SHA2-384", 4, HKDFExpandLabel<EVP_sha384>},
{"HKDFExtract/SHA2-256", 2, HKDFExtract<EVP_sha256>},
{"HKDFExtract/SHA2-384", 2, HKDFExtract<EVP_sha384>},
{"HMAC-SHA-1", 2, HMAC<EVP_sha1>},
{"HMAC-SHA2-224", 2, HMAC<EVP_sha224>},
{"HMAC-SHA2-256", 2, HMAC<EVP_sha256>},
{"HMAC-SHA2-384", 2, HMAC<EVP_sha384>},
{"HMAC-SHA2-512", 2, HMAC<EVP_sha512>},
{"HMAC-SHA2-512/256", 2, HMAC<EVP_sha512_256>},
{"ctrDRBG/AES-256", 6, DRBG<false>},
{"ctrDRBG-reseed/AES-256", 8, DRBG<true>},
{"ECDSA/keyGen", 1, ECDSAKeyGen},
{"ECDSA/keyVer", 3, ECDSAKeyVer},
{"ECDSA/sigGen", 4, ECDSASigGen},
{"ECDSA/sigVer", 7, ECDSASigVer},
{"CMAC-AES", 3, CMAC_AES},
{"CMAC-AES/verify", 3, CMAC_AESVerify},
{"RSA/keyGen", 1, RSAKeyGen},
{"RSA/sigGen/SHA2-224/pkcs1v1.5", 2, RSASigGen<EVP_sha224, false>},
{"RSA/sigGen/SHA2-256/pkcs1v1.5", 2, RSASigGen<EVP_sha256, false>},
{"RSA/sigGen/SHA2-384/pkcs1v1.5", 2, RSASigGen<EVP_sha384, false>},
{"RSA/sigGen/SHA2-512/pkcs1v1.5", 2, RSASigGen<EVP_sha512, false>},
{"RSA/sigGen/SHA-1/pkcs1v1.5", 2, RSASigGen<EVP_sha1, false>},
{"RSA/sigGen/SHA2-224/pss", 2, RSASigGen<EVP_sha224, true>},
{"RSA/sigGen/SHA2-256/pss", 2, RSASigGen<EVP_sha256, true>},
{"RSA/sigGen/SHA2-384/pss", 2, RSASigGen<EVP_sha384, true>},
{"RSA/sigGen/SHA2-512/pss", 2, RSASigGen<EVP_sha512, true>},
{"RSA/sigGen/SHA2-512/256/pss", 2, RSASigGen<EVP_sha512_256, true>},
{"RSA/sigGen/SHA-1/pss", 2, RSASigGen<EVP_sha1, true>},
{"RSA/sigVer/SHA2-224/pkcs1v1.5", 4, RSASigVer<EVP_sha224, false>},
{"RSA/sigVer/SHA2-256/pkcs1v1.5", 4, RSASigVer<EVP_sha256, false>},
{"RSA/sigVer/SHA2-384/pkcs1v1.5", 4, RSASigVer<EVP_sha384, false>},
{"RSA/sigVer/SHA2-512/pkcs1v1.5", 4, RSASigVer<EVP_sha512, false>},
{"RSA/sigVer/SHA-1/pkcs1v1.5", 4, RSASigVer<EVP_sha1, false>},
{"RSA/sigVer/SHA2-224/pss", 4, RSASigVer<EVP_sha224, true>},
{"RSA/sigVer/SHA2-256/pss", 4, RSASigVer<EVP_sha256, true>},
{"RSA/sigVer/SHA2-384/pss", 4, RSASigVer<EVP_sha384, true>},
{"RSA/sigVer/SHA2-512/pss", 4, RSASigVer<EVP_sha512, true>},
{"RSA/sigVer/SHA2-512/256/pss", 4, RSASigVer<EVP_sha512_256, true>},
{"RSA/sigVer/SHA-1/pss", 4, RSASigVer<EVP_sha1, true>},
{"TLSKDF/1.2/SHA2-256", 5, TLSKDF<EVP_sha256>},
{"TLSKDF/1.2/SHA2-384", 5, TLSKDF<EVP_sha384>},
{"TLSKDF/1.2/SHA2-512", 5, TLSKDF<EVP_sha512>},
{"ECDH/P-224", 3, ECDH<NID_secp224r1>},
{"ECDH/P-256", 3, ECDH<NID_X9_62_prime256v1>},
{"ECDH/P-384", 3, ECDH<NID_secp384r1>},
{"ECDH/P-521", 3, ECDH<NID_secp521r1>},
{"FFDH", 6, FFDH},
{"ML-DSA-65/keyGen", 1,
MLDSAKeyGen<BCM_mldsa65_private_key, BCM_MLDSA65_PUBLIC_KEY_BYTES,
BCM_mldsa65_generate_key_external_entropy,
BCM_mldsa65_marshal_private_key>},
{"ML-DSA-87/keyGen", 1,
MLDSAKeyGen<BCM_mldsa87_private_key, BCM_MLDSA87_PUBLIC_KEY_BYTES,
BCM_mldsa87_generate_key_external_entropy,
BCM_mldsa87_marshal_private_key>},
{"ML-DSA-65/sigGen", 3,
MLDSASigGen<BCM_mldsa65_private_key, BCM_MLDSA65_SIGNATURE_BYTES,
BCM_mldsa65_parse_private_key, BCM_mldsa65_sign_internal>},
{"ML-DSA-87/sigGen", 3,
MLDSASigGen<BCM_mldsa87_private_key, BCM_MLDSA87_SIGNATURE_BYTES,
BCM_mldsa87_parse_private_key, BCM_mldsa87_sign_internal>},
{"ML-DSA-65/sigVer", 3,
MLDSASigVer<BCM_mldsa65_public_key, BCM_MLDSA65_SIGNATURE_BYTES,
BCM_mldsa65_parse_public_key, BCM_mldsa65_verify_internal>},
{"ML-DSA-87/sigVer", 3,
MLDSASigVer<BCM_mldsa87_public_key, BCM_MLDSA87_SIGNATURE_BYTES,
BCM_mldsa87_parse_public_key, BCM_mldsa87_verify_internal>},
};
Handler FindHandler(Span<const Span<const uint8_t>> args) {
const bssl::Span<const uint8_t> algorithm = args[0];
for (const auto &func : kFunctions) {
if (algorithm.size() == strlen(func.name) &&
memcmp(algorithm.data(), func.name, algorithm.size()) == 0) {
if (args.size() - 1 != func.num_expected_args) {
LOG_ERROR("\'%s\' operation received %zu arguments but expected %u.\n",
func.name, args.size() - 1, func.num_expected_args);
return nullptr;
}
return func.handler;
}
}
const std::string name(reinterpret_cast<const char *>(algorithm.data()),
algorithm.size());
LOG_ERROR("Unknown operation: %s\n", name.c_str());
return nullptr;
}
} // namespace acvp
} // namespace bssl