| // Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/aes.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "../../internal.h" |
| #include "../aes/internal.h" |
| #include "../bcm_interface.h" |
| #include "../delocate.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| #define AES_GCM_NONCE_LENGTH 12 |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| block128_f block; |
| union { |
| cbc128_f cbc; |
| ctr128_f ctr; |
| } stream; |
| } EVP_AES_KEY; |
| |
| typedef struct { |
| GCM128_KEY key; |
| GCM128_CONTEXT gcm; |
| int key_set; // Set if key initialised |
| int iv_set; // Set if an iv is set |
| uint8_t *iv; // Temporary IV store |
| int ivlen; // IV length |
| int taglen; |
| int iv_gen; // It is OK to generate IVs |
| ctr128_f ctr; |
| } EVP_AES_GCM_CTX; |
| |
| static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| int ret; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| const int mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| |
| if (mode == EVP_CIPH_CTR_MODE) { |
| switch (ctx->key_len) { |
| case 16: |
| boringssl_fips_inc_counter(fips_counter_evp_aes_128_ctr); |
| break; |
| |
| case 32: |
| boringssl_fips_inc_counter(fips_counter_evp_aes_256_ctr); |
| break; |
| } |
| } |
| |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { |
| if (hwaes_capable()) { |
| ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_hw_decrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_hw_cbc_encrypt; |
| } |
| } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { |
| assert(vpaes_capable()); |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| if (ret == 0) { |
| vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks); |
| } |
| // If |dat->stream.cbc| is provided, |dat->block| is never used. |
| dat->block = NULL; |
| dat->stream.cbc = bsaes_cbc_encrypt; |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = vpaes_decrypt; |
| dat->stream.cbc = NULL; |
| #if defined(VPAES_CBC) |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = vpaes_cbc_encrypt; |
| } |
| #endif |
| } else { |
| ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_nohw_decrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_nohw_cbc_encrypt; |
| } |
| } |
| } else if (hwaes_capable()) { |
| ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_hw_encrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_hw_cbc_encrypt; |
| } else if (mode == EVP_CIPH_CTR_MODE) { |
| dat->stream.ctr = aes_hw_ctr32_encrypt_blocks; |
| } |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = vpaes_encrypt; |
| dat->stream.cbc = NULL; |
| #if defined(VPAES_CBC) |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = vpaes_cbc_encrypt; |
| } |
| #endif |
| if (mode == EVP_CIPH_CTR_MODE) { |
| #if defined(BSAES) |
| assert(bsaes_capable()); |
| dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes; |
| #else |
| dat->stream.ctr = vpaes_ctr32_encrypt_blocks; |
| #endif |
| } |
| } else { |
| ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = aes_nohw_encrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = aes_nohw_cbc_encrypt; |
| } else if (mode == EVP_CIPH_CTR_MODE) { |
| dat->stream.ctr = aes_nohw_ctr32_encrypt_blocks; |
| } |
| } |
| |
| if (ret < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (dat->stream.cbc) { |
| (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt); |
| } else if (ctx->encrypt) { |
| CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| } else { |
| CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| len -= bl; |
| for (size_t i = 0; i <= len; i += bl) { |
| (*dat->block)(in + i, out + i, &dat->ks.ks); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, |
| &ctx->num, dat->stream.ctr); |
| return 1; |
| } |
| |
| static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num, |
| dat->block); |
| return 1; |
| } |
| |
| static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); |
| if (!iv && !key) { |
| return 1; |
| } |
| |
| // We must configure first the key, then the IV, but the caller may pass both |
| // together, or separately in either order. |
| if (key) { |
| OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm)); |
| CRYPTO_gcm128_init_aes_key(&gctx->key, key, ctx->key_len); |
| // Use the IV if specified. Otherwise, use the saved IV, if any. |
| if (iv == NULL && gctx->iv_set) { |
| iv = gctx->iv; |
| } |
| if (iv) { |
| CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| if (gctx->key_set) { |
| CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); |
| } else { |
| // The caller specified the IV before the key. Save the IV for later. |
| OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); |
| } |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { |
| EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); |
| OPENSSL_cleanse(&gctx->key, sizeof(gctx->key)); |
| OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| } |
| |
| static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { |
| EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); |
| switch (type) { |
| case EVP_CTRL_INIT: |
| gctx->key_set = 0; |
| gctx->iv_set = 0; |
| gctx->ivlen = c->cipher->iv_len; |
| gctx->iv = c->iv; |
| gctx->taglen = -1; |
| gctx->iv_gen = 0; |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_IVLEN: |
| if (arg <= 0) { |
| return 0; |
| } |
| |
| // Allocate memory for IV if needed |
| if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| gctx->iv = reinterpret_cast<uint8_t *>(OPENSSL_malloc(arg)); |
| if (!gctx->iv) { |
| return 0; |
| } |
| } |
| gctx->ivlen = arg; |
| return 1; |
| |
| case EVP_CTRL_GET_IVLEN: |
| *(int *)ptr = gctx->ivlen; |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_TAG: |
| if (arg <= 0 || arg > 16 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(c->buf, ptr, arg); |
| gctx->taglen = arg; |
| return 1; |
| |
| case EVP_CTRL_AEAD_GET_TAG: |
| if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { |
| return 0; |
| } |
| OPENSSL_memcpy(ptr, c->buf, arg); |
| return 1; |
| |
| case EVP_CTRL_AEAD_SET_IV_FIXED: |
| // Special case: -1 length restores whole IV |
| if (arg == -1) { |
| OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); |
| gctx->iv_gen = 1; |
| return 1; |
| } |
| // Fixed field must be at least 4 bytes and invocation field |
| // at least 8. |
| if (arg < 4 || (gctx->ivlen - arg) < 8) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx->iv, ptr, arg); |
| if (c->encrypt) { |
| // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with |
| // state lock functions to avoid updating the service indicator with the |
| // DRBG functions. |
| FIPS_service_indicator_lock_state(); |
| BCM_rand_bytes(gctx->iv + arg, gctx->ivlen - arg); |
| FIPS_service_indicator_unlock_state(); |
| } |
| gctx->iv_gen = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_IV_GEN: { |
| if (gctx->iv_gen == 0 || gctx->key_set == 0) { |
| return 0; |
| } |
| CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); |
| if (arg <= 0 || arg > gctx->ivlen) { |
| arg = gctx->ivlen; |
| } |
| OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| // Invocation field will be at least 8 bytes in size, so no need to check |
| // wrap around or increment more than last 8 bytes. |
| uint8_t *ctr = gctx->iv + gctx->ivlen - 8; |
| CRYPTO_store_u64_be(ctr, CRYPTO_load_u64_be(ctr) + 1); |
| gctx->iv_set = 1; |
| return 1; |
| } |
| |
| case EVP_CTRL_GCM_SET_IV_INV: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_COPY: { |
| EVP_CIPHER_CTX *out = reinterpret_cast<EVP_CIPHER_CTX *>(ptr); |
| EVP_AES_GCM_CTX *gctx_out = |
| reinterpret_cast<EVP_AES_GCM_CTX *>(out->cipher_data); |
| if (gctx->iv == c->iv) { |
| gctx_out->iv = out->iv; |
| } else { |
| gctx_out->iv = |
| reinterpret_cast<uint8_t *>(OPENSSL_memdup(gctx->iv, gctx->ivlen)); |
| if (!gctx_out->iv) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| default: |
| return -1; |
| } |
| } |
| |
| static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); |
| |
| // If not set up, return error |
| if (!gctx->key_set) { |
| return -1; |
| } |
| if (!gctx->iv_set) { |
| return -1; |
| } |
| |
| if (len > INT_MAX) { |
| // This function signature can only express up to |INT_MAX| bytes encrypted. |
| // |
| // TODO(https://crbug.com/boringssl/494): Make the internal |EVP_CIPHER| |
| // calling convention |size_t|-clean. |
| return -1; |
| } |
| |
| if (in) { |
| if (out == NULL) { |
| if (!CRYPTO_gcm128_aad(&gctx->key, &gctx->gcm, in, len)) { |
| return -1; |
| } |
| } else if (ctx->encrypt) { |
| if (!CRYPTO_gcm128_encrypt(&gctx->key, &gctx->gcm, in, out, len)) { |
| return -1; |
| } |
| } else { |
| if (!CRYPTO_gcm128_decrypt(&gctx->key, &gctx->gcm, in, out, len)) { |
| return -1; |
| } |
| } |
| return (int)len; |
| } else { |
| if (!ctx->encrypt) { |
| if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->key, &gctx->gcm, |
| ctx->buf, gctx->taglen)) { |
| return -1; |
| } |
| gctx->iv_set = 0; |
| return 0; |
| } |
| CRYPTO_gcm128_tag(&gctx->key, &gctx->gcm, ctx->buf, 16); |
| gctx->taglen = 16; |
| // Don't reuse the IV |
| gctx->iv_set = 0; |
| return 0; |
| } |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_cbc) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_cbc; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ctr) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ctr; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ecb; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ofb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ofb128; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_gcm) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_gcm; |
| out->block_size = 1; |
| out->key_len = 16; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX); |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_cbc) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_cbc; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ctr) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ctr; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ecb; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ofb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ofb128; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_gcm) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_gcm; |
| out->block_size = 1; |
| out->key_len = 24; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX); |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_cbc) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_cbc; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CBC_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_cbc_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ctr) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ctr; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_CTR_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ctr_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ecb; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ecb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ofb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ofb128; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_OFB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_ofb_cipher; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_gcm) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_gcm; |
| out->block_size = 1; |
| out->key_len = 32; |
| out->iv_len = AES_GCM_NONCE_LENGTH; |
| out->ctx_size = sizeof(EVP_AES_GCM_CTX); |
| out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | |
| EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; |
| out->init = aes_gcm_init_key; |
| out->cipher = aes_gcm_cipher; |
| out->cleanup = aes_gcm_cleanup; |
| out->ctrl = aes_gcm_ctrl; |
| } |
| |
| #if defined(HWAES_ECB) |
| |
| static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| const uint8_t *in, size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| aes_hw_ecb_encrypt(in, out, len, |
| reinterpret_cast<const AES_KEY *>(ctx->cipher_data), |
| ctx->encrypt); |
| |
| return 1; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_128_ecb; |
| out->block_size = 16; |
| out->key_len = 16; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_192_ecb; |
| out->block_size = 16; |
| out->key_len = 24; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { |
| memset(out, 0, sizeof(EVP_CIPHER)); |
| |
| out->nid = NID_aes_256_ecb; |
| out->block_size = 16; |
| out->key_len = 32; |
| out->ctx_size = sizeof(EVP_AES_KEY); |
| out->flags = EVP_CIPH_ECB_MODE; |
| out->init = aes_init_key; |
| out->cipher = aes_hw_ecb_cipher; |
| } |
| |
| #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| if (hwaes_capable()) { \ |
| return aes_hw_##keybits##_ecb(); \ |
| } \ |
| return aes_##keybits##_ecb_generic(); \ |
| } |
| |
| #else |
| |
| #define EVP_ECB_CIPHER_FUNCTION(keybits) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ |
| return aes_##keybits##_ecb_generic(); \ |
| } |
| |
| #endif // HWAES_ECB |
| |
| EVP_ECB_CIPHER_FUNCTION(128) |
| EVP_ECB_CIPHER_FUNCTION(192) |
| EVP_ECB_CIPHER_FUNCTION(256) |
| |
| |
| #define EVP_AEAD_AES_GCM_TAG_LEN 16 |
| |
| namespace { |
| struct aead_aes_gcm_ctx { |
| GCM128_KEY key; |
| }; |
| } // namespace |
| |
| static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, |
| size_t *out_tag_len, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| const size_t key_bits = key_len * 8; |
| if (key_bits != 128 && key_bits != 192 && key_bits != 256) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; // EVP_AEAD_CTX_init should catch this. |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| } |
| |
| if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| CRYPTO_gcm128_init_aes_key(&gcm_ctx->key, key, key_len); |
| *out_tag_len = tag_len; |
| return 1; |
| } |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_ctx), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_ctx), |
| "AEAD state has insufficient alignment"); |
| |
| static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {} |
| |
| static int aead_aes_gcm_seal_scatter_impl( |
| const struct aead_aes_gcm_ctx *gcm_ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len, size_t tag_len) { |
| if (extra_in_len + tag_len < tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| if (max_out_tag_len < extra_in_len + tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| if (nonce_len == 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| const GCM128_KEY *key = &gcm_ctx->key; |
| GCM128_CONTEXT gcm; |
| CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); |
| |
| if (ad_len > 0 && !CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (!CRYPTO_gcm128_encrypt(key, &gcm, in, out, in_len)) { |
| return 0; |
| } |
| |
| if (extra_in_len > 0 && |
| !CRYPTO_gcm128_encrypt(key, &gcm, extra_in, out_tag, extra_in_len)) { |
| return 0; |
| } |
| |
| CRYPTO_gcm128_tag(key, &gcm, out_tag + extra_in_len, tag_len); |
| *out_tag_len = tag_len + extra_in_len; |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| return aead_aes_gcm_seal_scatter_impl( |
| gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, |
| in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len); |
| } |
| |
| static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx, |
| uint8_t *out, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, |
| size_t in_len, const uint8_t *in_tag, |
| size_t in_tag_len, const uint8_t *ad, |
| size_t ad_len, size_t tag_len) { |
| uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; |
| |
| if (nonce_len == 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (in_tag_len != tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| const GCM128_KEY *key = &gcm_ctx->key; |
| GCM128_CONTEXT gcm; |
| CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); |
| |
| if (!CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (!CRYPTO_gcm128_decrypt(key, &gcm, in, out, in_len)) { |
| return 0; |
| } |
| |
| CRYPTO_gcm128_tag(key, &gcm, tag, tag_len); |
| if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, size_t in_tag_len, |
| const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; |
| if (!aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, in_len, |
| in_tag, in_tag_len, ad, ad_len, |
| ctx->tag_len)) { |
| return 0; |
| } |
| |
| AEAD_GCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 24; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, |
| size_t requested_tag_len) { |
| if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| if (requested_tag_len < AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| requested_tag_len -= AES_GCM_NONCE_LENGTH; |
| } |
| |
| if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len += AES_GCM_NONCE_LENGTH; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_seal_scatter_randnonce( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *external_nonce, |
| size_t external_nonce_len, const uint8_t *in, size_t in_len, |
| const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, |
| size_t ad_len) { |
| if (external_nonce_len != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| uint8_t nonce[AES_GCM_NONCE_LENGTH]; |
| if (max_out_tag_len < sizeof(nonce)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with state |
| // lock functions to avoid updating the service indicator with the DRBG |
| // functions. |
| FIPS_service_indicator_lock_state(); |
| BCM_rand_bytes(nonce, sizeof(nonce)); |
| FIPS_service_indicator_unlock_state(); |
| |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len, |
| max_out_tag_len - AES_GCM_NONCE_LENGTH, |
| nonce, sizeof(nonce), in, in_len, |
| extra_in, extra_in_len, ad, ad_len, |
| ctx->tag_len - AES_GCM_NONCE_LENGTH)) { |
| return 0; |
| } |
| |
| assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len); |
| memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce)); |
| *out_tag_len += sizeof(nonce); |
| |
| AEAD_GCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| static int aead_aes_gcm_open_gather_randnonce( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *external_nonce, |
| size_t external_nonce_len, const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, |
| size_t ad_len) { |
| if (external_nonce_len != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (in_tag_len < AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH; |
| |
| const struct aead_aes_gcm_ctx *gcm_ctx = |
| (const struct aead_aes_gcm_ctx *)&ctx->state; |
| if (!aead_aes_gcm_open_gather_impl( |
| gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag, |
| in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len, |
| ctx->tag_len - AES_GCM_NONCE_LENGTH)) { |
| return 0; |
| } |
| |
| AEAD_GCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = 0; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init_randnonce; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; |
| out->open_gather = aead_aes_gcm_open_gather_randnonce; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = 0; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_init_randnonce; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; |
| out->open_gather = aead_aes_gcm_open_gather_randnonce; |
| } |
| |
| namespace { |
| struct aead_aes_gcm_tls12_ctx { |
| struct aead_aes_gcm_ctx gcm_ctx; |
| uint64_t min_next_nonce; |
| }; |
| } // namespace |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_tls12_ctx), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_tls12_ctx), |
| "AEAD state has insufficient alignment"); |
| |
| static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls12_ctx *)&ctx->state; |
| |
| gcm_ctx->min_next_nonce = 0; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_tls12_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_tls12_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls12_ctx *)&ctx->state; |
| |
| if (nonce_len != AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| // The given nonces must be strictly monotonically increasing. |
| uint64_t given_counter = |
| CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); |
| if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| return 0; |
| } |
| |
| gcm_ctx->min_next_nonce = given_counter + 1; |
| |
| if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| max_out_tag_len, nonce, nonce_len, in, in_len, |
| extra_in, extra_in_len, ad, ad_len)) { |
| return 0; |
| } |
| |
| AEAD_GCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls12_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls12_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| namespace { |
| struct aead_aes_gcm_tls13_ctx { |
| struct aead_aes_gcm_ctx gcm_ctx; |
| uint64_t min_next_nonce; |
| uint64_t mask; |
| uint8_t first; |
| }; |
| } // namespace |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_gcm_tls13_ctx), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_gcm_tls13_ctx), |
| "AEAD state has insufficient alignment"); |
| |
| static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t requested_tag_len) { |
| struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls13_ctx *)&ctx->state; |
| |
| gcm_ctx->min_next_nonce = 0; |
| gcm_ctx->first = 1; |
| |
| size_t actual_tag_len; |
| if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, |
| requested_tag_len)) { |
| return 0; |
| } |
| |
| ctx->tag_len = actual_tag_len; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_tls13_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| struct aead_aes_gcm_tls13_ctx *gcm_ctx = |
| (struct aead_aes_gcm_tls13_ctx *)&ctx->state; |
| |
| if (nonce_len != AES_GCM_NONCE_LENGTH) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| // The given nonces must be strictly monotonically increasing. See |
| // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3 |
| // nonce construction. |
| uint64_t given_counter = |
| CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); |
| |
| if (gcm_ctx->first) { |
| // In the first call the sequence number will be zero and therefore the |
| // given nonce will be 0 ^ mask = mask. |
| gcm_ctx->mask = given_counter; |
| gcm_ctx->first = 0; |
| } |
| given_counter ^= gcm_ctx->mask; |
| |
| if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); |
| return 0; |
| } |
| |
| gcm_ctx->min_next_nonce = given_counter + 1; |
| |
| if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, |
| max_out_tag_len, nonce, nonce_len, in, in_len, |
| extra_in, extra_in_len, ad, ad_len)) { |
| return 0; |
| } |
| |
| AEAD_GCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls13_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 32; |
| out->nonce_len = AES_GCM_NONCE_LENGTH; |
| out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| out->seal_scatter_supports_extra_in = 1; |
| |
| out->init = aead_aes_gcm_tls13_init; |
| out->cleanup = aead_aes_gcm_cleanup; |
| out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; |
| out->open_gather = aead_aes_gcm_open_gather; |
| } |
| |
| int EVP_has_aes_hardware(void) { |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| return hwaes_capable() && crypto_gcm_clmul_enabled(); |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); |
| #else |
| return 0; |
| #endif |
| } |