blob: ac0f179a50442e90ed15f6cf15fe550052828e22 [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Tests for Google Test itself. This verifies that the basic constructs of
// Google Test work.
#include "gtest/gtest.h"
// Verifies that the command line flag variables can be accessed in
// code once "gtest.h" has been #included.
// Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) ||
testing::GTEST_FLAG(break_on_failure) ||
testing::GTEST_FLAG(catch_exceptions) ||
testing::GTEST_FLAG(color) != "unknown" ||
testing::GTEST_FLAG(fail_fast) ||
testing::GTEST_FLAG(filter) != "unknown" ||
testing::GTEST_FLAG(list_tests) ||
testing::GTEST_FLAG(output) != "unknown" ||
testing::GTEST_FLAG(brief) || testing::GTEST_FLAG(print_time) ||
testing::GTEST_FLAG(random_seed) ||
testing::GTEST_FLAG(repeat) > 0 ||
testing::GTEST_FLAG(show_internal_stack_frames) ||
testing::GTEST_FLAG(shuffle) ||
testing::GTEST_FLAG(stack_trace_depth) > 0 ||
testing::GTEST_FLAG(stream_result_to) != "unknown" ||
testing::GTEST_FLAG(throw_on_failure);
EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
}
#include <limits.h> // For INT_MAX.
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <cstdint>
#include <map>
#include <ostream>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <vector>
#include "gtest/gtest-spi.h"
#include "src/gtest-internal-inl.h"
namespace testing {
namespace internal {
#if GTEST_CAN_STREAM_RESULTS_
class StreamingListenerTest : public Test {
public:
class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
public:
// Sends a string to the socket.
void Send(const std::string& message) override { output_ += message; }
std::string output_;
};
StreamingListenerTest()
: fake_sock_writer_(new FakeSocketWriter),
streamer_(fake_sock_writer_),
test_info_obj_("FooTest", "Bar", nullptr, nullptr,
CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
protected:
std::string* output() { return &(fake_sock_writer_->output_); }
FakeSocketWriter* const fake_sock_writer_;
StreamingListener streamer_;
UnitTest unit_test_;
TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
};
TEST_F(StreamingListenerTest, OnTestProgramEnd) {
*output() = "";
streamer_.OnTestProgramEnd(unit_test_);
EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
}
TEST_F(StreamingListenerTest, OnTestIterationEnd) {
*output() = "";
streamer_.OnTestIterationEnd(unit_test_, 42);
EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestCaseStart) {
*output() = "";
streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", nullptr, nullptr));
EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
}
TEST_F(StreamingListenerTest, OnTestCaseEnd) {
*output() = "";
streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", nullptr, nullptr));
EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestStart) {
*output() = "";
streamer_.OnTestStart(test_info_obj_);
EXPECT_EQ("event=TestStart&name=Bar\n", *output());
}
TEST_F(StreamingListenerTest, OnTestEnd) {
*output() = "";
streamer_.OnTestEnd(test_info_obj_);
EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestPartResult) {
*output() = "";
streamer_.OnTestPartResult(TestPartResult(
TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
// Meta characters in the failure message should be properly escaped.
EXPECT_EQ(
"event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
*output());
}
#endif // GTEST_CAN_STREAM_RESULTS_
// Provides access to otherwise private parts of the TestEventListeners class
// that are needed to test it.
class TestEventListenersAccessor {
public:
static TestEventListener* GetRepeater(TestEventListeners* listeners) {
return listeners->repeater();
}
static void SetDefaultResultPrinter(TestEventListeners* listeners,
TestEventListener* listener) {
listeners->SetDefaultResultPrinter(listener);
}
static void SetDefaultXmlGenerator(TestEventListeners* listeners,
TestEventListener* listener) {
listeners->SetDefaultXmlGenerator(listener);
}
static bool EventForwardingEnabled(const TestEventListeners& listeners) {
return listeners.EventForwardingEnabled();
}
static void SuppressEventForwarding(TestEventListeners* listeners) {
listeners->SuppressEventForwarding();
}
};
class UnitTestRecordPropertyTestHelper : public Test {
protected:
UnitTestRecordPropertyTestHelper() {}
// Forwards to UnitTest::RecordProperty() to bypass access controls.
void UnitTestRecordProperty(const char* key, const std::string& value) {
unit_test_.RecordProperty(key, value);
}
UnitTest unit_test_;
};
} // namespace internal
} // namespace testing
using testing::AssertionFailure;
using testing::AssertionResult;
using testing::AssertionSuccess;
using testing::DoubleLE;
using testing::EmptyTestEventListener;
using testing::Environment;
using testing::FloatLE;
using testing::GTEST_FLAG(also_run_disabled_tests);
using testing::GTEST_FLAG(break_on_failure);
using testing::GTEST_FLAG(catch_exceptions);
using testing::GTEST_FLAG(color);
using testing::GTEST_FLAG(death_test_use_fork);
using testing::GTEST_FLAG(fail_fast);
using testing::GTEST_FLAG(filter);
using testing::GTEST_FLAG(list_tests);
using testing::GTEST_FLAG(output);
using testing::GTEST_FLAG(brief);
using testing::GTEST_FLAG(print_time);
using testing::GTEST_FLAG(random_seed);
using testing::GTEST_FLAG(repeat);
using testing::GTEST_FLAG(show_internal_stack_frames);
using testing::GTEST_FLAG(shuffle);
using testing::GTEST_FLAG(stack_trace_depth);
using testing::GTEST_FLAG(stream_result_to);
using testing::GTEST_FLAG(throw_on_failure);
using testing::IsNotSubstring;
using testing::IsSubstring;
using testing::kMaxStackTraceDepth;
using testing::Message;
using testing::ScopedFakeTestPartResultReporter;
using testing::StaticAssertTypeEq;
using testing::Test;
using testing::TestEventListeners;
using testing::TestInfo;
using testing::TestPartResult;
using testing::TestPartResultArray;
using testing::TestProperty;
using testing::TestResult;
using testing::TestSuite;
using testing::TimeInMillis;
using testing::UnitTest;
using testing::internal::AlwaysFalse;
using testing::internal::AlwaysTrue;
using testing::internal::AppendUserMessage;
using testing::internal::ArrayAwareFind;
using testing::internal::ArrayEq;
using testing::internal::CodePointToUtf8;
using testing::internal::CopyArray;
using testing::internal::CountIf;
using testing::internal::EqFailure;
using testing::internal::FloatingPoint;
using testing::internal::ForEach;
using testing::internal::FormatEpochTimeInMillisAsIso8601;
using testing::internal::FormatTimeInMillisAsSeconds;
using testing::internal::GetCurrentOsStackTraceExceptTop;
using testing::internal::GetElementOr;
using testing::internal::GetNextRandomSeed;
using testing::internal::GetRandomSeedFromFlag;
using testing::internal::GetTestTypeId;
using testing::internal::GetTimeInMillis;
using testing::internal::GetTypeId;
using testing::internal::GetUnitTestImpl;
using testing::internal::GTestFlagSaver;
using testing::internal::HasDebugStringAndShortDebugString;
using testing::internal::Int32FromEnvOrDie;
using testing::internal::IsContainer;
using testing::internal::IsContainerTest;
using testing::internal::IsNotContainer;
using testing::internal::kMaxRandomSeed;
using testing::internal::kTestTypeIdInGoogleTest;
using testing::internal::NativeArray;
using testing::internal::OsStackTraceGetter;
using testing::internal::OsStackTraceGetterInterface;
using testing::internal::ParseInt32Flag;
using testing::internal::RelationToSourceCopy;
using testing::internal::RelationToSourceReference;
using testing::internal::ShouldRunTestOnShard;
using testing::internal::ShouldShard;
using testing::internal::ShouldUseColor;
using testing::internal::Shuffle;
using testing::internal::ShuffleRange;
using testing::internal::SkipPrefix;
using testing::internal::StreamableToString;
using testing::internal::String;
using testing::internal::TestEventListenersAccessor;
using testing::internal::TestResultAccessor;
using testing::internal::UnitTestImpl;
using testing::internal::WideStringToUtf8;
using testing::internal::edit_distance::CalculateOptimalEdits;
using testing::internal::edit_distance::CreateUnifiedDiff;
using testing::internal::edit_distance::EditType;
#if GTEST_HAS_STREAM_REDIRECTION
using testing::internal::CaptureStdout;
using testing::internal::GetCapturedStdout;
#endif
#if GTEST_IS_THREADSAFE
using testing::internal::ThreadWithParam;
#endif
class TestingVector : public std::vector<int> {
};
::std::ostream& operator<<(::std::ostream& os,
const TestingVector& vector) {
os << "{ ";
for (size_t i = 0; i < vector.size(); i++) {
os << vector[i] << " ";
}
os << "}";
return os;
}
// This line tests that we can define tests in an unnamed namespace.
namespace {
TEST(GetRandomSeedFromFlagTest, HandlesZero) {
const int seed = GetRandomSeedFromFlag(0);
EXPECT_LE(1, seed);
EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
}
TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
EXPECT_EQ(1, GetRandomSeedFromFlag(1));
EXPECT_EQ(2, GetRandomSeedFromFlag(2));
EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
GetRandomSeedFromFlag(kMaxRandomSeed));
}
TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
const int seed1 = GetRandomSeedFromFlag(-1);
EXPECT_LE(1, seed1);
EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
EXPECT_LE(1, seed2);
EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
}
TEST(GetNextRandomSeedTest, WorksForValidInput) {
EXPECT_EQ(2, GetNextRandomSeed(1));
EXPECT_EQ(3, GetNextRandomSeed(2));
EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
GetNextRandomSeed(kMaxRandomSeed - 1));
EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
// We deliberately don't test GetNextRandomSeed() with invalid
// inputs, as that requires death tests, which are expensive. This
// is fine as GetNextRandomSeed() is internal and has a
// straightforward definition.
}
static void ClearCurrentTestPartResults() {
TestResultAccessor::ClearTestPartResults(
GetUnitTestImpl()->current_test_result());
}
// Tests GetTypeId.
TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
}
class SubClassOfTest : public Test {};
class AnotherSubClassOfTest : public Test {};
TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
}
// Verifies that GetTestTypeId() returns the same value, no matter it
// is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
}
// Tests CanonicalizeForStdLibVersioning.
using ::testing::internal::CanonicalizeForStdLibVersioning;
TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
}
TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
EXPECT_EQ("std::bind",
CanonicalizeForStdLibVersioning("std::__google::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
}
// Tests FormatTimeInMillisAsSeconds().
TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
}
// Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
// for particular dates below was verified in Python using
// datetime.datetime.fromutctimestamp(<timetamp>/1000).
// FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
// have to set up a particular timezone to obtain predictable results.
class FormatEpochTimeInMillisAsIso8601Test : public Test {
public:
// On Cygwin, GCC doesn't allow unqualified integer literals to exceed
// 32 bits, even when 64-bit integer types are available. We have to
// force the constants to have a 64-bit type here.
static const TimeInMillis kMillisPerSec = 1000;
private:
void SetUp() override {
saved_tz_ = nullptr;
GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
if (getenv("TZ"))
saved_tz_ = strdup(getenv("TZ"));
GTEST_DISABLE_MSC_DEPRECATED_POP_()
// Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We
// cannot use the local time zone because the function's output depends
// on the time zone.
SetTimeZone("UTC+00");
}
void TearDown() override {
SetTimeZone(saved_tz_);
free(const_cast<char*>(saved_tz_));
saved_tz_ = nullptr;
}
static void SetTimeZone(const char* time_zone) {
// tzset() distinguishes between the TZ variable being present and empty
// and not being present, so we have to consider the case of time_zone
// being NULL.
#if _MSC_VER || GTEST_OS_WINDOWS_MINGW
// ...Unless it's MSVC, whose standard library's _putenv doesn't
// distinguish between an empty and a missing variable.
const std::string env_var =
std::string("TZ=") + (time_zone ? time_zone : "");
_putenv(env_var.c_str());
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
tzset();
GTEST_DISABLE_MSC_WARNINGS_POP_()
#else
if (time_zone) {
setenv(("TZ"), time_zone, 1);
} else {
unsetenv("TZ");
}
tzset();
#endif
}
const char* saved_tz_;
};
const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
EXPECT_EQ("2011-10-31T18:52:42.000",
FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
EXPECT_EQ(
"2011-10-31T18:52:42.234",
FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
EXPECT_EQ("2011-09-03T05:07:02.000",
FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
EXPECT_EQ("2011-09-28T17:08:22.000",
FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
}
# ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
# pragma option push -w-ccc -w-rch
# endif
// Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
// when the RHS is a pointer type.
TEST(NullLiteralTest, LHSAllowsNullLiterals) {
EXPECT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
ASSERT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
EXPECT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
ASSERT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
const int* const p = nullptr;
EXPECT_EQ(0, p); // NOLINT
ASSERT_EQ(0, p); // NOLINT
EXPECT_EQ(NULL, p); // NOLINT
ASSERT_EQ(NULL, p); // NOLINT
EXPECT_EQ(nullptr, p);
ASSERT_EQ(nullptr, p);
}
struct ConvertToAll {
template <typename T>
operator T() const { // NOLINT
return T();
}
};
struct ConvertToPointer {
template <class T>
operator T*() const { // NOLINT
return nullptr;
}
};
struct ConvertToAllButNoPointers {
template <typename T,
typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T() const { // NOLINT
return T();
}
};
struct MyType {};
inline bool operator==(MyType const&, MyType const&) { return true; }
TEST(NullLiteralTest, ImplicitConversion) {
EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
#if !defined(__GNUC__) || defined(__clang__)
// Disabled due to GCC bug gcc.gnu.org/PR89580
EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
#endif
EXPECT_EQ(ConvertToAll{}, MyType{});
EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
}
#ifdef __clang__
#pragma clang diagnostic push
#if __has_warning("-Wzero-as-null-pointer-constant")
#pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
#endif
#endif
TEST(NullLiteralTest, NoConversionNoWarning) {
// Test that gtests detection and handling of null pointer constants
// doesn't trigger a warning when '0' isn't actually used as null.
EXPECT_EQ(0, 0);
ASSERT_EQ(0, 0);
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
# ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
# pragma option pop
# endif
//
// Tests CodePointToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeNul) {
EXPECT_EQ("", CodePointToUtf8(L'\0'));
}
// Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeAscii) {
EXPECT_EQ("a", CodePointToUtf8(L'a'));
EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
EXPECT_EQ("&", CodePointToUtf8(L'&'));
EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
// 000 1101 0011 => 110-00011 10-010011
EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
// 101 0111 0110 => 110-10101 10-110110
// Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
// in wide strings and wide chars. In order to accommodate them, we have to
// introduce such character constants as integers.
EXPECT_EQ("\xD5\xB6",
CodePointToUtf8(static_cast<wchar_t>(0x576)));
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
EXPECT_EQ("\xE0\xA3\x93",
CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
EXPECT_EQ("\xEC\x9D\x8D",
CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
}
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests in this group require a wchar_t to hold > 16 bits, and thus
// are skipped on Windows, and Cygwin, where a wchar_t is
// 16-bit wide. This code may not compile on those systems.
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
// 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests WideStringToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeNul) {
EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
}
// Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeAscii) {
EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
// 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
// 101 0111 0110 => 110-10101 10-110110
const wchar_t s[] = { 0x576, '\0' };
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
const wchar_t s1[] = { 0x8D3, '\0' };
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
const wchar_t s2[] = { 0xC74D, '\0' };
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
}
// Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
}
// Tests that the conversion stops when the function reaches the limit
// specified by the 'length' parameter.
TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
}
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
// on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
WideStringToUtf8(L"\xABCDFF", -1).c_str());
}
#else // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that surrogate pairs are encoded correctly on the systems using
// UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
}
// Tests that encoding an invalid UTF-16 surrogate pair
// generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
// Leading surrogate is at the end of the string.
const wchar_t s1[] = { 0xD800, '\0' };
EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
// Leading surrogate is not followed by the trailing surrogate.
const wchar_t s2[] = { 0xD800, 'M', '\0' };
EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
// Trailing surrogate appearas without a leading surrogate.
const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that codepoint concatenation works correctly.
#if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
EXPECT_STREQ(
"\xF4\x88\x98\xB4"
"\xEC\x9D\x8D"
"\n"
"\xD5\xB6"
"\xE0\xA3\x93"
"\xF4\x88\x98\xB4",
WideStringToUtf8(s, -1).c_str());
}
#else
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
EXPECT_STREQ(
"\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
WideStringToUtf8(s, -1).c_str());
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests the Random class.
TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
testing::internal::Random random(42);
EXPECT_DEATH_IF_SUPPORTED(
random.Generate(0),
"Cannot generate a number in the range \\[0, 0\\)");
EXPECT_DEATH_IF_SUPPORTED(
random.Generate(testing::internal::Random::kMaxRange + 1),
"Generation of a number in \\[0, 2147483649\\) was requested, "
"but this can only generate numbers in \\[0, 2147483648\\)");
}
TEST(RandomTest, GeneratesNumbersWithinRange) {
constexpr uint32_t kRange = 10000;
testing::internal::Random random(12345);
for (int i = 0; i < 10; i++) {
EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
}
testing::internal::Random random2(testing::internal::Random::kMaxRange);
for (int i = 0; i < 10; i++) {
EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
}
}
TEST(RandomTest, RepeatsWhenReseeded) {
constexpr int kSeed = 123;
constexpr int kArraySize = 10;
constexpr uint32_t kRange = 10000;
uint32_t values[kArraySize];
testing::internal::Random random(kSeed);
for (int i = 0; i < kArraySize; i++) {
values[i] = random.Generate(kRange);
}
random.Reseed(kSeed);
for (int i = 0; i < kArraySize; i++) {
EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
}
}
// Tests STL container utilities.
// Tests CountIf().
static bool IsPositive(int n) { return n > 0; }
TEST(ContainerUtilityTest, CountIf) {
std::vector<int> v;
EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
v.push_back(-1);
v.push_back(0);
EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
v.push_back(2);
v.push_back(-10);
v.push_back(10);
EXPECT_EQ(2, CountIf(v, IsPositive));
}
// Tests ForEach().
static int g_sum = 0;
static void Accumulate(int n) { g_sum += n; }
TEST(ContainerUtilityTest, ForEach) {
std::vector<int> v;
g_sum = 0;
ForEach(v, Accumulate);
EXPECT_EQ(0, g_sum); // Works for an empty container;
g_sum = 0;
v.push_back(1);
ForEach(v, Accumulate);
EXPECT_EQ(1, g_sum); // Works for a container with one element.
g_sum = 0;
v.push_back(20);
v.push_back(300);
ForEach(v, Accumulate);
EXPECT_EQ(321, g_sum);
}
// Tests GetElementOr().
TEST(ContainerUtilityTest, GetElementOr) {
std::vector<char> a;
EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
a.push_back('a');
a.push_back('b');
EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
}
TEST(ContainerUtilityDeathTest, ShuffleRange) {
std::vector<int> a;
a.push_back(0);
a.push_back(1);
a.push_back(2);
testing::internal::Random random(1);
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, -1, 1, &a),
"Invalid shuffle range start -1: must be in range \\[0, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 4, 4, &a),
"Invalid shuffle range start 4: must be in range \\[0, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 3, 2, &a),
"Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 3, 4, &a),
"Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
}
class VectorShuffleTest : public Test {
protected:
static const size_t kVectorSize = 20;
VectorShuffleTest() : random_(1) {
for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
vector_.push_back(i);
}
}
static bool VectorIsCorrupt(const TestingVector& vector) {
if (kVectorSize != vector.size()) {
return true;
}
bool found_in_vector[kVectorSize] = { false };
for (size_t i = 0; i < vector.size(); i++) {
const int e = vector[i];
if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
return true;
}
found_in_vector[e] = true;
}
// Vector size is correct, elements' range is correct, no
// duplicate elements. Therefore no corruption has occurred.
return false;
}
static bool VectorIsNotCorrupt(const TestingVector& vector) {
return !VectorIsCorrupt(vector);
}
static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
for (int i = begin; i < end; i++) {
if (i != vector[static_cast<size_t>(i)]) {
return true;
}
}
return false;
}
static bool RangeIsUnshuffled(
const TestingVector& vector, int begin, int end) {
return !RangeIsShuffled(vector, begin, end);
}
static bool VectorIsShuffled(const TestingVector& vector) {
return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
}
static bool VectorIsUnshuffled(const TestingVector& vector) {
return !VectorIsShuffled(vector);
}
testing::internal::Random random_;
TestingVector vector_;
}; // class VectorShuffleTest
const size_t VectorShuffleTest::kVectorSize;
TEST_F(VectorShuffleTest, HandlesEmptyRange) {
// Tests an empty range at the beginning...
ShuffleRange(&random_, 0, 0, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...at the end...
ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and past the end.
ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
}
TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
// Tests a size one range at the beginning...
ShuffleRange(&random_, 0, 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and at the end.
ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
}
// Because we use our own random number generator and a fixed seed,
// we can guarantee that the following "random" tests will succeed.
TEST_F(VectorShuffleTest, ShufflesEntireVector) {
Shuffle(&random_, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
// Tests the first and last elements in particular to ensure that
// there are no off-by-one problems in our shuffle algorithm.
EXPECT_NE(0, vector_[0]);
EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
}
TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
const int kRangeSize = kVectorSize/2;
ShuffleRange(&random_, 0, kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
const int kRangeSize = kVectorSize / 2;
ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
const int kRangeSize = static_cast<int>(kVectorSize) / 3;
ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesRepeatably) {
TestingVector vector2;
for (size_t i = 0; i < kVectorSize; i++) {
vector2.push_back(static_cast<int>(i));
}
random_.Reseed(1234);
Shuffle(&random_, &vector_);
random_.Reseed(1234);
Shuffle(&random_, &vector2);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector2);
for (size_t i = 0; i < kVectorSize; i++) {
EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
}
}
// Tests the size of the AssertHelper class.
TEST(AssertHelperTest, AssertHelperIsSmall) {
// To avoid breaking clients that use lots of assertions in one
// function, we cannot grow the size of AssertHelper.
EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
}
// Tests String::EndsWithCaseInsensitive().
TEST(StringTest, EndsWithCaseInsensitive) {
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
}
// C++Builder's preprocessor is buggy; it fails to expand macros that
// appear in macro parameters after wide char literals. Provide an alias
// for NULL as a workaround.
static const wchar_t* const kNull = nullptr;
// Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest, CaseInsensitiveWideCStringEquals) {
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
}
#if GTEST_OS_WINDOWS
// Tests String::ShowWideCString().
TEST(StringTest, ShowWideCString) {
EXPECT_STREQ("(null)",
String::ShowWideCString(NULL).c_str());
EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
}
# if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest, AnsiAndUtf16Null) {
EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
}
TEST(StringTest, AnsiAndUtf16ConvertBasic) {
const char* ansi = String::Utf16ToAnsi(L"str");
EXPECT_STREQ("str", ansi);
delete [] ansi;
const WCHAR* utf16 = String::AnsiToUtf16("str");
EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
delete [] utf16;
}
TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
EXPECT_STREQ(".:\\ \"*?", ansi);
delete [] ansi;
const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
delete [] utf16;
}
# endif // GTEST_OS_WINDOWS_MOBILE
#endif // GTEST_OS_WINDOWS
// Tests TestProperty construction.
TEST(TestPropertyTest, StringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("1", property.value());
}
// Tests TestProperty replacing a value.
TEST(TestPropertyTest, ReplaceStringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("1", property.value());
property.SetValue("2");
EXPECT_STREQ("2", property.value());
}
// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
// functions (i.e. their definitions cannot be inlined at the call
// sites), or C++Builder won't compile the code.
static void AddFatalFailure() {
FAIL() << "Expected fatal failure.";
}
static void AddNonfatalFailure() {
ADD_FAILURE() << "Expected non-fatal failure.";
}
class ScopedFakeTestPartResultReporterTest : public Test {
public: // Must be public and not protected due to a bug in g++ 3.4.2.
enum FailureMode {
FATAL_FAILURE,
NONFATAL_FAILURE
};
static void AddFailure(FailureMode failure) {
if (failure == FATAL_FAILURE) {
AddFatalFailure();
} else {
AddNonfatalFailure();
}
}
};
// Tests that ScopedFakeTestPartResultReporter intercepts test
// failures.
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
&results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
}
EXPECT_EQ(2, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
}
TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
TestPartResultArray results;
{
// Tests, that the deprecated constructor still works.
ScopedFakeTestPartResultReporter reporter(&results);
AddFailure(NONFATAL_FAILURE);
}
EXPECT_EQ(1, results.size());
}
#if GTEST_IS_THREADSAFE
class ScopedFakeTestPartResultReporterWithThreadsTest
: public ScopedFakeTestPartResultReporterTest {
protected:
static void AddFailureInOtherThread(FailureMode failure) {
ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
thread.Join();
}
};
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
InterceptsTestFailuresInAllThreads) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
AddFailureInOtherThread(NONFATAL_FAILURE);
AddFailureInOtherThread(FATAL_FAILURE);
}
EXPECT_EQ(4, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
}
#endif // GTEST_IS_THREADSAFE
// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
// work even if the failure is generated in a called function rather than
// the current context.
typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
}
TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
EXPECT_FATAL_FAILURE(AddFatalFailure(),
::std::string("Expected fatal failure."));
}
TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
// We have another test below to verify that the macro catches fatal
// failures generated on another thread.
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
"Expected fatal failure.");
}
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true"
# pragma option push -w-ccc
#endif
// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
// function even when the statement in it contains ASSERT_*.
int NonVoidFunction() {
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
return 0;
}
TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
NonVoidFunction();
}
// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
// current function even though 'statement' generates a fatal failure.
void DoesNotAbortHelper(bool* aborted) {
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
*aborted = false;
}
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
# pragma option pop
#endif
TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
bool aborted = true;
DoesNotAbortHelper(&aborted);
EXPECT_FALSE(aborted);
}
// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
static int global_var = 0;
#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE({
GTEST_USE_UNPROTECTED_COMMA_;
AddFatalFailure();
}, "");
#endif
EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
GTEST_USE_UNPROTECTED_COMMA_;
AddFatalFailure();
}, "");
}
// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
"Expected non-fatal failure.");
}
TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
::std::string("Expected non-fatal failure."));
}
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
// We have another test below to verify that the macro catches
// non-fatal failures generated on another thread.
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
"Expected non-fatal failure.");
}
// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
EXPECT_NONFATAL_FAILURE({
GTEST_USE_UNPROTECTED_COMMA_;
AddNonfatalFailure();
}, "");
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
GTEST_USE_UNPROTECTED_COMMA_;
AddNonfatalFailure();
}, "");
}
#if GTEST_IS_THREADSAFE
typedef ScopedFakeTestPartResultReporterWithThreadsTest
ExpectFailureWithThreadsTest;
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
"Expected fatal failure.");
}
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
}
#endif // GTEST_IS_THREADSAFE
// Tests the TestProperty class.
TEST(TestPropertyTest, ConstructorWorks) {
const TestProperty property("key", "value");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("value", property.value());
}
TEST(TestPropertyTest, SetValue) {
TestProperty property("key", "value_1");
EXPECT_STREQ("key", property.key());
property.SetValue("value_2");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("value_2", property.value());
}
// Tests the TestResult class
// The test fixture for testing TestResult.
class TestResultTest : public Test {
protected:
typedef std::vector<TestPartResult> TPRVector;
// We make use of 2 TestPartResult objects,
TestPartResult * pr1, * pr2;
// ... and 3 TestResult objects.
TestResult * r0, * r1, * r2;
void SetUp() override {
// pr1 is for success.
pr1 = new TestPartResult(TestPartResult::kSuccess,
"foo/bar.cc",
10,
"Success!");
// pr2 is for fatal failure.
pr2 = new TestPartResult(TestPartResult::kFatalFailure,
"foo/bar.cc",
-1, // This line number means "unknown"
"Failure!");
// Creates the TestResult objects.
r0 = new TestResult();
r1 = new TestResult();
r2 = new TestResult();
// In order to test TestResult, we need to modify its internal
// state, in particular the TestPartResult vector it holds.
// test_part_results() returns a const reference to this vector.
// We cast it to a non-const object s.t. it can be modified
TPRVector* results1 = const_cast<TPRVector*>(
&TestResultAccessor::test_part_results(*r1));
TPRVector* results2 = const_cast<TPRVector*>(
&TestResultAccessor::test_part_results(*r2));
// r0 is an empty TestResult.
// r1 contains a single SUCCESS TestPartResult.
results1->push_back(*pr1);
// r2 contains a SUCCESS, and a FAILURE.
results2->push_back(*pr1);
results2->push_back(*pr2);
}
void TearDown() override {
delete pr1;
delete pr2;
delete r0;
delete r1;
delete r2;
}
// Helper that compares two TestPartResults.
static void CompareTestPartResult(const TestPartResult& expected,
const TestPartResult& actual) {
EXPECT_EQ(expected.type(), actual.type());
EXPECT_STREQ(expected.file_name(), actual.file_name());
EXPECT_EQ(expected.line_number(), actual.line_number());
EXPECT_STREQ(expected.summary(), actual.summary());
EXPECT_STREQ(expected.message(), actual.message());
EXPECT_EQ(expected.passed(), actual.passed());
EXPECT_EQ(expected.failed(), actual.failed());
EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
}
};
// Tests TestResult::total_part_count().
TEST_F(TestResultTest, total_part_count) {
ASSERT_EQ(0, r0->total_part_count());
ASSERT_EQ(1, r1->total_part_count());
ASSERT_EQ(2, r2->total_part_count());
}
// Tests TestResult::Passed().
TEST_F(TestResultTest, Passed) {
ASSERT_TRUE(r0->Passed());
ASSERT_TRUE(r1->Passed());
ASSERT_FALSE(r2->Passed());
}
// Tests TestResult::Failed().
TEST_F(TestResultTest, Failed) {
ASSERT_FALSE(r0->Failed());
ASSERT_FALSE(r1->Failed());
ASSERT_TRUE(r2->Failed());
}
// Tests TestResult::GetTestPartResult().
typedef TestResultTest TestResultDeathTest;
TEST_F(TestResultDeathTest, GetTestPartResult) {
CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
}
// Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
TestResult test_result;
ASSERT_EQ(0, test_result.test_property_count());
}
// Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
TestResult test_result;
TestProperty property("key_1", "1");
TestResultAccessor::RecordProperty(&test_result, "testcase", property);
ASSERT_EQ(1, test_result.test_property_count());
const TestProperty& actual_property = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property.key());
EXPECT_STREQ("1", actual_property.value());
}
// Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
TestResult test_result;
TestProperty property_1("key_1", "1");
TestProperty property_2("key_2", "2");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
ASSERT_EQ(2, test_result.test_property_count());
const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("1", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("2", actual_property_2.value());
}
// Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
TestResult test_result;
TestProperty property_1_1("key_1", "1");
TestProperty property_2_1("key_2", "2");
TestProperty property_1_2("key_1", "12");
TestProperty property_2_2("key_2", "22");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
ASSERT_EQ(2, test_result.test_property_count());
const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("12", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("22", actual_property_2.value());
}
// Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest, GetTestProperty) {
TestResult test_result;
TestProperty property_1("key_1", "1");
TestProperty property_2("key_2", "2");
TestProperty property_3("key_3", "3");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
EXPECT_STREQ("key_1", fetched_property_1.key());
EXPECT_STREQ("1", fetched_property_1.value());
EXPECT_STREQ("key_2", fetched_property_2.key());
EXPECT_STREQ("2", fetched_property_2.value());
EXPECT_STREQ("key_3", fetched_property_3.key());
EXPECT_STREQ("3", fetched_property_3.value());
EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
}
// Tests the Test class.
//
// It's difficult to test every public method of this class (we are
// already stretching the limit of Google Test by using it to test itself!).
// Fortunately, we don't have to do that, as we are already testing
// the functionalities of the Test class extensively by using Google Test
// alone.
//
// Therefore, this section only contains one test.
// Tests that GTestFlagSaver works on Windows and Mac.
class GTestFlagSaverTest : public Test {
protected:
// Saves the Google Test flags such that we can restore them later, and
// then sets them to their default values. This will be called
// before the first test in this test case is run.
static void SetUpTestSuite() {
saver_ = new GTestFlagSaver;
GTEST_FLAG(also_run_disabled_tests) = false;
GTEST_FLAG(break_on_failure) = false;
GTEST_FLAG(catch_exceptions) = false;
GTEST_FLAG(death_test_use_fork) = false;
GTEST_FLAG(color) = "auto";
GTEST_FLAG(fail_fast) = false;
GTEST_FLAG(filter) = "";
GTEST_FLAG(list_tests) = false;
GTEST_FLAG(output) = "";
GTEST_FLAG(brief) = false;
GTEST_FLAG(print_time) = true;
GTEST_FLAG(random_seed) = 0;
GTEST_FLAG(repeat) = 1;
GTEST_FLAG(shuffle) = false;
GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
GTEST_FLAG(stream_result_to) = "";
GTEST_FLAG(throw_on_failure) = false;
}
// Restores the Google Test flags that the tests have modified. This will
// be called after the last test in this test case is run.
static void TearDownTestSuite() {
delete saver_;
saver_ = nullptr;
}
// Verifies that the Google Test flags have their default values, and then
// modifies each of them.
void VerifyAndModifyFlags() {
EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
EXPECT_FALSE(GTEST_FLAG(break_on_failure));
EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
EXPECT_FALSE(GTEST_FLAG(fail_fast));
EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
EXPECT_FALSE(GTEST_FLAG(list_tests));
EXPECT_STREQ("", GTEST_FLAG(output).c_str());
EXPECT_FALSE(GTEST_FLAG(brief));
EXPECT_TRUE(GTEST_FLAG(print_time));
EXPECT_EQ(0, GTEST_FLAG(random_seed));
EXPECT_EQ(1, GTEST_FLAG(repeat));
EXPECT_FALSE(GTEST_FLAG(shuffle));
EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
GTEST_FLAG(also_run_disabled_tests) = true;
GTEST_FLAG(break_on_failure) = true;
GTEST_FLAG(catch_exceptions) = true;
GTEST_FLAG(color) = "no";
GTEST_FLAG(death_test_use_fork) = true;
GTEST_FLAG(fail_fast) = true;
GTEST_FLAG(filter) = "abc";
GTEST_FLAG(list_tests) = true;
GTEST_FLAG(output) = "xml:foo.xml";
GTEST_FLAG(brief) = true;
GTEST_FLAG(print_time) = false;
GTEST_FLAG(random_seed) = 1;
GTEST_FLAG(repeat) = 100;
GTEST_FLAG(shuffle) = true;
GTEST_FLAG(stack_trace_depth) = 1;
GTEST_FLAG(stream_result_to) = "localhost:1234";
GTEST_FLAG(throw_on_failure) = true;
}
private:
// For saving Google Test flags during this test case.
static GTestFlagSaver* saver_;
};
GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
// Google Test doesn't guarantee the order of tests. The following two
// tests are designed to work regardless of their order.
// Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
VerifyAndModifyFlags();
}
// Verifies that the Google Test flags in the body of the previous test were
// restored to their original values.
TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
VerifyAndModifyFlags();
}
// Sets an environment variable with the given name to the given
// value. If the value argument is "", unsets the environment
// variable. The caller must ensure that both arguments are not NULL.
static void SetEnv(const char* name, const char* value) {
#if GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
return;
#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
// C++Builder's putenv only stores a pointer to its parameter; we have to
// ensure that the string remains valid as long as it might be needed.
// We use an std::map to do so.
static std::map<std::string, std::string*> added_env;
// Because putenv stores a pointer to the string buffer, we can't delete the
// previous string (if present) until after it's replaced.
std::string *prev_env = NULL;
if (added_env.find(name) != added_env.end()) {
prev_env = added_env[name];
}
added_env[name] = new std::string(
(Message() << name << "=" << value).GetString());
// The standard signature of putenv accepts a 'char*' argument. Other
// implementations, like C++Builder's, accept a 'const char*'.
// We cast away the 'const' since that would work for both variants.
putenv(const_cast<char*>(added_env[name]->c_str()));
delete prev_env;
#elif GTEST_OS_WINDOWS // If we are on Windows proper.
_putenv((Message() << name << "=" << value).GetString().c_str());
#else
if (*value == '\0') {
unsetenv(name);
} else {
setenv(name, value, 1);
}
#endif // GTEST_OS_WINDOWS_MOBILE
}
#if !GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
using testing::internal::Int32FromGTestEnv;
// Tests Int32FromGTestEnv().
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable is not set.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
}
# if !defined(GTEST_GET_INT32_FROM_ENV_)
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
}
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
}
# endif // !defined(GTEST_GET_INT32_FROM_ENV_)
// Tests that Int32FromGTestEnv() parses and returns the value of the
// environment variable when it represents a valid decimal integer in
// the range of an Int32.
TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests ParseInt32Flag().
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag has wrong format
TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
int32_t value = 123;
EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
int32_t value = 123;
EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag does not represent a valid decimal
// integer.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
int32_t value = 123;
EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() parses the value of the flag and
// returns true when the flag represents a valid decimal integer in
// the range of an Int32.
TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
int32_t value = 123;
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
EXPECT_EQ(456, value);
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
"abc", &value));
EXPECT_EQ(-789, value);
}
// Tests that Int32FromEnvOrDie() parses the value of the var or
// returns the correct default.
// Environment variables are not supported on Windows CE.
#if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
EXPECT_DEATH_IF_SUPPORTED(
Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
".*");
}
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
EXPECT_DEATH_IF_SUPPORTED(
Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
".*");
}
// Tests that ShouldRunTestOnShard() selects all tests
// where there is 1 shard.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
}
class ShouldShardTest : public testing::Test {
protected:
void SetUp() override {
index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
}
void TearDown() override {
SetEnv(index_var_, "");
SetEnv(total_var_, "");
}
const char* index_var_;
const char* total_var_;
};
// Tests that sharding is disabled if neither of the environment variables
// are set.
TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
SetEnv(index_var_, "");
SetEnv(total_var_, "");
EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
// Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
SetEnv(index_var_, "0");
SetEnv(total_var_, "1");
EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
// Tests that sharding is enabled if total_shards > 1 and
// we are not in a death test subprocess.
// Environment variables are not supported on Windows CE.
#if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
SetEnv(index_var_, "4");
SetEnv(total_var_, "22");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "8");
SetEnv(total_var_, "9");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "0");
SetEnv(total_var_, "9");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that we exit in error if the sharding values are not valid.
typedef ShouldShardTest ShouldShardDeathTest;
TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
SetEnv(index_var_, "4");
SetEnv(total_var_, "4");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "4");
SetEnv(total_var_, "-2");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "5");
SetEnv(total_var_, "");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "");
SetEnv(total_var_, "5");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
}
// Tests that ShouldRunTestOnShard is a partition when 5
// shards are used.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
// Choose an arbitrary number of tests and shards.
const int num_tests = 17;
const int num_shards = 5;
// Check partitioning: each test should be on exactly 1 shard.
for (int test_id = 0; test_id < num_tests; test_id++) {
int prev_selected_shard_index = -1;
for (int shard_index = 0; shard_index < num_shards; shard_index++) {
if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
if (prev_selected_shard_index < 0) {
prev_selected_shard_index = shard_index;
} else {
ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
<< shard_index << " are both selected to run test " << test_id;
}
}
}
}
// Check balance: This is not required by the sharding protocol, but is a
// desirable property for performance.
for (int shard_index = 0; shard_index < num_shards; shard_index++) {
int num_tests_on_shard = 0;
for (int test_id = 0; test_id < num_tests; test_id++) {
num_tests_on_shard +=
ShouldRunTestOnShard(num_shards, shard_index, test_id);
}
EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
}
}
// For the same reason we are not explicitly testing everything in the
// Test class, there are no separate tests for the following classes
// (except for some trivial cases):
//
// TestSuite, UnitTest, UnitTestResultPrinter.
//
// Similarly, there are no separate tests for the following macros:
//
// TEST, TEST_F, RUN_ALL_TESTS
TEST(UnitTestTest, CanGetOriginalWorkingDir) {
ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
}
TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
}
// When a property using a reserved key is supplied to this function, it
// tests that a non-fatal failure is added, a fatal failure is not added,
// and that the property is not recorded.
void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
const TestResult& test_result, const char* key) {
EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
<< "' recorded unexpectedly.";
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
const char* key) {
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(test_info != nullptr);
ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
key);
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
const char* key) {
const testing::TestSuite* test_suite =
UnitTest::GetInstance()->current_test_suite();
ASSERT_TRUE(test_suite != nullptr);
ExpectNonFatalFailureRecordingPropertyWithReservedKey(
test_suite->ad_hoc_test_result(), key);
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
const char* key) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey(
UnitTest::GetInstance()->ad_hoc_test_result(), key);
}
// Tests that property recording functions in UnitTest outside of tests
// functions correcly. Creating a separate instance of UnitTest ensures it
// is in a state similar to the UnitTest's singleton's between tests.
class UnitTestRecordPropertyTest :
public testing::internal::UnitTestRecordPropertyTestHelper {
public:
static void SetUpTestSuite() {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"disabled");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"errors");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"failures");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"tests");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"time");
Test::RecordProperty("test_case_key_1", "1");
const testing::TestSuite* test_suite =
UnitTest::GetInstance()->current_test_suite();
ASSERT_TRUE(test_suite != nullptr);
ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
EXPECT_STREQ("test_case_key_1",
test_suite->ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1",
test_suite->ad_hoc_test_result().GetTestProperty(0).value());
}
};
// Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
UnitTestRecordProperty("key_1", "1");
ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
}
// Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
UnitTestRecordProperty("key_1", "1");
UnitTestRecordProperty("key_2", "2");
ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
EXPECT_STREQ("key_2",
unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
}
// Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
UnitTestRecordProperty("key_1", "1");
UnitTestRecordProperty("key_2", "2");
UnitTestRecordProperty("key_1", "12");
UnitTestRecordProperty("key_2", "22");
ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("12",
unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
EXPECT_STREQ("key_2",
unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
EXPECT_STREQ("22",
unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
}
TEST_F(UnitTestRecordPropertyTest,
AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"value_param");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"type_param");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"status");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"time");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"classname");
}
TEST_F(UnitTestRecordPropertyTest,
AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
EXPECT_NONFATAL_FAILURE(
Test::RecordProperty("name", "1"),
"'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
" 'file', and 'line' are reserved");
}
class UnitTestRecordPropertyTestEnvironment : public Environment {
public:
void TearDown() override {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"tests");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"failures");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"disabled");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"errors");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"timestamp");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"time");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"random_seed");
}
};
// This will test property recording outside of any test or test case.
static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
// of various arities. They do not attempt to be exhaustive. Rather,
// view them as smoke tests that can be easily reviewed and verified.
// A more complete set of tests for predicate assertions can be found
// in gtest_pred_impl_unittest.cc.
// First, some predicates and predicate-formatters needed by the tests.
// Returns true if and only if the argument is an even number.
bool IsEven(int n) {
return (n % 2) == 0;
}
// A functor that returns true if and only if the argument is an even number.
struct IsEvenFunctor {
bool operator()(int n) { return IsEven(n); }
};
// A predicate-formatter function that asserts the argument is an even
// number.
AssertionResult AssertIsEven(const char* expr, int n) {
if (IsEven(n)) {
return AssertionSuccess();
}
Message msg;
msg << expr << " evaluates to " << n << ", which is not even.";
return AssertionFailure(msg);
}
// A predicate function that returns AssertionResult for use in
// EXPECT/ASSERT_TRUE/FALSE.
AssertionResult ResultIsEven(int n) {
if (IsEven(n))
return AssertionSuccess() << n << " is even";
else
return AssertionFailure() << n << " is odd";
}
// A predicate function that returns AssertionResult but gives no
// explanation why it succeeds. Needed for testing that
// EXPECT/ASSERT_FALSE handles such functions correctly.
AssertionResult ResultIsEvenNoExplanation(int n) {
if (IsEven(n))
return AssertionSuccess();
else
return AssertionFailure() << n << " is odd";
}
// A predicate-formatter functor that asserts the argument is an even
// number.
struct AssertIsEvenFunctor {
AssertionResult operator()(const char* expr, int n) {
return AssertIsEven(expr, n);
}
};
// Returns true if and only if the sum of the arguments is an even number.
bool SumIsEven2(int n1, int n2) {
return IsEven(n1 + n2);
}
// A functor that returns true if and only if the sum of the arguments is an
// even number.
struct SumIsEven3Functor {
bool operator()(int n1, int n2, int n3) {
return IsEven(n1 + n2 + n3);
}
};
// A predicate-formatter function that asserts the sum of the
// arguments is an even number.
AssertionResult AssertSumIsEven4(
const char* e1, const char* e2, const char* e3, const char* e4,
int n1, int n2, int n3, int n4) {
const int sum = n1 + n2 + n3 + n4;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
<< " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
<< ") evaluates to " << sum << ", which is not even.";
return AssertionFailure(msg);
}
// A predicate-formatter functor that asserts the sum of the arguments
// is an even number.
struct AssertSumIsEven5Functor {
AssertionResult operator()(
const char* e1, const char* e2, const char* e3, const char* e4,
const char* e5, int n1, int n2, int n3, int n4, int n5) {
const int sum = n1 + n2 + n3 + n4 + n5;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
<< " ("
<< n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
<< ") evaluates to " << sum << ", which is not even.";
return AssertionFailure(msg);
}
};
// Tests unary predicate assertions.
// Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test, WithoutFormat) {
// Success cases.
EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
ASSERT_PRED1(IsEven, 4);
// Failure cases.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
}, "This failure is expected.");
EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
"evaluates to false");
}
// Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test, WithFormat) {
// Success cases.
EXPECT_PRED_FORMAT1(AssertIsEven, 2);
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
<< "This failure is UNEXPECTED!";
// Failure cases.
const int n = 5;
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
"n evaluates to 5, which is not even.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
}, "This failure is expected.");
}
// Tests that unary predicate assertions evaluates their arguments
// exactly once.
TEST(Pred1Test, SingleEvaluationOnFailure) {
// A success case.
static int n = 0;
EXPECT_PRED1(IsEven, n++);
EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
// A failure case.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
<< "This failure is expected.";
}, "This failure is expected.");
EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
}
// Tests predicate assertions whose arity is >= 2.
// Tests predicate assertions that don't use a custom formatter.
TEST(PredTest, WithoutFormat) {
// Success cases.
ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
}, "This failure is expected.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
}, "evaluates to false");
}
// Tests predicate assertions that use a custom formatter.
TEST(PredTest, WithFormat) {
// Success cases.
ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
"This failure is UNEXPECTED!";
EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
const int n3 = 4;
const int n4 = 6;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
}, "evaluates to 13, which is not even.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
<< "This failure is expected.";
}, "This failure is expected.");
}
// Tests that predicate assertions evaluates their arguments
// exactly once.
TEST(PredTest, SingleEvaluationOnFailure) {
// A success case.
int n1 = 0;
int n2 = 0;
EXPECT_PRED2(SumIsEven2, n1++, n2++);
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
// Another success case.
n1 = n2 = 0;
int n3 = 0;
int n4 = 0;
int n5 = 0;
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
n1++, n2++, n3++, n4++, n5++)
<< "This failure is UNEXPECTED!";
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
// A failure case.
n1 = n2 = n3 = 0;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
<< "This failure is expected.";
}, "This failure is expected.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
// Another failure case.
n1 = n2 = n3 = n4 = 0;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
}, "evaluates to 1, which is not even.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
}
// Test predicate assertions for sets
TEST(PredTest, ExpectPredEvalFailure) {
std::set<int> set_a = {2, 1, 3, 4, 5};
std::set<int> set_b = {0, 4, 8};
const auto compare_sets = [] (std::set<int>, std::set<int>) { return false; };
EXPECT_NONFATAL_FAILURE(
EXPECT_PRED2(compare_sets, set_a, set_b),
"compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
"to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PREDn and EXPECT_PREDn.
bool IsPositive(double x) {
return x > 0;
}
template <typename T>
bool IsNegative(T x) {
return x < 0;
}
template <typename T1, typename T2>
bool GreaterThan(T1 x1, T2 x2) {
return x1 > x2;
}
// Tests that overloaded functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
// C++Builder requires C-style casts rather than static_cast.
EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
}
// Tests that template functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED1(IsNegative<int>, -5);
// Makes sure that we can handle templates with more than one
// parameter.
ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
return n > 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
return x > 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
template <typename T>
AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
return x < 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
template <typename T1, typename T2>
AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
const T1& x1, const T2& x2) {
return x1 == x2 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
// Tests that overloaded functions can be used in *_PRED_FORMAT*
// without explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
}
// Tests that template functions can be used in *_PRED_FORMAT* without
// explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
}
// Tests string assertions.
// Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ) {
const char * const p1 = "good";
ASSERT_STREQ(p1, p1);
// Let p2 have the same content as p1, but be at a different address.
const char p2[] = "good";
ASSERT_STREQ(p1, p2);
EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
" \"bad\"\n \"good\"");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null) {
ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
}
// Tests ASSERT_STRNE.
TEST(StringAssertionTest, ASSERT_STRNE) {
ASSERT_STRNE("hi", "Hi");
ASSERT_STRNE("Hi", nullptr);
ASSERT_STRNE(nullptr, "Hi");
ASSERT_STRNE("", nullptr);
ASSERT_STRNE(nullptr, "");
ASSERT_STRNE("", "Hi");
ASSERT_STRNE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
"\"Hi\" vs \"Hi\"");
}
// Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
ASSERT_STRCASEEQ("hi", "Hi");
ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
ASSERT_STRCASEEQ("", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
"Ignoring case");
}
// Tests ASSERT_STRCASENE.
TEST(StringAssertionTest, ASSERT_STRCASENE) {
ASSERT_STRCASENE("hi1", "Hi2");
ASSERT_STRCASENE("Hi", nullptr);
ASSERT_STRCASENE(nullptr, "Hi");
ASSERT_STRCASENE("", nullptr);
ASSERT_STRCASENE(nullptr, "");
ASSERT_STRCASENE("", "Hi");
ASSERT_STRCASENE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
"(ignoring case)");
}
// Tests *_STREQ on wide strings.
TEST(StringAssertionTest, STREQ_Wide) {
// NULL strings.
ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
// Empty strings.
ASSERT_STREQ(L"", L"");
// Non-null vs NULL.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
// Equal strings.
EXPECT_STREQ(L"Hi", L"Hi");
// Unequal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
"abc");
// The streaming variation.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
}, "Expected failure");
}
// Tests *_STRNE on wide strings.
TEST(StringAssertionTest, STRNE_Wide) {
// NULL strings.
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
},
"");
// Empty strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
"L\"\"");
// Non-null vs NULL.
ASSERT_STRNE(L"non-null", nullptr);
// Equal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
"L\"Hi\"");
// Unequal strings.
EXPECT_STRNE(L"abc", L"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
"abc");
// The streaming variation.
ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
}
// Tests for ::testing::IsSubstring().
// Tests that IsSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
}
// Tests that IsSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
EXPECT_TRUE(
IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is const char*.
TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: \"haystack\"",
IsSubstring("needle_expr", "haystack_expr",
"needle", "haystack").failure_message());
}
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
}
#if GTEST_HAS_STD_WSTRING
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: L\"haystack\"",
IsSubstring(
"needle_expr", "haystack_expr",
::std::wstring(L"needle"), L"haystack").failure_message());
}
#endif // GTEST_HAS_STD_WSTRING
// Tests for ::testing::IsNotSubstring().
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
}
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: L\"two needles\"",
IsNotSubstring(
"needle_expr", "haystack_expr",
L"needle", L"two needles").failure_message());
}
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: \"two needles\"",
IsNotSubstring(
"needle_expr", "haystack_expr",
::std::string("needle"), "two needles").failure_message());
}
#if GTEST_HAS_STD_WSTRING
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_FALSE(
IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
#endif // GTEST_HAS_STD_WSTRING
// Tests floating-point assertions.
template <typename RawType>
class FloatingPointTest : public Test {
protected:
// Pre-calculated numbers to be used by the tests.
struct TestValues {
RawType close_to_positive_zero;
RawType close_to_negative_zero;
RawType further_from_negative_zero;
RawType close_to_one;
RawType further_from_one;
RawType infinity;
RawType close_to_infinity;
RawType further_from_infinity;
RawType nan1;
RawType nan2;
};
typedef typename testing::internal::FloatingPoint<RawType> Floating;
typedef typename Floating::Bits Bits;
void SetUp() override {
const uint32_t max_ulps = Floating::kMaxUlps;
// The bits that represent 0.0.
const Bits zero_bits = Floating(0).bits();
// Makes some numbers close to 0.0.
values_.close_to_positive_zero = Floating::ReinterpretBits(
zero_bits + max_ulps/2);
values_.close_to_negative_zero = -Floating::ReinterpretBits(
zero_bits + max_ulps - max_ulps/2);
values_.further_from_negative_zero = -Floating::ReinterpretBits(
zero_bits + max_ulps + 1 - max_ulps/2);
// The bits that represent 1.0.
const Bits one_bits = Floating(1).bits();
// Makes some numbers close to 1.0.
values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
values_.further_from_one = Floating::ReinterpretBits(
one_bits + max_ulps + 1);
// +infinity.
values_.infinity = Floating::Infinity();
// The bits that represent +infinity.
const Bits infinity_bits = Floating(values_.infinity).bits();
// Makes some numbers close to infinity.
values_.close_to_infinity = Floating::ReinterpretBits(
infinity_bits - max_ulps);
values_.further_from_infinity = Floating::ReinterpretBits(
infinity_bits - max_ulps - 1);
// Makes some NAN's. Sets the most significant bit of the fraction so that
// our NaN's are quiet; trying to process a signaling NaN would raise an
// exception if our environment enables floating point exceptions.
values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
| (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
| (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
}
void TestSize() {
EXPECT_EQ(sizeof(RawType), sizeof(Bits));
}
static TestValues values_;
};
template <typename RawType>
typename FloatingPointTest<RawType>::TestValues
FloatingPointTest<RawType>::values_;
// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
typedef FloatingPointTest<float> FloatTest;
// Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest, Size) {
TestSize();
}
// Tests comparing with +0 and -0.
TEST_F(FloatTest, Zeros) {
EXPECT_FLOAT_EQ(0.0, -0.0);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
"1.0");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
"1.5");
}
// Tests comparing numbers close to 0.
//
// This ensures that *_FLOAT_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(FloatTest, AlmostZeros) {
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_FLOAT_EQ(v.close_to_positive_zero,
v.further_from_negative_zero);
}, "v.further_from_negative_zero");
}
// Tests comparing numbers close to each other.
TEST_F(FloatTest, SmallDiff) {
EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
"values_.further_from_one");
}
// Tests comparing numbers far apart.
TEST_F(FloatTest, LargeDiff) {
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
"3.0");
}
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(FloatTest, Infinity) {
EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
"-values_.infinity");
// This is interesting as the representations of infinity and nan1
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
"values_.nan1");
}
// Tests that comparing with NAN always returns false.
TEST_F(FloatTest, NaN) {
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
"v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
"v.nan2");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
"v.nan1");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
"v.infinity");
}
// Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest, Reflexive) {
EXPECT_FLOAT_EQ(0.0, 0.0);
EXPECT_FLOAT_EQ(1.0, 1.0);
ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
}
// Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest, Commutative) {
// We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
// We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
"1.0");
}
// Tests EXPECT_NEAR.
TEST_F(FloatTest, EXPECT_NEAR) {
EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
EXPECT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, "
"which exceeds 0.25f");
}
// Tests ASSERT_NEAR.
TEST_F(FloatTest, ASSERT_NEAR) {
ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
ASSERT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, "