| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/chacha.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/hpke.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| static bool ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs); |
| static bool ssl_check_serverhello_tlsext(SSL_HANDSHAKE *hs); |
| |
| static int compare_uint16_t(const void *p1, const void *p2) { |
| uint16_t u1 = *((const uint16_t *)p1); |
| uint16_t u2 = *((const uint16_t *)p2); |
| if (u1 < u2) { |
| return -1; |
| } else if (u1 > u2) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be |
| // more than one extension of the same type in a ClientHello or ServerHello. |
| // This function does an initial scan over the extensions block to filter those |
| // out. |
| static bool tls1_check_duplicate_extensions(const CBS *cbs) { |
| // First pass: count the extensions. |
| size_t num_extensions = 0; |
| CBS extensions = *cbs; |
| while (CBS_len(&extensions) > 0) { |
| uint16_t type; |
| CBS extension; |
| |
| if (!CBS_get_u16(&extensions, &type) || |
| !CBS_get_u16_length_prefixed(&extensions, &extension)) { |
| return false; |
| } |
| |
| num_extensions++; |
| } |
| |
| if (num_extensions == 0) { |
| return true; |
| } |
| |
| Array<uint16_t> extension_types; |
| if (!extension_types.Init(num_extensions)) { |
| return false; |
| } |
| |
| // Second pass: gather the extension types. |
| extensions = *cbs; |
| for (size_t i = 0; i < extension_types.size(); i++) { |
| CBS extension; |
| |
| if (!CBS_get_u16(&extensions, &extension_types[i]) || |
| !CBS_get_u16_length_prefixed(&extensions, &extension)) { |
| // This should not happen. |
| return false; |
| } |
| } |
| assert(CBS_len(&extensions) == 0); |
| |
| // Sort the extensions and make sure there are no duplicates. |
| qsort(extension_types.data(), extension_types.size(), sizeof(uint16_t), |
| compare_uint16_t); |
| for (size_t i = 1; i < num_extensions; i++) { |
| if (extension_types[i - 1] == extension_types[i]) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool is_post_quantum_group(uint16_t id) { |
| switch (id) { |
| case SSL_GROUP_X25519_KYBER768_DRAFT00: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out, |
| Span<const uint8_t> body) { |
| CBS cbs = body; |
| if (!ssl_parse_client_hello_with_trailing_data(ssl, &cbs, out) || |
| CBS_len(&cbs) != 0) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs, |
| SSL_CLIENT_HELLO *out) { |
| OPENSSL_memset(out, 0, sizeof(*out)); |
| out->ssl = const_cast<SSL *>(ssl); |
| |
| CBS copy = *cbs; |
| CBS random, session_id; |
| if (!CBS_get_u16(cbs, &out->version) || |
| !CBS_get_bytes(cbs, &random, SSL3_RANDOM_SIZE) || |
| !CBS_get_u8_length_prefixed(cbs, &session_id) || |
| CBS_len(&session_id) > SSL_MAX_SSL_SESSION_ID_LENGTH) { |
| return false; |
| } |
| |
| out->random = CBS_data(&random); |
| out->random_len = CBS_len(&random); |
| out->session_id = CBS_data(&session_id); |
| out->session_id_len = CBS_len(&session_id); |
| |
| // Skip past DTLS cookie |
| if (SSL_is_dtls(out->ssl)) { |
| CBS cookie; |
| if (!CBS_get_u8_length_prefixed(cbs, &cookie)) { |
| return false; |
| } |
| } |
| |
| CBS cipher_suites, compression_methods; |
| if (!CBS_get_u16_length_prefixed(cbs, &cipher_suites) || |
| CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0 || |
| !CBS_get_u8_length_prefixed(cbs, &compression_methods) || |
| CBS_len(&compression_methods) < 1) { |
| return false; |
| } |
| |
| out->cipher_suites = CBS_data(&cipher_suites); |
| out->cipher_suites_len = CBS_len(&cipher_suites); |
| out->compression_methods = CBS_data(&compression_methods); |
| out->compression_methods_len = CBS_len(&compression_methods); |
| |
| // If the ClientHello ends here then it's valid, but doesn't have any |
| // extensions. |
| if (CBS_len(cbs) == 0) { |
| out->extensions = nullptr; |
| out->extensions_len = 0; |
| } else { |
| // Extract extensions and check it is valid. |
| CBS extensions; |
| if (!CBS_get_u16_length_prefixed(cbs, &extensions) || |
| !tls1_check_duplicate_extensions(&extensions)) { |
| return false; |
| } |
| out->extensions = CBS_data(&extensions); |
| out->extensions_len = CBS_len(&extensions); |
| } |
| |
| out->client_hello = CBS_data(©); |
| out->client_hello_len = CBS_len(©) - CBS_len(cbs); |
| return true; |
| } |
| |
| bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, |
| CBS *out, uint16_t extension_type) { |
| CBS extensions; |
| CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); |
| while (CBS_len(&extensions) != 0) { |
| // Decode the next extension. |
| uint16_t type; |
| CBS extension; |
| if (!CBS_get_u16(&extensions, &type) || |
| !CBS_get_u16_length_prefixed(&extensions, &extension)) { |
| return false; |
| } |
| |
| if (type == extension_type) { |
| *out = extension; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static const uint16_t kDefaultGroups[] = { |
| SSL_GROUP_X25519, |
| SSL_GROUP_SECP256R1, |
| SSL_GROUP_SECP384R1, |
| }; |
| |
| Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *hs) { |
| if (!hs->config->supported_group_list.empty()) { |
| return hs->config->supported_group_list; |
| } |
| return Span<const uint16_t>(kDefaultGroups); |
| } |
| |
| bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id) { |
| SSL *const ssl = hs->ssl; |
| assert(ssl->server); |
| |
| // Clients are not required to send a supported_groups extension. In this |
| // case, the server is free to pick any group it likes. See RFC 4492, |
| // section 4, paragraph 3. |
| // |
| // However, in the interests of compatibility, we will skip ECDH if the |
| // client didn't send an extension because we can't be sure that they'll |
| // support our favoured group. Thus we do not special-case an emtpy |
| // |peer_supported_group_list|. |
| |
| Span<const uint16_t> groups = tls1_get_grouplist(hs); |
| Span<const uint16_t> pref, supp; |
| if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
| pref = groups; |
| supp = hs->peer_supported_group_list; |
| } else { |
| pref = hs->peer_supported_group_list; |
| supp = groups; |
| } |
| |
| for (uint16_t pref_group : pref) { |
| for (uint16_t supp_group : supp) { |
| if (pref_group == supp_group && |
| // Post-quantum key agreements don't fit in the u8-length-prefixed |
| // ECPoint field in TLS 1.2 and below. |
| (ssl_protocol_version(ssl) >= TLS1_3_VERSION || |
| !is_post_quantum_group(pref_group))) { |
| *out_group_id = pref_group; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool tls1_check_group_id(const SSL_HANDSHAKE *hs, uint16_t group_id) { |
| if (is_post_quantum_group(group_id) && |
| ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { |
| // Post-quantum "groups" require TLS 1.3. |
| return false; |
| } |
| |
| // We internally assume zero is never allocated as a group ID. |
| if (group_id == 0) { |
| return false; |
| } |
| |
| for (uint16_t supported : tls1_get_grouplist(hs)) { |
| if (supported == group_id) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // kVerifySignatureAlgorithms is the default list of accepted signature |
| // algorithms for verifying. |
| static const uint16_t kVerifySignatureAlgorithms[] = { |
| // List our preferred algorithms first. |
| SSL_SIGN_ECDSA_SECP256R1_SHA256, |
| SSL_SIGN_RSA_PSS_RSAE_SHA256, |
| SSL_SIGN_RSA_PKCS1_SHA256, |
| |
| // Larger hashes are acceptable. |
| SSL_SIGN_ECDSA_SECP384R1_SHA384, |
| SSL_SIGN_RSA_PSS_RSAE_SHA384, |
| SSL_SIGN_RSA_PKCS1_SHA384, |
| |
| SSL_SIGN_RSA_PSS_RSAE_SHA512, |
| SSL_SIGN_RSA_PKCS1_SHA512, |
| |
| // For now, SHA-1 is still accepted but least preferable. |
| SSL_SIGN_RSA_PKCS1_SHA1, |
| }; |
| |
| // kSignSignatureAlgorithms is the default list of supported signature |
| // algorithms for signing. |
| static const uint16_t kSignSignatureAlgorithms[] = { |
| // List our preferred algorithms first. |
| SSL_SIGN_ED25519, |
| SSL_SIGN_ECDSA_SECP256R1_SHA256, |
| SSL_SIGN_RSA_PSS_RSAE_SHA256, |
| SSL_SIGN_RSA_PKCS1_SHA256, |
| |
| // If needed, sign larger hashes. |
| // |
| // TODO(davidben): Determine which of these may be pruned. |
| SSL_SIGN_ECDSA_SECP384R1_SHA384, |
| SSL_SIGN_RSA_PSS_RSAE_SHA384, |
| SSL_SIGN_RSA_PKCS1_SHA384, |
| |
| SSL_SIGN_ECDSA_SECP521R1_SHA512, |
| SSL_SIGN_RSA_PSS_RSAE_SHA512, |
| SSL_SIGN_RSA_PKCS1_SHA512, |
| |
| // If the peer supports nothing else, sign with SHA-1. |
| SSL_SIGN_ECDSA_SHA1, |
| SSL_SIGN_RSA_PKCS1_SHA1, |
| }; |
| |
| static Span<const uint16_t> tls12_get_verify_sigalgs(const SSL_HANDSHAKE *hs) { |
| if (hs->config->verify_sigalgs.empty()) { |
| return Span<const uint16_t>(kVerifySignatureAlgorithms); |
| } |
| return hs->config->verify_sigalgs; |
| } |
| |
| bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out) { |
| for (uint16_t sigalg : tls12_get_verify_sigalgs(hs)) { |
| if (!CBB_add_u16(out, sigalg)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| uint16_t sigalg) { |
| for (uint16_t verify_sigalg : tls12_get_verify_sigalgs(hs)) { |
| if (verify_sigalg == sigalg) { |
| return true; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| // tls_extension represents a TLS extension that is handled internally. |
| // |
| // The parse callbacks receive a |CBS| that contains the contents of the |
| // extension (i.e. not including the type and length bytes). If an extension is |
| // not received then the parse callbacks will be called with a NULL CBS so that |
| // they can do any processing needed to handle the absence of an extension. |
| // |
| // The add callbacks receive a |CBB| to which the extension can be appended but |
| // the function is responsible for appending the type and length bytes too. |
| // |
| // |add_clienthello| may be called multiple times and must not mutate |hs|. It |
| // is additionally passed two output |CBB|s. If the extension is the same |
| // independent of the value of |type|, the callback may write to |
| // |out_compressible| instead of |out|. When serializing the ClientHelloInner, |
| // all compressible extensions will be made continguous and replaced with |
| // ech_outer_extensions when encrypted. When serializing the ClientHelloOuter |
| // or not offering ECH, |out| will be equal to |out_compressible|, so writing to |
| // |out_compressible| still works. |
| // |
| // Note the |parse_serverhello| and |add_serverhello| callbacks refer to the |
| // TLS 1.2 ServerHello. In TLS 1.3, these callbacks act on EncryptedExtensions, |
| // with ServerHello extensions handled elsewhere in the handshake. |
| // |
| // All callbacks return true for success and false for error. If a parse |
| // function returns zero then a fatal alert with value |*out_alert| will be |
| // sent. If |*out_alert| isn't set, then a |decode_error| alert will be sent. |
| struct tls_extension { |
| uint16_t value; |
| |
| bool (*add_clienthello)(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, ssl_client_hello_type_t type); |
| bool (*parse_serverhello)(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents); |
| |
| bool (*parse_clienthello)(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents); |
| bool (*add_serverhello)(SSL_HANDSHAKE *hs, CBB *out); |
| }; |
| |
| static bool forbid_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (contents != NULL) { |
| // Servers MUST NOT send this extension. |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ignore_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| // This extension from the client is handled elsewhere. |
| return true; |
| } |
| |
| static bool dont_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| return true; |
| } |
| |
| // Server name indication (SNI). |
| // |
| // https://tools.ietf.org/html/rfc6066#section-3. |
| |
| static bool ext_sni_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| // If offering ECH, send the public name instead of the configured name. |
| Span<const uint8_t> hostname; |
| if (type == ssl_client_hello_outer) { |
| hostname = hs->selected_ech_config->public_name; |
| } else { |
| if (ssl->hostname == nullptr) { |
| return true; |
| } |
| hostname = |
| MakeConstSpan(reinterpret_cast<const uint8_t *>(ssl->hostname.get()), |
| strlen(ssl->hostname.get())); |
| } |
| |
| CBB contents, server_name_list, name; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &server_name_list) || |
| !CBB_add_u8(&server_name_list, TLSEXT_NAMETYPE_host_name) || |
| !CBB_add_u16_length_prefixed(&server_name_list, &name) || |
| !CBB_add_bytes(&name, hostname.data(), hostname.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_sni_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| // The server may acknowledge SNI with an empty extension. We check the syntax |
| // but otherwise ignore this signal. |
| return contents == NULL || CBS_len(contents) == 0; |
| } |
| |
| static bool ext_sni_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| // SNI has already been parsed earlier in the handshake. See |extract_sni|. |
| return true; |
| } |
| |
| static bool ext_sni_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (hs->ssl->s3->session_reused || |
| !hs->should_ack_sni) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Encrypted ClientHello (ECH) |
| // |
| // https://tools.ietf.org/html/draft-ietf-tls-esni-13 |
| |
| static bool ext_ech_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (type == ssl_client_hello_inner) { |
| if (!CBB_add_u16(out, TLSEXT_TYPE_encrypted_client_hello) || |
| !CBB_add_u16(out, /* length */ 1) || |
| !CBB_add_u8(out, ECH_CLIENT_INNER)) { |
| return false; |
| } |
| return true; |
| } |
| |
| if (hs->ech_client_outer.empty()) { |
| return true; |
| } |
| |
| CBB ech_body; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_encrypted_client_hello) || |
| !CBB_add_u16_length_prefixed(out, &ech_body) || |
| !CBB_add_u8(&ech_body, ECH_CLIENT_OUTER) || |
| !CBB_add_bytes(&ech_body, hs->ech_client_outer.data(), |
| hs->ech_client_outer.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool ext_ech_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| // The ECH extension may not be sent in TLS 1.2 ServerHello, only TLS 1.3 |
| // EncryptedExtensions. It also may not be sent in response to an inner ECH |
| // extension. |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION || |
| ssl->s3->ech_status == ssl_ech_accepted) { |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| return false; |
| } |
| |
| if (!ssl_is_valid_ech_config_list(*contents)) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| if (ssl->s3->ech_status == ssl_ech_rejected && |
| !hs->ech_retry_configs.CopyFrom(*contents)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ech_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == nullptr) { |
| return true; |
| } |
| |
| uint8_t type; |
| if (!CBS_get_u8(contents, &type)) { |
| return false; |
| } |
| if (type == ECH_CLIENT_OUTER) { |
| // Outer ECH extensions are handled outside the callback. |
| return true; |
| } |
| if (type != ECH_CLIENT_INNER || CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->ech_is_inner = true; |
| return true; |
| } |
| |
| static bool ext_ech_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION || |
| ssl->s3->ech_status == ssl_ech_accepted || // |
| hs->ech_keys == nullptr) { |
| return true; |
| } |
| |
| // Write the list of retry configs to |out|. Note |SSL_CTX_set1_ech_keys| |
| // ensures |ech_keys| contains at least one retry config. |
| CBB body, retry_configs; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_encrypted_client_hello) || |
| !CBB_add_u16_length_prefixed(out, &body) || |
| !CBB_add_u16_length_prefixed(&body, &retry_configs)) { |
| return false; |
| } |
| for (const auto &config : hs->ech_keys->configs) { |
| if (!config->is_retry_config()) { |
| continue; |
| } |
| if (!CBB_add_bytes(&retry_configs, config->ech_config().raw.data(), |
| config->ech_config().raw.size())) { |
| return false; |
| } |
| } |
| return CBB_flush(out); |
| } |
| |
| |
| // Renegotiation indication. |
| // |
| // https://tools.ietf.org/html/rfc5746 |
| |
| static bool ext_ri_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| // Renegotiation indication is not necessary in TLS 1.3. |
| if (hs->min_version >= TLS1_3_VERSION || |
| type == ssl_client_hello_inner) { |
| return true; |
| } |
| |
| assert(ssl->s3->initial_handshake_complete == |
| (ssl->s3->previous_client_finished_len != 0)); |
| |
| CBB contents, prev_finished; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u8_length_prefixed(&contents, &prev_finished) || |
| !CBB_add_bytes(&prev_finished, ssl->s3->previous_client_finished, |
| ssl->s3->previous_client_finished_len) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ri_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents != NULL && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| // Servers may not switch between omitting the extension and supporting it. |
| // See RFC 5746, sections 3.5 and 4.2. |
| if (ssl->s3->initial_handshake_complete && |
| (contents != NULL) != ssl->s3->send_connection_binding) { |
| *out_alert = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); |
| return false; |
| } |
| |
| if (contents == NULL) { |
| // Strictly speaking, if we want to avoid an attack we should *always* see |
| // RI even on initial ServerHello because the client doesn't see any |
| // renegotiation during an attack. However this would mean we could not |
| // connect to any server which doesn't support RI. |
| // |
| // OpenSSL has |SSL_OP_LEGACY_SERVER_CONNECT| to control this, but in |
| // practical terms every client sets it so it's just assumed here. |
| return true; |
| } |
| |
| const size_t expected_len = ssl->s3->previous_client_finished_len + |
| ssl->s3->previous_server_finished_len; |
| |
| // Check for logic errors |
| assert(!expected_len || ssl->s3->previous_client_finished_len); |
| assert(!expected_len || ssl->s3->previous_server_finished_len); |
| assert(ssl->s3->initial_handshake_complete == |
| (ssl->s3->previous_client_finished_len != 0)); |
| assert(ssl->s3->initial_handshake_complete == |
| (ssl->s3->previous_server_finished_len != 0)); |
| |
| // Parse out the extension contents. |
| CBS renegotiated_connection; |
| if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| // Check that the extension matches. |
| if (CBS_len(&renegotiated_connection) != expected_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); |
| *out_alert = SSL_AD_HANDSHAKE_FAILURE; |
| return false; |
| } |
| |
| const uint8_t *d = CBS_data(&renegotiated_connection); |
| bool ok = CRYPTO_memcmp(d, ssl->s3->previous_client_finished, |
| ssl->s3->previous_client_finished_len) == 0; |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| ok = true; |
| #endif |
| if (!ok) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); |
| *out_alert = SSL_AD_HANDSHAKE_FAILURE; |
| return false; |
| } |
| d += ssl->s3->previous_client_finished_len; |
| |
| ok = CRYPTO_memcmp(d, ssl->s3->previous_server_finished, |
| ssl->s3->previous_server_finished_len) == 0; |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| ok = true; |
| #endif |
| if (!ok) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); |
| *out_alert = SSL_AD_HANDSHAKE_FAILURE; |
| return false; |
| } |
| ssl->s3->send_connection_binding = true; |
| |
| return true; |
| } |
| |
| static bool ext_ri_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| // Renegotiation isn't supported as a server so this function should never be |
| // called after the initial handshake. |
| assert(!ssl->s3->initial_handshake_complete); |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| if (contents == NULL) { |
| return true; |
| } |
| |
| CBS renegotiated_connection; |
| if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR); |
| return false; |
| } |
| |
| // Check that the extension matches. We do not support renegotiation as a |
| // server, so this must be empty. |
| if (CBS_len(&renegotiated_connection) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); |
| *out_alert = SSL_AD_HANDSHAKE_FAILURE; |
| return false; |
| } |
| |
| ssl->s3->send_connection_binding = true; |
| |
| return true; |
| } |
| |
| static bool ext_ri_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| // Renegotiation isn't supported as a server so this function should never be |
| // called after the initial handshake. |
| assert(!ssl->s3->initial_handshake_complete); |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) || |
| !CBB_add_u16(out, 1 /* length */) || |
| !CBB_add_u8(out, 0 /* empty renegotiation info */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Extended Master Secret. |
| // |
| // https://tools.ietf.org/html/rfc7627 |
| |
| static bool ext_ems_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| // Extended master secret is not necessary in TLS 1.3. |
| if (hs->min_version >= TLS1_3_VERSION || type == ssl_client_hello_inner) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ems_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| |
| if (contents != NULL) { |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || |
| CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->extended_master_secret = true; |
| } |
| |
| // Whether EMS is negotiated may not change on renegotiation. |
| if (ssl->s3->established_session != nullptr && |
| hs->extended_master_secret != |
| !!ssl->s3->established_session->extended_master_secret) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_EMS_MISMATCH); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ems_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| if (contents == NULL) { |
| return true; |
| } |
| |
| if (CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->extended_master_secret = true; |
| return true; |
| } |
| |
| static bool ext_ems_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (!hs->extended_master_secret) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Session tickets. |
| // |
| // https://tools.ietf.org/html/rfc5077 |
| |
| static bool ext_ticket_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| // TLS 1.3 uses a different ticket extension. |
| if (hs->min_version >= TLS1_3_VERSION || type == ssl_client_hello_inner || |
| SSL_get_options(ssl) & SSL_OP_NO_TICKET) { |
| return true; |
| } |
| |
| Span<const uint8_t> ticket; |
| |
| // Renegotiation does not participate in session resumption. However, still |
| // advertise the extension to avoid potentially breaking servers which carry |
| // over the state from the previous handshake, such as OpenSSL servers |
| // without upstream's 3c3f0259238594d77264a78944d409f2127642c4. |
| if (!ssl->s3->initial_handshake_complete && |
| ssl->session != nullptr && |
| !ssl->session->ticket.empty() && |
| // Don't send TLS 1.3 session tickets in the ticket extension. |
| ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) { |
| ticket = ssl->session->ticket; |
| } |
| |
| CBB ticket_cbb; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) || |
| !CBB_add_u16_length_prefixed(out, &ticket_cbb) || |
| !CBB_add_bytes(&ticket_cbb, ticket.data(), ticket.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ticket_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return false; |
| } |
| |
| // If |SSL_OP_NO_TICKET| is set then no extension will have been sent and |
| // this function should never be called, even if the server tries to send the |
| // extension. |
| assert((SSL_get_options(ssl) & SSL_OP_NO_TICKET) == 0); |
| |
| if (CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->ticket_expected = true; |
| return true; |
| } |
| |
| static bool ext_ticket_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (!hs->ticket_expected) { |
| return true; |
| } |
| |
| // If |SSL_OP_NO_TICKET| is set, |ticket_expected| should never be true. |
| assert((SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) == 0); |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Signature Algorithms. |
| // |
| // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 |
| |
| static bool ext_sigalgs_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (hs->max_version < TLS1_2_VERSION) { |
| return true; |
| } |
| |
| CBB contents, sigalgs_cbb; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_signature_algorithms) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &sigalgs_cbb) || |
| !tls12_add_verify_sigalgs(hs, &sigalgs_cbb) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_sigalgs_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| hs->peer_sigalgs.Reset(); |
| if (contents == NULL) { |
| return true; |
| } |
| |
| CBS supported_signature_algorithms; |
| if (!CBS_get_u16_length_prefixed(contents, &supported_signature_algorithms) || |
| CBS_len(contents) != 0 || |
| !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // OCSP Stapling. |
| // |
| // https://tools.ietf.org/html/rfc6066#section-8 |
| |
| static bool ext_ocsp_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (!hs->config->ocsp_stapling_enabled) { |
| return true; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_status_request) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u8(&contents, TLSEXT_STATUSTYPE_ocsp) || |
| !CBB_add_u16(&contents, 0 /* empty responder ID list */) || |
| !CBB_add_u16(&contents, 0 /* empty request extensions */) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ocsp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| // TLS 1.3 OCSP responses are included in the Certificate extensions. |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return false; |
| } |
| |
| // OCSP stapling is forbidden on non-certificate ciphers. |
| if (CBS_len(contents) != 0 || |
| !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| return false; |
| } |
| |
| // Note this does not check for resumption in TLS 1.2. Sending |
| // status_request here does not make sense, but OpenSSL does so and the |
| // specification does not say anything. Tolerate it but ignore it. |
| |
| hs->certificate_status_expected = true; |
| return true; |
| } |
| |
| static bool ext_ocsp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| uint8_t status_type; |
| if (!CBS_get_u8(contents, &status_type)) { |
| return false; |
| } |
| |
| // We cannot decide whether OCSP stapling will occur yet because the correct |
| // SSL_CTX might not have been selected. |
| hs->ocsp_stapling_requested = status_type == TLSEXT_STATUSTYPE_ocsp; |
| |
| return true; |
| } |
| |
| static bool ext_ocsp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || |
| !hs->ocsp_stapling_requested || ssl->s3->session_reused || |
| !ssl_cipher_uses_certificate_auth(hs->new_cipher) || |
| hs->credential->ocsp_response == nullptr) { |
| return true; |
| } |
| |
| hs->certificate_status_expected = true; |
| |
| return CBB_add_u16(out, TLSEXT_TYPE_status_request) && |
| CBB_add_u16(out, 0 /* length */); |
| } |
| |
| |
| // Next protocol negotiation. |
| // |
| // https://htmlpreview.github.io/?https://github.com/agl/technotes/blob/master/nextprotoneg.html |
| |
| static bool ext_npn_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (ssl->ctx->next_proto_select_cb == NULL || |
| // Do not allow NPN to change on renegotiation. |
| ssl->s3->initial_handshake_complete || |
| // NPN is not defined in DTLS or TLS 1.3. |
| SSL_is_dtls(ssl) || hs->min_version >= TLS1_3_VERSION || |
| type == ssl_client_hello_inner) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_npn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return false; |
| } |
| |
| // If any of these are false then we should never have sent the NPN |
| // extension in the ClientHello and thus this function should never have been |
| // called. |
| assert(!ssl->s3->initial_handshake_complete); |
| assert(!SSL_is_dtls(ssl)); |
| assert(ssl->ctx->next_proto_select_cb != NULL); |
| |
| if (!ssl->s3->alpn_selected.empty()) { |
| // NPN and ALPN may not be negotiated in the same connection. |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN); |
| return false; |
| } |
| |
| const uint8_t *const orig_contents = CBS_data(contents); |
| const size_t orig_len = CBS_len(contents); |
| |
| while (CBS_len(contents) != 0) { |
| CBS proto; |
| if (!CBS_get_u8_length_prefixed(contents, &proto) || |
| CBS_len(&proto) == 0) { |
| return false; |
| } |
| } |
| |
| // |orig_len| fits in |unsigned| because TLS extensions use 16-bit lengths. |
| uint8_t *selected; |
| uint8_t selected_len; |
| if (ssl->ctx->next_proto_select_cb( |
| ssl, &selected, &selected_len, orig_contents, |
| static_cast<unsigned>(orig_len), |
| ssl->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK || |
| !ssl->s3->next_proto_negotiated.CopyFrom( |
| MakeConstSpan(selected, selected_len))) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| |
| hs->next_proto_neg_seen = true; |
| return true; |
| } |
| |
| static bool ext_npn_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| if (contents != NULL && CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| if (contents == NULL || |
| ssl->s3->initial_handshake_complete || |
| ssl->ctx->next_protos_advertised_cb == NULL || |
| SSL_is_dtls(ssl)) { |
| return true; |
| } |
| |
| hs->next_proto_neg_seen = true; |
| return true; |
| } |
| |
| static bool ext_npn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| // |next_proto_neg_seen| might have been cleared when an ALPN extension was |
| // parsed. |
| if (!hs->next_proto_neg_seen) { |
| return true; |
| } |
| |
| const uint8_t *npa; |
| unsigned npa_len; |
| |
| if (ssl->ctx->next_protos_advertised_cb( |
| ssl, &npa, &npa_len, ssl->ctx->next_protos_advertised_cb_arg) != |
| SSL_TLSEXT_ERR_OK) { |
| hs->next_proto_neg_seen = false; |
| return true; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_bytes(&contents, npa, npa_len) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Signed certificate timestamps. |
| // |
| // https://tools.ietf.org/html/rfc6962#section-3.3.1 |
| |
| static bool ext_sct_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (!hs->config->signed_cert_timestamps_enabled) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_certificate_timestamp) || |
| !CBB_add_u16(out_compressible, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_sct_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| // TLS 1.3 SCTs are included in the Certificate extensions. |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| // If this is false then we should never have sent the SCT extension in the |
| // ClientHello and thus this function should never have been called. |
| assert(hs->config->signed_cert_timestamps_enabled); |
| |
| if (!ssl_is_sct_list_valid(contents)) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| // Session resumption uses the original session information. The extension |
| // should not be sent on resumption, but RFC 6962 did not make it a |
| // requirement, so tolerate this. |
| // |
| // TODO(davidben): Enforce this anyway. |
| if (!ssl->s3->session_reused) { |
| hs->new_session->signed_cert_timestamp_list.reset( |
| CRYPTO_BUFFER_new_from_CBS(contents, ssl->ctx->pool)); |
| if (hs->new_session->signed_cert_timestamp_list == nullptr) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ext_sct_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| if (CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->scts_requested = true; |
| return true; |
| } |
| |
| static bool ext_sct_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| assert(hs->scts_requested); |
| // The extension shouldn't be sent when resuming sessions. |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || ssl->s3->session_reused || |
| !ssl_cipher_uses_certificate_auth(hs->new_cipher) || |
| hs->credential->signed_cert_timestamp_list == nullptr) { |
| return true; |
| } |
| |
| CBB contents; |
| return CBB_add_u16(out, TLSEXT_TYPE_certificate_timestamp) && |
| CBB_add_u16_length_prefixed(out, &contents) && |
| CBB_add_bytes(&contents, |
| CRYPTO_BUFFER_data( |
| hs->credential->signed_cert_timestamp_list.get()), |
| CRYPTO_BUFFER_len( |
| hs->credential->signed_cert_timestamp_list.get())) && |
| CBB_flush(out); |
| } |
| |
| |
| // Application-level Protocol Negotiation. |
| // |
| // https://tools.ietf.org/html/rfc7301 |
| |
| static bool ext_alpn_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (hs->config->alpn_client_proto_list.empty() && ssl->quic_method) { |
| // ALPN MUST be used with QUIC. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_APPLICATION_PROTOCOL); |
| return false; |
| } |
| |
| if (hs->config->alpn_client_proto_list.empty() || |
| ssl->s3->initial_handshake_complete) { |
| return true; |
| } |
| |
| CBB contents, proto_list; |
| if (!CBB_add_u16(out_compressible, |
| TLSEXT_TYPE_application_layer_protocol_negotiation) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &proto_list) || |
| !CBB_add_bytes(&proto_list, hs->config->alpn_client_proto_list.data(), |
| hs->config->alpn_client_proto_list.size()) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_alpn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| if (ssl->quic_method) { |
| // ALPN is required when QUIC is used. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_APPLICATION_PROTOCOL); |
| *out_alert = SSL_AD_NO_APPLICATION_PROTOCOL; |
| return false; |
| } |
| return true; |
| } |
| |
| assert(!ssl->s3->initial_handshake_complete); |
| assert(!hs->config->alpn_client_proto_list.empty()); |
| |
| if (hs->next_proto_neg_seen) { |
| // NPN and ALPN may not be negotiated in the same connection. |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN); |
| return false; |
| } |
| |
| // The extension data consists of a ProtocolNameList which must have |
| // exactly one ProtocolName. Each of these is length-prefixed. |
| CBS protocol_name_list, protocol_name; |
| if (!CBS_get_u16_length_prefixed(contents, &protocol_name_list) || |
| CBS_len(contents) != 0 || |
| !CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) || |
| // Empty protocol names are forbidden. |
| CBS_len(&protocol_name) == 0 || |
| CBS_len(&protocol_name_list) != 0) { |
| return false; |
| } |
| |
| if (!ssl_is_alpn_protocol_allowed(hs, protocol_name)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| if (!ssl->s3->alpn_selected.CopyFrom(protocol_name)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_is_valid_alpn_list(Span<const uint8_t> in) { |
| CBS protocol_name_list = in; |
| if (CBS_len(&protocol_name_list) == 0) { |
| return false; |
| } |
| while (CBS_len(&protocol_name_list) > 0) { |
| CBS protocol_name; |
| if (!CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) || |
| // Empty protocol names are forbidden. |
| CBS_len(&protocol_name) == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, |
| Span<const uint8_t> protocol) { |
| if (hs->config->alpn_client_proto_list.empty()) { |
| return false; |
| } |
| |
| if (hs->ssl->ctx->allow_unknown_alpn_protos) { |
| return true; |
| } |
| |
| // Check that the protocol name is one of the ones we advertised. |
| CBS client_protocol_name_list = |
| MakeConstSpan(hs->config->alpn_client_proto_list), |
| client_protocol_name; |
| while (CBS_len(&client_protocol_name_list) > 0) { |
| if (!CBS_get_u8_length_prefixed(&client_protocol_name_list, |
| &client_protocol_name)) { |
| return false; |
| } |
| |
| if (client_protocol_name == protocol) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| CBS contents; |
| if (ssl->ctx->alpn_select_cb == NULL || |
| !ssl_client_hello_get_extension( |
| client_hello, &contents, |
| TLSEXT_TYPE_application_layer_protocol_negotiation)) { |
| if (ssl->quic_method) { |
| // ALPN is required when QUIC is used. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_APPLICATION_PROTOCOL); |
| *out_alert = SSL_AD_NO_APPLICATION_PROTOCOL; |
| return false; |
| } |
| // Ignore ALPN if not configured or no extension was supplied. |
| return true; |
| } |
| |
| // ALPN takes precedence over NPN. |
| hs->next_proto_neg_seen = false; |
| |
| CBS protocol_name_list; |
| if (!CBS_get_u16_length_prefixed(&contents, &protocol_name_list) || |
| CBS_len(&contents) != 0 || |
| !ssl_is_valid_alpn_list(protocol_name_list)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| // |protocol_name_list| fits in |unsigned| because TLS extensions use 16-bit |
| // lengths. |
| const uint8_t *selected; |
| uint8_t selected_len; |
| int ret = ssl->ctx->alpn_select_cb( |
| ssl, &selected, &selected_len, CBS_data(&protocol_name_list), |
| static_cast<unsigned>(CBS_len(&protocol_name_list)), |
| ssl->ctx->alpn_select_cb_arg); |
| // ALPN is required when QUIC is used. |
| if (ssl->quic_method && |
| (ret == SSL_TLSEXT_ERR_NOACK || ret == SSL_TLSEXT_ERR_ALERT_WARNING)) { |
| ret = SSL_TLSEXT_ERR_ALERT_FATAL; |
| } |
| switch (ret) { |
| case SSL_TLSEXT_ERR_OK: |
| if (selected_len == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL); |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| if (!ssl->s3->alpn_selected.CopyFrom( |
| MakeConstSpan(selected, selected_len))) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| break; |
| case SSL_TLSEXT_ERR_NOACK: |
| case SSL_TLSEXT_ERR_ALERT_WARNING: |
| break; |
| case SSL_TLSEXT_ERR_ALERT_FATAL: |
| *out_alert = SSL_AD_NO_APPLICATION_PROTOCOL; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_APPLICATION_PROTOCOL); |
| return false; |
| default: |
| // Invalid return value. |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_alpn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| if (ssl->s3->alpn_selected.empty()) { |
| return true; |
| } |
| |
| CBB contents, proto_list, proto; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_application_layer_protocol_negotiation) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &proto_list) || |
| !CBB_add_u8_length_prefixed(&proto_list, &proto) || |
| !CBB_add_bytes(&proto, ssl->s3->alpn_selected.data(), |
| ssl->s3->alpn_selected.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Channel ID. |
| // |
| // https://tools.ietf.org/html/draft-balfanz-tls-channelid-01 |
| |
| static bool ext_channel_id_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (!hs->config->channel_id_private || SSL_is_dtls(ssl) || |
| // Don't offer Channel ID in ClientHelloOuter. ClientHelloOuter handshakes |
| // are not authenticated for the name that can learn the Channel ID. |
| // |
| // We could alternatively offer the extension but sign with a random key. |
| // For other extensions, we try to align |ssl_client_hello_outer| and |
| // |ssl_client_hello_unencrypted|, to improve the effectiveness of ECH |
| // GREASE. However, Channel ID is deprecated and unlikely to be used with |
| // ECH, so do the simplest thing. |
| type == ssl_client_hello_outer) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_channel_id_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| assert(!SSL_is_dtls(hs->ssl)); |
| assert(hs->config->channel_id_private); |
| |
| if (CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->channel_id_negotiated = true; |
| return true; |
| } |
| |
| static bool ext_channel_id_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL || !hs->config->channel_id_enabled || SSL_is_dtls(ssl)) { |
| return true; |
| } |
| |
| if (CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| hs->channel_id_negotiated = true; |
| return true; |
| } |
| |
| static bool ext_channel_id_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (!hs->channel_id_negotiated) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) || |
| !CBB_add_u16(out, 0 /* length */)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Secure Real-time Transport Protocol (SRTP) extension. |
| // |
| // https://tools.ietf.org/html/rfc5764 |
| |
| static bool ext_srtp_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| const STACK_OF(SRTP_PROTECTION_PROFILE) *profiles = |
| SSL_get_srtp_profiles(ssl); |
| if (profiles == NULL || |
| sk_SRTP_PROTECTION_PROFILE_num(profiles) == 0 || |
| !SSL_is_dtls(ssl)) { |
| return true; |
| } |
| |
| CBB contents, profile_ids; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_srtp) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &profile_ids)) { |
| return false; |
| } |
| |
| for (const SRTP_PROTECTION_PROFILE *profile : profiles) { |
| if (!CBB_add_u16(&profile_ids, profile->id)) { |
| return false; |
| } |
| } |
| |
| if (!CBB_add_u8(&contents, 0 /* empty use_mki value */) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_srtp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| return true; |
| } |
| |
| // The extension consists of a u16-prefixed profile ID list containing a |
| // single uint16_t profile ID, then followed by a u8-prefixed srtp_mki field. |
| // |
| // See https://tools.ietf.org/html/rfc5764#section-4.1.1 |
| assert(SSL_is_dtls(ssl)); |
| CBS profile_ids, srtp_mki; |
| uint16_t profile_id; |
| if (!CBS_get_u16_length_prefixed(contents, &profile_ids) || |
| !CBS_get_u16(&profile_ids, &profile_id) || |
| CBS_len(&profile_ids) != 0 || |
| !CBS_get_u8_length_prefixed(contents, &srtp_mki) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); |
| return false; |
| } |
| |
| if (CBS_len(&srtp_mki) != 0) { |
| // Must be no MKI, since we never offer one. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_MKI_VALUE); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| // Check to see if the server gave us something we support and offered. |
| for (const SRTP_PROTECTION_PROFILE *profile : SSL_get_srtp_profiles(ssl)) { |
| if (profile->id == profile_id) { |
| ssl->s3->srtp_profile = profile; |
| return true; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| static bool ext_srtp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| // DTLS-SRTP is only defined for DTLS. |
| if (contents == NULL || !SSL_is_dtls(ssl)) { |
| return true; |
| } |
| |
| CBS profile_ids, srtp_mki; |
| if (!CBS_get_u16_length_prefixed(contents, &profile_ids) || |
| CBS_len(&profile_ids) < 2 || |
| !CBS_get_u8_length_prefixed(contents, &srtp_mki) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); |
| return false; |
| } |
| // Discard the MKI value for now. |
| |
| const STACK_OF(SRTP_PROTECTION_PROFILE) *server_profiles = |
| SSL_get_srtp_profiles(ssl); |
| |
| // Pick the server's most preferred profile. |
| for (const SRTP_PROTECTION_PROFILE *server_profile : server_profiles) { |
| CBS profile_ids_tmp; |
| CBS_init(&profile_ids_tmp, CBS_data(&profile_ids), CBS_len(&profile_ids)); |
| |
| while (CBS_len(&profile_ids_tmp) > 0) { |
| uint16_t profile_id; |
| if (!CBS_get_u16(&profile_ids_tmp, &profile_id)) { |
| return false; |
| } |
| |
| if (server_profile->id == profile_id) { |
| ssl->s3->srtp_profile = server_profile; |
| return true; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ext_srtp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| if (ssl->s3->srtp_profile == NULL) { |
| return true; |
| } |
| |
| assert(SSL_is_dtls(ssl)); |
| CBB contents, profile_ids; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_srtp) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &profile_ids) || |
| !CBB_add_u16(&profile_ids, ssl->s3->srtp_profile->id) || |
| !CBB_add_u8(&contents, 0 /* empty MKI */) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // EC point formats. |
| // |
| // https://tools.ietf.org/html/rfc4492#section-5.1.2 |
| |
| static bool ext_ec_point_add_extension(const SSL_HANDSHAKE *hs, CBB *out) { |
| CBB contents, formats; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_ec_point_formats) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u8_length_prefixed(&contents, &formats) || |
| !CBB_add_u8(&formats, TLSEXT_ECPOINTFORMAT_uncompressed) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ec_point_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| // The point format extension is unnecessary in TLS 1.3. |
| if (hs->min_version >= TLS1_3_VERSION || type == ssl_client_hello_inner) { |
| return true; |
| } |
| |
| return ext_ec_point_add_extension(hs, out); |
| } |
| |
| static bool ext_ec_point_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { |
| return false; |
| } |
| |
| CBS ec_point_format_list; |
| if (!CBS_get_u8_length_prefixed(contents, &ec_point_format_list) || |
| CBS_len(contents) != 0) { |
| return false; |
| } |
| |
| // Per RFC 4492, section 5.1.2, implementations MUST support the uncompressed |
| // point format. |
| if (OPENSSL_memchr(CBS_data(&ec_point_format_list), |
| TLSEXT_ECPOINTFORMAT_uncompressed, |
| CBS_len(&ec_point_format_list)) == NULL) { |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_ec_point_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| CBS *contents) { |
| if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| return ext_ec_point_parse_serverhello(hs, out_alert, contents); |
| } |
| |
| static bool ext_ec_point_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return true; |
| } |
| |
| const uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| const uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| const bool using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA); |
| |
| if (!using_ecc) { |
| return true; |
| } |
| |
| return ext_ec_point_add_extension(hs, out); |
| } |
| |
| |
| // Pre Shared Key |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.11 |
| |
| static bool should_offer_psk(const SSL_HANDSHAKE *hs, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (hs->max_version < TLS1_3_VERSION || ssl->session == nullptr || |
| ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION || |
| // TODO(https://crbug.com/boringssl/275): Should we synthesize a |
| // placeholder PSK, at least when we offer early data? Otherwise |
| // ClientHelloOuter will contain an early_data extension without a |
| // pre_shared_key extension and potentially break the recovery flow. |
| type == ssl_client_hello_outer) { |
| return false; |
| } |
| |
| // Per RFC 8446 section 4.1.4, skip offering the session if the selected |
| // cipher in HelloRetryRequest does not match. This avoids performing the |
| // transcript hash transformation for multiple hashes. |
| if (ssl->s3->used_hello_retry_request && |
| ssl->session->cipher->algorithm_prf != hs->new_cipher->algorithm_prf) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static size_t ext_pre_shared_key_clienthello_length( |
| const SSL_HANDSHAKE *hs, ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (!should_offer_psk(hs, type)) { |
| return 0; |
| } |
| |
| size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session.get())); |
| return 15 + ssl->session->ticket.size() + binder_len; |
| } |
| |
| static bool ext_pre_shared_key_add_clienthello(const SSL_HANDSHAKE *hs, |
| CBB *out, bool *out_needs_binder, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| *out_needs_binder = false; |
| if (!should_offer_psk(hs, type)) { |
| return true; |
| } |
| |
| struct OPENSSL_timeval now; |
| ssl_get_current_time(ssl, &now); |
| uint32_t ticket_age = 1000 * (now.tv_sec - ssl->session->time); |
| uint32_t obfuscated_ticket_age = ticket_age + ssl->session->ticket_age_add; |
| |
| // Fill in a placeholder zero binder of the appropriate length. It will be |
| // computed and filled in later after length prefixes are computed. |
| size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session.get())); |
| |
| CBB contents, identity, ticket, binders, binder; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &identity) || |
| !CBB_add_u16_length_prefixed(&identity, &ticket) || |
| !CBB_add_bytes(&ticket, ssl->session->ticket.data(), |
| ssl->session->ticket.size()) || |
| !CBB_add_u32(&identity, obfuscated_ticket_age) || |
| !CBB_add_u16_length_prefixed(&contents, &binders) || |
| !CBB_add_u8_length_prefixed(&binders, &binder) || |
| !CBB_add_zeros(&binder, binder_len)) { |
| return false; |
| } |
| |
| *out_needs_binder = true; |
| return CBB_flush(out); |
| } |
| |
| bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| uint16_t psk_id; |
| if (!CBS_get_u16(contents, &psk_id) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| // We only advertise one PSK identity, so the only legal index is zero. |
| if (psk_id != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
| *out_alert = SSL_AD_UNKNOWN_PSK_IDENTITY; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_ext_pre_shared_key_parse_clienthello( |
| SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, |
| uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello, CBS *contents) { |
| // Verify that the pre_shared_key extension is the last extension in |
| // ClientHello. |
| if (CBS_data(contents) + CBS_len(contents) != |
| client_hello->extensions + client_hello->extensions_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PRE_SHARED_KEY_MUST_BE_LAST); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| // We only process the first PSK identity since we don't support pure PSK. |
| CBS identities, binders; |
| if (!CBS_get_u16_length_prefixed(contents, &identities) || |
| !CBS_get_u16_length_prefixed(&identities, out_ticket) || |
| !CBS_get_u32(&identities, out_obfuscated_ticket_age) || |
| !CBS_get_u16_length_prefixed(contents, &binders) || |
| CBS_len(&binders) == 0 || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| *out_binders = binders; |
| |
| // Check the syntax of the remaining identities, but do not process them. |
| size_t num_identities = 1; |
| while (CBS_len(&identities) != 0) { |
| CBS unused_ticket; |
| uint32_t unused_obfuscated_ticket_age; |
| if (!CBS_get_u16_length_prefixed(&identities, &unused_ticket) || |
| !CBS_get_u32(&identities, &unused_obfuscated_ticket_age)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| num_identities++; |
| } |
| |
| // Check the syntax of the binders. The value will be checked later if |
| // resuming. |
| size_t num_binders = 0; |
| while (CBS_len(&binders) != 0) { |
| CBS binder; |
| if (!CBS_get_u8_length_prefixed(&binders, &binder)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| num_binders++; |
| } |
| |
| if (num_identities != num_binders) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_BINDER_COUNT_MISMATCH); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (!hs->ssl->s3->session_reused) { |
| return true; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| // We only consider the first identity for resumption |
| !CBB_add_u16(&contents, 0) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Pre-Shared Key Exchange Modes |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.9 |
| |
| static bool ext_psk_key_exchange_modes_add_clienthello( |
| const SSL_HANDSHAKE *hs, CBB *out, CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (hs->max_version < TLS1_3_VERSION) { |
| return true; |
| } |
| |
| CBB contents, ke_modes; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_psk_key_exchange_modes) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u8_length_prefixed(&contents, &ke_modes) || |
| !CBB_add_u8(&ke_modes, SSL_PSK_DHE_KE)) { |
| return false; |
| } |
| |
| return CBB_flush(out_compressible); |
| } |
| |
| static bool ext_psk_key_exchange_modes_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| CBS ke_modes; |
| if (!CBS_get_u8_length_prefixed(contents, &ke_modes) || |
| CBS_len(&ke_modes) == 0 || |
| CBS_len(contents) != 0) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| // We only support tickets with PSK_DHE_KE. |
| hs->accept_psk_mode = OPENSSL_memchr(CBS_data(&ke_modes), SSL_PSK_DHE_KE, |
| CBS_len(&ke_modes)) != NULL; |
| |
| return true; |
| } |
| |
| |
| // Early Data Indication |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.10 |
| |
| static bool ext_early_data_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| // The second ClientHello never offers early data, and we must have already |
| // filled in |early_data_reason| by this point. |
| if (ssl->s3->used_hello_retry_request) { |
| assert(ssl->s3->early_data_reason != ssl_early_data_unknown); |
| return true; |
| } |
| |
| if (!hs->early_data_offered) { |
| return true; |
| } |
| |
| // If offering ECH, the extension only applies to ClientHelloInner, but we |
| // send the extension in both ClientHellos. This ensures that, if the server |
| // handshakes with ClientHelloOuter, it can skip past early data. See |
| // draft-ietf-tls-esni-13, section 6.1. |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_early_data) || |
| !CBB_add_u16(out_compressible, 0) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_early_data_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL) { |
| if (hs->early_data_offered && !ssl->s3->used_hello_retry_request) { |
| ssl->s3->early_data_reason = ssl->s3->session_reused |
| ? ssl_early_data_peer_declined |
| : ssl_early_data_session_not_resumed; |
| } else { |
| // We already filled in |early_data_reason| when declining to offer 0-RTT |
| // or handling the implicit HelloRetryRequest reject. |
| assert(ssl->s3->early_data_reason != ssl_early_data_unknown); |
| } |
| return true; |
| } |
| |
| // If we received an HRR, the second ClientHello never offers early data, so |
| // the extensions logic will automatically reject early data extensions as |
| // unsolicited. This covered by the ServerAcceptsEarlyDataOnHRR test. |
| assert(!ssl->s3->used_hello_retry_request); |
| |
| if (CBS_len(contents) != 0) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| if (!ssl->s3->session_reused) { |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| return false; |
| } |
| |
| ssl->s3->early_data_reason = ssl_early_data_accepted; |
| ssl->s3->early_data_accepted = true; |
| return true; |
| } |
| |
| static bool ext_early_data_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, CBS *contents) { |
| SSL *const ssl = hs->ssl; |
| if (contents == NULL || |
| ssl_protocol_version(ssl) < TLS1_3_VERSION) { |
| return true; |
| } |
| |
| if (CBS_len(contents) != 0) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| hs->early_data_offered = true; |
| return true; |
| } |
| |
| static bool ext_early_data_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| if (!hs->ssl->s3->early_data_accepted) { |
| return true; |
| } |
| |
| if (!CBB_add_u16(out, TLSEXT_TYPE_early_data) || |
| !CBB_add_u16(out, 0) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Key Share |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.8 |
| |
| bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id) { |
| SSL *const ssl = hs->ssl; |
| hs->key_shares[0].reset(); |
| hs->key_shares[1].reset(); |
| hs->key_share_bytes.Reset(); |
| |
| if (hs->max_version < TLS1_3_VERSION) { |
| return true; |
| } |
| |
| bssl::ScopedCBB cbb; |
| if (!CBB_init(cbb.get(), 64)) { |
| return false; |
| } |
| |
| if (override_group_id == 0 && ssl->ctx->grease_enabled) { |
| // Add a fake group. See RFC 8701. |
| if (!CBB_add_u16(cbb.get(), ssl_get_grease_value(hs, ssl_grease_group)) || |
| !CBB_add_u16(cbb.get(), 1 /* length */) || |
| !CBB_add_u8(cbb.get(), 0 /* one byte key share */)) { |
| return false; |
| } |
| } |
| |
| uint16_t group_id = override_group_id; |
| uint16_t second_group_id = 0; |
| if (override_group_id == 0) { |
| // Predict the most preferred group. |
| Span<const uint16_t> groups = tls1_get_grouplist(hs); |
| if (groups.empty()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_GROUPS_SPECIFIED); |
| return false; |
| } |
| |
| group_id = groups[0]; |
| |
| // We'll try to include one post-quantum and one classical initial key |
| // share. |
| for (size_t i = 1; i < groups.size() && second_group_id == 0; i++) { |
| if (is_post_quantum_group(group_id) != is_post_quantum_group(groups[i])) { |
| second_group_id = groups[i]; |
| assert(second_group_id != group_id); |
| } |
| } |
| } |
| |
| CBB key_exchange; |
| hs->key_shares[0] = SSLKeyShare::Create(group_id); |
| if (!hs->key_shares[0] || // |
| !CBB_add_u16(cbb.get(), group_id) || |
| !CBB_add_u16_length_prefixed(cbb.get(), &key_exchange) || |
| !hs->key_shares[0]->Generate(&key_exchange)) { |
| return false; |
| } |
| |
| if (second_group_id != 0) { |
| hs->key_shares[1] = SSLKeyShare::Create(second_group_id); |
| if (!hs->key_shares[1] || // |
| !CBB_add_u16(cbb.get(), second_group_id) || |
| !CBB_add_u16_length_prefixed(cbb.get(), &key_exchange) || |
| !hs->key_shares[1]->Generate(&key_exchange)) { |
| return false; |
| } |
| } |
| |
| return CBBFinishArray(cbb.get(), &hs->key_share_bytes); |
| } |
| |
| static bool ext_key_share_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (hs->max_version < TLS1_3_VERSION) { |
| return true; |
| } |
| |
| assert(!hs->key_share_bytes.empty()); |
| CBB contents, kse_bytes; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_key_share) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &kse_bytes) || |
| !CBB_add_bytes(&kse_bytes, hs->key_share_bytes.data(), |
| hs->key_share_bytes.size()) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, |
| Array<uint8_t> *out_secret, |
| uint8_t *out_alert, CBS *contents) { |
| CBS ciphertext; |
| uint16_t group_id; |
| if (!CBS_get_u16(contents, &group_id) || |
| !CBS_get_u16_length_prefixed(contents, &ciphertext) || |
| CBS_len(contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| SSLKeyShare *key_share = hs->key_shares[0].get(); |
| if (key_share->GroupID() != group_id) { |
| if (!hs->key_shares[1] || hs->key_shares[1]->GroupID() != group_id) { |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); |
| return false; |
| } |
| key_share = hs->key_shares[1].get(); |
| } |
| |
| if (!key_share->Decap(out_secret, out_alert, ciphertext)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| |
| hs->new_session->group_id = group_id; |
| hs->key_shares[0].reset(); |
| hs->key_shares[1].reset(); |
| return true; |
| } |
| |
| bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, |
| Span<const uint8_t> *out_peer_key, |
| uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| // We only support connections that include an ECDHE key exchange. |
| CBS contents; |
| if (!ssl_client_hello_get_extension(client_hello, &contents, |
| TLSEXT_TYPE_key_share)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_KEY_SHARE); |
| *out_alert = SSL_AD_MISSING_EXTENSION; |
| return false; |
| } |
| |
| CBS key_shares; |
| if (!CBS_get_u16_length_prefixed(&contents, &key_shares) || |
| CBS_len(&contents) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return false; |
| } |
| |
| // Find the corresponding key share. |
| const uint16_t group_id = hs->new_session->group_id; |
| CBS peer_key; |
| CBS_init(&peer_key, nullptr, 0); |
| while (CBS_len(&key_shares) > 0) { |
| uint16_t id; |
| CBS peer_key_tmp; |
| if (!CBS_get_u16(&key_shares, &id) || |
| !CBS_get_u16_length_prefixed(&key_shares, &peer_key_tmp) || |
| CBS_len(&peer_key_tmp) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return false; |
| } |
| |
| if (id == group_id) { |
| if (CBS_len(&peer_key) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_KEY_SHARE); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| peer_key = peer_key_tmp; |
| // Continue parsing the structure to keep peers honest. |
| } |
| } |
| |
| if (out_peer_key != nullptr) { |
| *out_peer_key = peer_key; |
| } |
| *out_found = CBS_len(&peer_key) != 0; |
| return true; |
| } |
| |
| bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| CBB entry, ciphertext; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_key_share) || |
| !CBB_add_u16_length_prefixed(out, &entry) || |
| !CBB_add_u16(&entry, hs->new_session->group_id) || |
| !CBB_add_u16_length_prefixed(&entry, &ciphertext) || |
| !CBB_add_bytes(&ciphertext, hs->key_share_ciphertext.data(), |
| hs->key_share_ciphertext.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // Supported Versions |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.1 |
| |
| static bool ext_supported_versions_add_clienthello( |
| const SSL_HANDSHAKE *hs, CBB *out, CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| if (hs->max_version <= TLS1_2_VERSION) { |
| return true; |
| } |
| |
| // supported_versions is compressible in ECH if ClientHelloOuter already |
| // requires TLS 1.3. Otherwise the extensions differ in the older versions. |
| if (hs->min_version >= TLS1_3_VERSION) { |
| out = out_compressible; |
| } |
| |
| CBB contents, versions; |
| if (!CBB_add_u16(out, TLSEXT_TYPE_supported_versions) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_u8_length_prefixed(&contents, &versions)) { |
| return false; |
| } |
| |
| // Add a fake version. See RFC 8701. |
| if (ssl->ctx->grease_enabled && |
| !CBB_add_u16(&versions, ssl_get_grease_value(hs, ssl_grease_version))) { |
| return false; |
| } |
| |
| // Encrypted ClientHellos requires TLS 1.3 or later. |
| uint16_t extra_min_version = |
| type == ssl_client_hello_inner ? TLS1_3_VERSION : 0; |
| if (!ssl_add_supported_versions(hs, &versions, extra_min_version) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Cookie |
| // |
| // https://tools.ietf.org/html/rfc8446#section-4.2.2 |
| |
| static bool ext_cookie_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| if (hs->cookie.empty()) { |
| return true; |
| } |
| |
| CBB contents, cookie; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_cookie) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &cookie) || |
| !CBB_add_bytes(&cookie, hs->cookie.data(), hs->cookie.size()) || |
| !CBB_flush(out_compressible)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Supported Groups |
| // |
| // https://tools.ietf.org/html/rfc4492#section-5.1.1 |
| // https://tools.ietf.org/html/rfc8446#section-4.2.7 |
| |
| static bool ext_supported_groups_add_clienthello(const SSL_HANDSHAKE *hs, |
| CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| const SSL *const ssl = hs->ssl; |
| CBB contents, groups_bytes; |
| if (!CBB_add_u16(out_compressible, TLSEXT_TYPE_supported_groups) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &groups_bytes)) { |
| return false; |
| } |
| |
| // Add a fake group. See RFC 8701. |
| if (ssl->ctx->grease_enabled && |
| !CBB_add_u16(&groups_bytes, |
| ssl_get_grease_value(hs, ssl_grease_group))) { |
| return false; |
| } |
| |
| for (uint16_t group : tls1_get_grouplist(hs)) { |
| if (is_post_quantum_group(group) && |
| hs->max_version < TLS1_3_VERSION) { |
| continue; |
| } |
| if (!CBB_add_u16(&groups_bytes, group)) { |
| return false; |
| } |
| } |
| |
| return CBB_flush(out_compressible); |
| } |
| |
| static bool ext_supported_groups_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| // This extension is not expected to be echoed by servers in TLS 1.2, but some |
| // BigIP servers send it nonetheless, so do not enforce this. |
| return true; |
| } |
| |
| static bool parse_u16_array(const CBS *cbs, Array<uint16_t> *out) { |
| CBS copy = *cbs; |
| if ((CBS_len(©) & 1) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return false; |
| } |
| |
| Array<uint16_t> ret; |
| if (!ret.Init(CBS_len(©) / 2)) { |
| return false; |
| } |
| for (size_t i = 0; i < ret.size(); i++) { |
| if (!CBS_get_u16(©, &ret[i])) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| } |
| |
| assert(CBS_len(©) == 0); |
| *out = std::move(ret); |
| return true; |
| } |
| |
| static bool ext_supported_groups_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == NULL) { |
| return true; |
| } |
| |
| CBS supported_group_list; |
| if (!CBS_get_u16_length_prefixed(contents, &supported_group_list) || |
| CBS_len(&supported_group_list) == 0 || |
| CBS_len(contents) != 0 || |
| !parse_u16_array(&supported_group_list, &hs->peer_supported_group_list)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // QUIC Transport Parameters |
| |
| static bool ext_quic_transport_params_add_clienthello_impl( |
| const SSL_HANDSHAKE *hs, CBB *out, bool use_legacy_codepoint) { |
| if (hs->config->quic_transport_params.empty() && !hs->ssl->quic_method) { |
| return true; |
| } |
| if (hs->config->quic_transport_params.empty() || !hs->ssl->quic_method) { |
| // QUIC Transport Parameters must be sent over QUIC, and they must not be |
| // sent over non-QUIC transports. If transport params are set, then |
| // SSL(_CTX)_set_quic_method must also be called. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_TRANSPORT_PARAMETERS_MISCONFIGURED); |
| return false; |
| } |
| assert(hs->min_version > TLS1_2_VERSION); |
| if (use_legacy_codepoint != hs->config->quic_use_legacy_codepoint) { |
| // Do nothing, we'll send the other codepoint. |
| return true; |
| } |
| |
| uint16_t extension_type = TLSEXT_TYPE_quic_transport_parameters; |
| if (hs->config->quic_use_legacy_codepoint) { |
| extension_type = TLSEXT_TYPE_quic_transport_parameters_legacy; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out, extension_type) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_bytes(&contents, hs->config->quic_transport_params.data(), |
| hs->config->quic_transport_params.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool ext_quic_transport_params_add_clienthello( |
| const SSL_HANDSHAKE *hs, CBB *out, CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| return ext_quic_transport_params_add_clienthello_impl( |
| hs, out_compressible, /*use_legacy_codepoint=*/false); |
| } |
| |
| static bool ext_quic_transport_params_add_clienthello_legacy( |
| const SSL_HANDSHAKE *hs, CBB *out, CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| return ext_quic_transport_params_add_clienthello_impl( |
| hs, out_compressible, /*use_legacy_codepoint=*/true); |
| } |
| |
| static bool ext_quic_transport_params_parse_serverhello_impl( |
| SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents, |
| bool used_legacy_codepoint) { |
| SSL *const ssl = hs->ssl; |
| if (contents == nullptr) { |
| if (used_legacy_codepoint != hs->config->quic_use_legacy_codepoint) { |
| // Silently ignore because we expect the other QUIC codepoint. |
| return true; |
| } |
| if (!ssl->quic_method) { |
| return true; |
| } |
| *out_alert = SSL_AD_MISSING_EXTENSION; |
| return false; |
| } |
| // The extensions parser will check for unsolicited extensions before |
| // calling the callback. |
| assert(ssl->quic_method != nullptr); |
| assert(ssl_protocol_version(ssl) == TLS1_3_VERSION); |
| assert(used_legacy_codepoint == hs->config->quic_use_legacy_codepoint); |
| return ssl->s3->peer_quic_transport_params.CopyFrom(*contents); |
| } |
| |
| static bool ext_quic_transport_params_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| return ext_quic_transport_params_parse_serverhello_impl( |
| hs, out_alert, contents, /*used_legacy_codepoint=*/false); |
| } |
| |
| static bool ext_quic_transport_params_parse_serverhello_legacy( |
| SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { |
| return ext_quic_transport_params_parse_serverhello_impl( |
| hs, out_alert, contents, /*used_legacy_codepoint=*/true); |
| } |
| |
| static bool ext_quic_transport_params_parse_clienthello_impl( |
| SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents, |
| bool used_legacy_codepoint) { |
| SSL *const ssl = hs->ssl; |
| if (!contents) { |
| if (!ssl->quic_method) { |
| if (hs->config->quic_transport_params.empty()) { |
| return true; |
| } |
| // QUIC transport parameters must not be set if |ssl| is not configured |
| // for QUIC. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_TRANSPORT_PARAMETERS_MISCONFIGURED); |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| if (used_legacy_codepoint != hs->config->quic_use_legacy_codepoint) { |
| // Silently ignore because we expect the other QUIC codepoint. |
| return true; |
| } |
| *out_alert = SSL_AD_MISSING_EXTENSION; |
| return false; |
| } |
| if (!ssl->quic_method) { |
| if (used_legacy_codepoint) { |
| // Ignore the legacy private-use codepoint because that could be sent |
| // to mean something else than QUIC transport parameters. |
| return true; |
| } |
| // Fail if we received the codepoint registered with IANA for QUIC |
| // because that is not allowed outside of QUIC. |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| return false; |
| } |
| assert(ssl_protocol_version(ssl) == TLS1_3_VERSION); |
| if (used_legacy_codepoint != hs->config->quic_use_legacy_codepoint) { |
| // Silently ignore because we expect the other QUIC codepoint. |
| return true; |
| } |
| return ssl->s3->peer_quic_transport_params.CopyFrom(*contents); |
| } |
| |
| static bool ext_quic_transport_params_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| return ext_quic_transport_params_parse_clienthello_impl( |
| hs, out_alert, contents, /*used_legacy_codepoint=*/false); |
| } |
| |
| static bool ext_quic_transport_params_parse_clienthello_legacy( |
| SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { |
| return ext_quic_transport_params_parse_clienthello_impl( |
| hs, out_alert, contents, /*used_legacy_codepoint=*/true); |
| } |
| |
| static bool ext_quic_transport_params_add_serverhello_impl( |
| SSL_HANDSHAKE *hs, CBB *out, bool use_legacy_codepoint) { |
| if (hs->ssl->quic_method == nullptr && use_legacy_codepoint) { |
| // Ignore the legacy private-use codepoint because that could be sent |
| // to mean something else than QUIC transport parameters. |
| return true; |
| } |
| assert(hs->ssl->quic_method != nullptr); |
| if (hs->config->quic_transport_params.empty()) { |
| // Transport parameters must be set when using QUIC. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_TRANSPORT_PARAMETERS_MISCONFIGURED); |
| return false; |
| } |
| if (use_legacy_codepoint != hs->config->quic_use_legacy_codepoint) { |
| // Do nothing, we'll send the other codepoint. |
| return true; |
| } |
| |
| uint16_t extension_type = TLSEXT_TYPE_quic_transport_parameters; |
| if (hs->config->quic_use_legacy_codepoint) { |
| extension_type = TLSEXT_TYPE_quic_transport_parameters_legacy; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out, extension_type) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_bytes(&contents, hs->config->quic_transport_params.data(), |
| hs->config->quic_transport_params.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_quic_transport_params_add_serverhello(SSL_HANDSHAKE *hs, |
| CBB *out) { |
| return ext_quic_transport_params_add_serverhello_impl( |
| hs, out, /*use_legacy_codepoint=*/false); |
| } |
| |
| static bool ext_quic_transport_params_add_serverhello_legacy(SSL_HANDSHAKE *hs, |
| CBB *out) { |
| return ext_quic_transport_params_add_serverhello_impl( |
| hs, out, /*use_legacy_codepoint=*/true); |
| } |
| |
| // Delegated credentials. |
| // |
| // https://www.rfc-editor.org/rfc/rfc9345.html |
| |
| static bool ext_delegated_credential_add_clienthello( |
| const SSL_HANDSHAKE *hs, CBB *out, CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| return true; |
| } |
| |
| static bool ext_delegated_credential_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == nullptr || ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { |
| // Don't use delegated credentials unless we're negotiating TLS 1.3 or |
| // higher. |
| return true; |
| } |
| |
| // The contents of the extension are the signature algorithms the client will |
| // accept for a delegated credential. |
| CBS sigalg_list; |
| if (!CBS_get_u16_length_prefixed(contents, &sigalg_list) || |
| CBS_len(&sigalg_list) == 0 || |
| CBS_len(contents) != 0 || |
| !parse_u16_array(&sigalg_list, &hs->peer_delegated_credential_sigalgs)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Certificate compression |
| |
| static bool cert_compression_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| bool first = true; |
| CBB contents, algs; |
| |
| for (const auto &alg : hs->ssl->ctx->cert_compression_algs) { |
| if (alg.decompress == nullptr) { |
| continue; |
| } |
| |
| if (first && |
| (!CBB_add_u16(out_compressible, TLSEXT_TYPE_cert_compression) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u8_length_prefixed(&contents, &algs))) { |
| return false; |
| } |
| first = false; |
| if (!CBB_add_u16(&algs, alg.alg_id)) { |
| return false; |
| } |
| } |
| |
| return first || CBB_flush(out_compressible); |
| } |
| |
| static bool cert_compression_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == nullptr) { |
| return true; |
| } |
| |
| // The server may not echo this extension. Any server to client negotiation is |
| // advertised in the CertificateRequest message. |
| return false; |
| } |
| |
| static bool cert_compression_parse_clienthello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| if (contents == nullptr) { |
| return true; |
| } |
| |
| const SSL_CTX *ctx = hs->ssl->ctx.get(); |
| const size_t num_algs = ctx->cert_compression_algs.size(); |
| |
| CBS alg_ids; |
| if (!CBS_get_u8_length_prefixed(contents, &alg_ids) || |
| CBS_len(contents) != 0 || |
| CBS_len(&alg_ids) == 0 || |
| CBS_len(&alg_ids) % 2 == 1) { |
| return false; |
| } |
| |
| const size_t num_given_alg_ids = CBS_len(&alg_ids) / 2; |
| Array<uint16_t> given_alg_ids; |
| if (!given_alg_ids.Init(num_given_alg_ids)) { |
| return false; |
| } |
| |
| size_t best_index = num_algs; |
| size_t given_alg_idx = 0; |
| |
| while (CBS_len(&alg_ids) > 0) { |
| uint16_t alg_id; |
| if (!CBS_get_u16(&alg_ids, &alg_id)) { |
| return false; |
| } |
| |
| given_alg_ids[given_alg_idx++] = alg_id; |
| |
| for (size_t i = 0; i < num_algs; i++) { |
| const auto &alg = ctx->cert_compression_algs[i]; |
| if (alg.alg_id == alg_id && alg.compress != nullptr) { |
| if (i < best_index) { |
| best_index = i; |
| } |
| break; |
| } |
| } |
| } |
| |
| qsort(given_alg_ids.data(), given_alg_ids.size(), sizeof(uint16_t), |
| compare_uint16_t); |
| for (size_t i = 1; i < num_given_alg_ids; i++) { |
| if (given_alg_ids[i - 1] == given_alg_ids[i]) { |
| return false; |
| } |
| } |
| |
| if (best_index < num_algs && |
| ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { |
| hs->cert_compression_negotiated = true; |
| hs->cert_compression_alg_id = ctx->cert_compression_algs[best_index].alg_id; |
| } |
| |
| return true; |
| } |
| |
| static bool cert_compression_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| return true; |
| } |
| |
| // Application-level Protocol Settings |
| // |
| // https://tools.ietf.org/html/draft-vvv-tls-alps-01 |
| |
| bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs, |
| Span<const uint8_t> *out_settings, |
| Span<const uint8_t> protocol) { |
| for (const ALPSConfig &config : hs->config->alps_configs) { |
| if (protocol == config.protocol) { |
| *out_settings = config.settings; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool ext_alps_add_clienthello_impl(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type, |
| bool use_new_codepoint) { |
| const SSL *const ssl = hs->ssl; |
| if (// ALPS requires TLS 1.3. |
| hs->max_version < TLS1_3_VERSION || |
| // Do not offer ALPS without ALPN. |
| hs->config->alpn_client_proto_list.empty() || |
| // Do not offer ALPS if not configured. |
| hs->config->alps_configs.empty() || |
| // Do not offer ALPS on renegotiation handshakes. |
| ssl->s3->initial_handshake_complete) { |
| return true; |
| } |
| |
| if (use_new_codepoint != hs->config->alps_use_new_codepoint) { |
| // Do nothing, we'll send the other codepoint. |
| return true; |
| } |
| |
| uint16_t extension_type = TLSEXT_TYPE_application_settings_old; |
| if (hs->config->alps_use_new_codepoint) { |
| extension_type = TLSEXT_TYPE_application_settings; |
| } |
| |
| CBB contents, proto_list, proto; |
| if (!CBB_add_u16(out_compressible, extension_type) || |
| !CBB_add_u16_length_prefixed(out_compressible, &contents) || |
| !CBB_add_u16_length_prefixed(&contents, &proto_list)) { |
| return false; |
| } |
| |
| for (const ALPSConfig &config : hs->config->alps_configs) { |
| if (!CBB_add_u8_length_prefixed(&proto_list, &proto) || |
| !CBB_add_bytes(&proto, config.protocol.data(), |
| config.protocol.size())) { |
| return false; |
| } |
| } |
| |
| return CBB_flush(out_compressible); |
| } |
| |
| static bool ext_alps_add_clienthello(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| return ext_alps_add_clienthello_impl(hs, out, out_compressible, type, |
| /*use_new_codepoint=*/true); |
| } |
| |
| static bool ext_alps_add_clienthello_old(const SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_compressible, |
| ssl_client_hello_type_t type) { |
| return ext_alps_add_clienthello_impl(hs, out, out_compressible, type, |
| /*use_new_codepoint=*/false); |
| } |
| |
| static bool ext_alps_parse_serverhello_impl(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents, |
| bool use_new_codepoint) { |
| SSL *const ssl = hs->ssl; |
| if (contents == nullptr) { |
| return true; |
| } |
| |
| assert(!ssl->s3->initial_handshake_complete); |
| assert(!hs->config->alpn_client_proto_list.empty()); |
| assert(!hs->config->alps_configs.empty()); |
| assert(use_new_codepoint == hs->config->alps_use_new_codepoint); |
| |
| // ALPS requires TLS 1.3. |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| return false; |
| } |
| |
| // Note extension callbacks may run in any order, so we defer checking |
| // consistency with ALPN to |ssl_check_serverhello_tlsext|. |
| if (!hs->new_session->peer_application_settings.CopyFrom(*contents)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| |
| hs->new_session->has_application_settings = true; |
| return true; |
| } |
| |
| static bool ext_alps_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| return ext_alps_parse_serverhello_impl(hs, out_alert, contents, |
| /*use_new_codepoint=*/true); |
| } |
| |
| static bool ext_alps_parse_serverhello_old(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents) { |
| return ext_alps_parse_serverhello_impl(hs, out_alert, contents, |
| /*use_new_codepoint=*/false); |
| } |
| |
| static bool ext_alps_add_serverhello_impl(SSL_HANDSHAKE *hs, CBB *out, |
| bool use_new_codepoint) { |
| SSL *const ssl = hs->ssl; |
| // If early data is accepted, we omit the ALPS extension. It is implicitly |
| // carried over from the previous connection. |
| if (hs->new_session == nullptr || |
| !hs->new_session->has_application_settings || |
| ssl->s3->early_data_accepted) { |
| return true; |
| } |
| |
| if (use_new_codepoint != hs->config->alps_use_new_codepoint) { |
| // Do nothing, we'll send the other codepoint. |
| return true; |
| } |
| |
| uint16_t extension_type = TLSEXT_TYPE_application_settings_old; |
| if (hs->config->alps_use_new_codepoint) { |
| extension_type = TLSEXT_TYPE_application_settings; |
| } |
| |
| CBB contents; |
| if (!CBB_add_u16(out, extension_type) || |
| !CBB_add_u16_length_prefixed(out, &contents) || |
| !CBB_add_bytes(&contents, |
| hs->new_session->local_application_settings.data(), |
| hs->new_session->local_application_settings.size()) || |
| !CBB_flush(out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ext_alps_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { |
| return ext_alps_add_serverhello_impl(hs, out, /*use_new_codepoint=*/true); |
| } |
| |
| static bool ext_alps_add_serverhello_old(SSL_HANDSHAKE *hs, CBB *out) { |
| return ext_alps_add_serverhello_impl(hs, out, /*use_new_codepoint=*/false); |
| } |
| |
| bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| if (ssl->s3->alpn_selected.empty()) { |
| return true; |
| } |
| |
| // If we negotiate ALPN over TLS 1.3, try to negotiate ALPS. |
| CBS alps_contents; |
| Span<const uint8_t> settings; |
| uint16_t extension_type = TLSEXT_TYPE_application_settings_old; |
| if (hs->config->alps_use_new_codepoint) { |
| extension_type = TLSEXT_TYPE_application_settings; |
| } |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
| ssl_get_local_application_settings(hs, &settings, |
| ssl->s3->alpn_selected) && |
| ssl_client_hello_get_extension(client_hello, &alps_contents, |
| extension_type)) { |
| // Check if the client supports ALPS with the selected ALPN. |
| bool found = false; |
| CBS alps_list; |
| if (!CBS_get_u16_length_prefixed(&alps_contents, &alps_list) || |
| CBS_len(&alps_contents) != 0 || |
| CBS_len(&alps_list) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| while (CBS_len(&alps_list) > 0) { |
| CBS protocol_name; |
| if (!CBS_get_u8_length_prefixed(&alps_list, &protocol_name) || |
| // Empty protocol names are forbidden. |
| CBS_len(&protocol_name) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| if (protocol_name == MakeConstSpan(ssl->s3->alpn_selected)) { |
| found = true; |
| } |
| } |
| |
| // Negotiate ALPS if both client also supports ALPS for this protocol. |
| if (found) { |
| hs->new_session->has_application_settings = true; |
| if (!hs->new_session->local_application_settings.CopyFrom(settings)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // kExtensions contains all the supported extensions. |
| static const struct tls_extension kExtensions[] = { |
| { |
| TLSEXT_TYPE_server_name, |
| ext_sni_add_clienthello, |
| ext_sni_parse_serverhello, |
| ext_sni_parse_clienthello, |
| ext_sni_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_encrypted_client_hello, |
| ext_ech_add_clienthello, |
| ext_ech_parse_serverhello, |
| ext_ech_parse_clienthello, |
| ext_ech_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_extended_master_secret, |
| ext_ems_add_clienthello, |
| ext_ems_parse_serverhello, |
| ext_ems_parse_clienthello, |
| ext_ems_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_renegotiate, |
| ext_ri_add_clienthello, |
| ext_ri_parse_serverhello, |
| ext_ri_parse_clienthello, |
| ext_ri_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_supported_groups, |
| ext_supported_groups_add_clienthello, |
| ext_supported_groups_parse_serverhello, |
| ext_supported_groups_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_ec_point_formats, |
| ext_ec_point_add_clienthello, |
| ext_ec_point_parse_serverhello, |
| ext_ec_point_parse_clienthello, |
| ext_ec_point_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_session_ticket, |
| ext_ticket_add_clienthello, |
| ext_ticket_parse_serverhello, |
| // Ticket extension client parsing is handled in ssl_session.c |
| ignore_parse_clienthello, |
| ext_ticket_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_application_layer_protocol_negotiation, |
| ext_alpn_add_clienthello, |
| ext_alpn_parse_serverhello, |
| // ALPN is negotiated late in |ssl_negotiate_alpn|. |
| ignore_parse_clienthello, |
| ext_alpn_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_status_request, |
| ext_ocsp_add_clienthello, |
| ext_ocsp_parse_serverhello, |
| ext_ocsp_parse_clienthello, |
| ext_ocsp_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_signature_algorithms, |
| ext_sigalgs_add_clienthello, |
| forbid_parse_serverhello, |
| ext_sigalgs_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_next_proto_neg, |
| ext_npn_add_clienthello, |
| ext_npn_parse_serverhello, |
| ext_npn_parse_clienthello, |
| ext_npn_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_certificate_timestamp, |
| ext_sct_add_clienthello, |
| ext_sct_parse_serverhello, |
| ext_sct_parse_clienthello, |
| ext_sct_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_channel_id, |
| ext_channel_id_add_clienthello, |
| ext_channel_id_parse_serverhello, |
| ext_channel_id_parse_clienthello, |
| ext_channel_id_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_srtp, |
| ext_srtp_add_clienthello, |
| ext_srtp_parse_serverhello, |
| ext_srtp_parse_clienthello, |
| ext_srtp_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_key_share, |
| ext_key_share_add_clienthello, |
| forbid_parse_serverhello, |
| ignore_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_psk_key_exchange_modes, |
| ext_psk_key_exchange_modes_add_clienthello, |
| forbid_parse_serverhello, |
| ext_psk_key_exchange_modes_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_early_data, |
| ext_early_data_add_clienthello, |
| ext_early_data_parse_serverhello, |
| ext_early_data_parse_clienthello, |
| ext_early_data_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_supported_versions, |
| ext_supported_versions_add_clienthello, |
| forbid_parse_serverhello, |
| ignore_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_cookie, |
| ext_cookie_add_clienthello, |
| forbid_parse_serverhello, |
| ignore_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_quic_transport_parameters, |
| ext_quic_transport_params_add_clienthello, |
| ext_quic_transport_params_parse_serverhello, |
| ext_quic_transport_params_parse_clienthello, |
| ext_quic_transport_params_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_quic_transport_parameters_legacy, |
| ext_quic_transport_params_add_clienthello_legacy, |
| ext_quic_transport_params_parse_serverhello_legacy, |
| ext_quic_transport_params_parse_clienthello_legacy, |
| ext_quic_transport_params_add_serverhello_legacy, |
| }, |
| { |
| TLSEXT_TYPE_cert_compression, |
| cert_compression_add_clienthello, |
| cert_compression_parse_serverhello, |
| cert_compression_parse_clienthello, |
| cert_compression_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_delegated_credential, |
| ext_delegated_credential_add_clienthello, |
| forbid_parse_serverhello, |
| ext_delegated_credential_parse_clienthello, |
| dont_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_application_settings, |
| ext_alps_add_clienthello, |
| ext_alps_parse_serverhello, |
| // ALPS is negotiated late in |ssl_negotiate_alpn|. |
| ignore_parse_clienthello, |
| ext_alps_add_serverhello, |
| }, |
| { |
| TLSEXT_TYPE_application_settings_old, |
| ext_alps_add_clienthello_old, |
| ext_alps_parse_serverhello_old, |
| // ALPS is negotiated late in |ssl_negotiate_alpn|. |
| ignore_parse_clienthello, |
| ext_alps_add_serverhello_old, |
| }, |
| }; |
| |
| #define kNumExtensions (sizeof(kExtensions) / sizeof(struct tls_extension)) |
| |
| static_assert(kNumExtensions <= |
| sizeof(((SSL_HANDSHAKE *)NULL)->extensions.sent) * 8, |
| "too many extensions for sent bitset"); |
| static_assert(kNumExtensions <= |
| sizeof(((SSL_HANDSHAKE *)NULL)->extensions.received) * 8, |
| "too many extensions for received bitset"); |
| |
| bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs) { |
| if (!hs->config->permute_extensions) { |
| return true; |
| } |
| |
| static_assert(kNumExtensions <= UINT8_MAX, |
| "extensions_permutation type is too small"); |
| uint32_t seeds[kNumExtensions - 1]; |
| Array<uint8_t> permutation; |
| if (!RAND_bytes(reinterpret_cast<uint8_t *>(seeds), sizeof(seeds)) || |
| !permutation.Init(kNumExtensions)) { |
| return false; |
| } |
| for (size_t i = 0; i < kNumExtensions; i++) { |
| permutation[i] = i; |
| } |
| for (size_t i = kNumExtensions - 1; i > 0; i--) { |
| // Set element |i| to a randomly-selected element 0 <= j <= i. |
| std::swap(permutation[i], permutation[seeds[i - 1] % (i + 1)]); |
| } |
| hs->extension_permutation = std::move(permutation); |
| return true; |
| } |
| |
| static const struct tls_extension *tls_extension_find(uint32_t *out_index, |
| uint16_t value) { |
| unsigned i; |
| for (i = 0; i < kNumExtensions; i++) { |
| if (kExtensions[i].value == value) { |
| *out_index = i; |
| return &kExtensions[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static bool add_padding_extension(CBB *cbb, uint16_t ext, size_t len) { |
| CBB child; |
| if (!CBB_add_u16(cbb, ext) || // |
| !CBB_add_u16_length_prefixed(cbb, &child) || |
| !CBB_add_zeros(&child, len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| return CBB_flush(cbb); |
| } |
| |
| static bool ssl_add_clienthello_tlsext_inner(SSL_HANDSHAKE *hs, CBB *out, |
| CBB *out_encoded, |
| bool *out_needs_psk_binder) { |
| // When writing ClientHelloInner, we construct the real and encoded |
| // ClientHellos concurrently, to handle compression. Uncompressed extensions |
| // are written to |extensions| and copied to |extensions_encoded|. Compressed |
| // extensions are buffered in |compressed| and written to the end. (ECH can |
| // only compress continguous extensions.) |
| SSL *const ssl = hs->ssl; |
| bssl::ScopedCBB compressed, outer_extensions; |
| CBB extensions, extensions_encoded; |
| if (!CBB_add_u16_length_prefixed(out, &extensions) || |
| !CBB_add_u16_length_prefixed(out_encoded, &extensions_encoded) || |
| !CBB_init(compressed.get(), 64) || |
| !CBB_init(outer_extensions.get(), 64)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| hs->inner_extensions_sent = 0; |
| |
| if (ssl->ctx->grease_enabled) { |
| // Add a fake empty extension. See RFC 8701. This always matches |
| // |ssl_add_clienthello_tlsext|, so compress it. |
| uint16_t grease_ext = ssl_get_grease_value(hs, ssl_grease_extension1); |
| if (!add_padding_extension(compressed.get(), grease_ext, 0) || |
| !CBB_add_u16(outer_extensions.get(), grease_ext)) { |
| return false; |
| } |
| } |
| |
| for (size_t unpermuted = 0; unpermuted < kNumExtensions; unpermuted++) { |
| size_t i = hs->extension_permutation.empty() |
| ? unpermuted |
| : hs->extension_permutation[unpermuted]; |
| const size_t len_before = CBB_len(&extensions); |
| const size_t len_compressed_before = CBB_len(compressed.get()); |
| if (!kExtensions[i].add_clienthello(hs, &extensions, compressed.get(), |
| ssl_client_hello_inner)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); |
| return false; |
| } |
| |
| const size_t bytes_written = CBB_len(&extensions) - len_before; |
| const size_t bytes_written_compressed = |
| CBB_len(compressed.get()) - len_compressed_before; |
| // The callback may write to at most one output. |
| assert(bytes_written == 0 || bytes_written_compressed == 0); |
| if (bytes_written != 0 || bytes_written_compressed != 0) { |
| hs->inner_extensions_sent |= (1u << i); |
| } |
| // If compressed, update the running ech_outer_extensions extension. |
| if (bytes_written_compressed != 0 && |
| !CBB_add_u16(outer_extensions.get(), kExtensions[i].value)) { |
| return false; |
| } |
| } |
| |
| if (ssl->ctx->grease_enabled) { |
| // Add a fake non-empty extension. See RFC 8701. This always matches |
| // |ssl_add_clienthello_tlsext|, so compress it. |
| uint16_t grease_ext = ssl_get_grease_value(hs, ssl_grease_extension2); |
| if (!add_padding_extension(compressed.get(), grease_ext, 1) || |
| !CBB_add_u16(outer_extensions.get(), grease_ext)) { |
| return false; |
| } |
| } |
| |
| // Uncompressed extensions are encoded as-is. |
| if (!CBB_add_bytes(&extensions_encoded, CBB_data(&extensions), |
| CBB_len(&extensions))) { |
| return false; |
| } |
| |
| // Flush all the compressed extensions. |
| if (CBB_len(compressed.get()) != 0) { |
| CBB extension, child; |
| // Copy them as-is in the real ClientHelloInner. |
| if (!CBB_add_bytes(&extensions, CBB_data(compressed.get()), |
| CBB_len(compressed.get())) || |
| // Replace with ech_outer_extensions in the encoded form. |
| !CBB_add_u16(&extensions_encoded, TLSEXT_TYPE_ech_outer_extensions) || |
| !CBB_add_u16_length_prefixed(&extensions_encoded, &extension) || |
| !CBB_add_u8_length_prefixed(&extension, &child) || |
| !CBB_add_bytes(&child, CBB_data(outer_extensions.get()), |
| CBB_len(outer_extensions.get())) || |
| !CBB_flush(&extensions_encoded)) { |
| return false; |
| } |
| } |
| |
| // The PSK extension must be last. It is never compressed. Note, if there is a |
| // binder, the caller will need to update both ClientHelloInner and |
| // EncodedClientHelloInner after computing it. |
| const size_t len_before = CBB_len(&extensions); |
| if (!ext_pre_shared_key_add_clienthello(hs, &extensions, out_needs_psk_binder, |
| ssl_client_hello_inner) || |
| !CBB_add_bytes(&extensions_encoded, CBB_data(&extensions) + len_before, |
| CBB_len(&extensions) - len_before) || |
| !CBB_flush(out) || // |
| !CBB_flush(out_encoded)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded, |
| bool *out_needs_psk_binder, |
| ssl_client_hello_type_t type, |
| size_t header_len) { |
| *out_needs_psk_binder = false; |
| |
| if (type == ssl_client_hello_inner) { |
| return ssl_add_clienthello_tlsext_inner(hs, out, out_encoded, |
| out_needs_psk_binder); |
| } |
| |
| assert(out_encoded == nullptr); // Only ClientHelloInner needs two outputs. |
| SSL *const ssl = hs->ssl; |
| CBB extensions; |
| if (!CBB_add_u16_length_prefixed(out, &extensions)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| // Note we may send multiple ClientHellos for DTLS HelloVerifyRequest and TLS |
| // 1.3 HelloRetryRequest. For the latter, the extensions may change, so it is |
| // important to reset this value. |
| hs->extensions.sent = 0; |
| |
| // Add a fake empty extension. See RFC 8701. |
| if (ssl->ctx->grease_enabled && |
| !add_padding_extension( |
| &extensions, ssl_get_grease_value(hs, ssl_grease_extension1), 0)) { |
| return false; |
| } |
| |
| bool last_was_empty = false; |
| for (size_t unpermuted = 0; unpermuted < kNumExtensions; unpermuted++) { |
| size_t i = hs->extension_permutation.empty() |
| ? unpermuted |
| : hs->extension_permutation[unpermuted]; |
| const size_t len_before = CBB_len(&extensions); |
| if (!kExtensions[i].add_clienthello(hs, &extensions, &extensions, type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); |
| return false; |
| } |
| |
| const size_t bytes_written = CBB_len(&extensions) - len_before; |
| if (bytes_written != 0) { |
| hs->extensions.sent |= (1u << i); |
| } |
| // If the difference in lengths is only four bytes then the extension had |
| // an empty body. |
| last_was_empty = (bytes_written == 4); |
| } |
| |
| if (ssl->ctx->grease_enabled) { |
| // Add a fake non-empty extension. See RFC 8701. |
| if (!add_padding_extension( |
| &extensions, ssl_get_grease_value(hs, ssl_grease_extension2), 1)) { |
| return false; |
| } |
| last_was_empty = false; |
| } |
| |
| // In cleartext ClientHellos, we add the padding extension to work around |
| // bugs. We also apply this padding to ClientHelloOuter, to keep the wire |
| // images aligned. |
| size_t psk_extension_len = ext_pre_shared_key_clienthello_length(hs, type); |
| if (!SSL_is_dtls(ssl) && !ssl->quic_method && |
| !ssl->s3->used_hello_retry_request) { |
| header_len += |
| SSL3_HM_HEADER_LENGTH + 2 + CBB_len(&extensions) + psk_extension_len; |
| size_t padding_len = 0; |
| |
| // The final extension must be non-empty. WebSphere Application |
| // Server 7.0 is intolerant to the last extension being zero-length. See |
| // https://crbug.com/363583. |
| if (last_was_empty && psk_extension_len == 0) { |
| padding_len = 1; |
| // The addition of the padding extension may push us into the F5 bug. |
| header_len += 4 + padding_len; |
| } |
| |
| // Add padding to workaround bugs in F5 terminators. See RFC 7685. |
| // |
| // NB: because this code works out the length of all existing extensions |
| // it MUST always appear last (save for any PSK extension). |
| if (header_len > 0xff && header_len < 0x200) { |
| // If our calculations already included a padding extension, remove that |
| // factor because we're about to change its length. |
| if (padding_len != 0) { |
| header_len -= 4 + padding_len; |
| } |
| padding_len = 0x200 - header_len; |
| // Extensions take at least four bytes to encode. Always include at least |
| // one byte of data if including the extension. WebSphere Application |
| // Server 7.0 is intolerant to the last extension being zero-length. See |
| // https://crbug.com/363583. |
| if (padding_len >= 4 + 1) { |
| padding_len -= 4; |
| } else { |
| padding_len = 1; |
| } |
| } |
| |
| if (padding_len != 0 && |
| !add_padding_extension(&extensions, TLSEXT_TYPE_padding, padding_len)) { |
| return false; |
| } |
| } |
| |
| // The PSK extension must be last, including after the padding. |
| const size_t len_before = CBB_len(&extensions); |
| if (!ext_pre_shared_key_add_clienthello(hs, &extensions, out_needs_psk_binder, |
| type)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| assert(psk_extension_len == CBB_len(&extensions) - len_before); |
| (void)len_before; // |assert| is omitted in release builds. |
| |
| // Discard empty extensions blocks. |
| if (CBB_len(&extensions) == 0) { |
| CBB_discard_child(out); |
| } |
| |
| return CBB_flush(out); |
| } |
| |
| bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out) { |
| SSL *const ssl = hs->ssl; |
| CBB extensions; |
| if (!CBB_add_u16_length_prefixed(out, &extensions)) { |
| goto err; |
| } |
| |
| for (unsigned i = 0; i < kNumExtensions; i++) { |
| if (!(hs->extensions.received & (1u << i))) { |
| // Don't send extensions that were not received. |
| continue; |
| } |
| |
| if (!kExtensions[i].add_serverhello(hs, &extensions)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); |
| goto err; |
| } |
| } |
| |
| // Discard empty extensions blocks before TLS 1.3. |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION && |
| CBB_len(&extensions) == 0) { |
| CBB_discard_child(out); |
| } |
| |
| return CBB_flush(out); |
| |
| err: |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| static bool ssl_scan_clienthello_tlsext(SSL_HANDSHAKE *hs, |
| const SSL_CLIENT_HELLO *client_hello, |
| int *out_alert) { |
| hs->extensions.received = 0; |
| CBS extensions; |
| CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); |
| while (CBS_len(&extensions) != 0) { |
| uint16_t type; |
| CBS extension; |
| |
| // Decode the next extension. |
| if (!CBS_get_u16(&extensions, &type) || |
| !CBS_get_u16_length_prefixed(&extensions, &extension)) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| unsigned ext_index; |
| const struct tls_extension *const ext = |
| tls_extension_find(&ext_index, type); |
| if (ext == NULL) { |
| continue; |
| } |
| |
| hs->extensions.received |= (1u << ext_index); |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!ext->parse_clienthello(hs, &alert, &extension)) { |
| *out_alert = alert; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)type); |
| return false; |
| } |
| } |
| |
| for (size_t i = 0; i < kNumExtensions; i++) { |
| if (hs->extensions.received & (1u << i)) { |
| continue; |
| } |
| |
| CBS *contents = NULL, fake_contents; |
| static const uint8_t kFakeRenegotiateExtension[] = {0}; |
| if (kExtensions[i].value == TLSEXT_TYPE_renegotiate && |
| ssl_client_cipher_list_contains_cipher(client_hello, |
| SSL3_CK_SCSV & 0xffff)) { |
| // The renegotiation SCSV was received so pretend that we received a |
| // renegotiation extension. |
| CBS_init(&fake_contents, kFakeRenegotiateExtension, |
| sizeof(kFakeRenegotiateExtension)); |
| contents = &fake_contents; |
| hs->extensions.received |= (1u << i); |
| } |
| |
| // Extension wasn't observed so call the callback with a NULL |
| // parameter. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!kExtensions[i].parse_clienthello(hs, &alert, contents)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); |
| *out_alert = alert; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| int alert = SSL_AD_DECODE_ERROR; |
| if (!ssl_scan_clienthello_tlsext(hs, client_hello, &alert)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return false; |
| } |
| |
| if (!ssl_check_clienthello_tlsext(hs)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_TLSEXT); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ssl_scan_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *cbs, |
| int *out_alert) { |
| CBS extensions = *cbs; |
| if (!tls1_check_duplicate_extensions(&extensions)) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| uint32_t received = 0; |
| while (CBS_len(&extensions) != 0) { |
| uint16_t type; |
| CBS extension; |
| |
| // Decode the next extension. |
| if (!CBS_get_u16(&extensions, &type) || |
| !CBS_get_u16_length_prefixed(&extensions, &extension)) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| unsigned ext_index; |
| const struct tls_extension *const ext = |
| tls_extension_find(&ext_index, type); |
| |
| if (ext == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)type); |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| return false; |
| } |
| |
| static_assert(kNumExtensions <= sizeof(hs->extensions.sent) * 8, |
| "too many bits"); |
| |
| if (!(hs->extensions.sent & (1u << ext_index))) { |
| // If the extension was never sent then it is illegal. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| ERR_add_error_dataf("extension :%u", (unsigned)type); |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| return false; |
| } |
| |
| received |= (1u << ext_index); |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!ext->parse_serverhello(hs, &alert, &extension)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)type); |
| *out_alert = alert; |
| return false; |
| } |
| } |
| |
| for (size_t i = 0; i < kNumExtensions; i++) { |
| if (!(received & (1u << i))) { |
| // Extension wasn't observed so call the callback with a NULL |
| // parameter. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!kExtensions[i].parse_serverhello(hs, &alert, NULL)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION); |
| ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); |
| *out_alert = alert; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| int ret = SSL_TLSEXT_ERR_NOACK; |
| int al = SSL_AD_UNRECOGNIZED_NAME; |
| if (ssl->ctx->servername_callback != 0) { |
| ret = ssl->ctx->servername_callback(ssl, &al, ssl->ctx->servername_arg); |
| } else if (ssl->session_ctx->servername_callback != 0) { |
| ret = ssl->session_ctx->servername_callback( |
| ssl, &al, ssl->session_ctx->servername_arg); |
| } |
| |
| switch (ret) { |
| case SSL_TLSEXT_ERR_ALERT_FATAL: |
| ssl_send_alert(ssl, SSL3_AL_FATAL, al); |
| return false; |
| |
| case SSL_TLSEXT_ERR_NOACK: |
| hs->should_ack_sni = false; |
| return true; |
| |
| default: |
| return true; |
| } |
| } |
| |
| static bool ssl_check_serverhello_tlsext(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| // ALPS and ALPN have a dependency between each other, so we defer checking |
| // consistency to after the callbacks run. |
| if (hs->new_session != nullptr && hs->new_session->has_application_settings) { |
| // ALPN must be negotiated. |
| if (ssl->s3->alpn_selected.empty()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_ALPS_WITHOUT_ALPN); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return false; |
| } |
| |
| // The negotiated protocol must be one of the ones we advertised for ALPS. |
| Span<const uint8_t> settings; |
| if (!ssl_get_local_application_settings(hs, &settings, |
| ssl->s3->alpn_selected)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return false; |
| } |
| |
| if (!hs->new_session->local_application_settings.CopyFrom(settings)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *cbs) { |
| SSL *const ssl = hs->ssl; |
| int alert = SSL_AD_DECODE_ERROR; |
| if (!ssl_scan_serverhello_tlsext(hs, cbs, &alert)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return false; |
| } |
| |
| if (!ssl_check_serverhello_tlsext(hs)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static enum ssl_ticket_aead_result_t decrypt_ticket_with_cipher_ctx( |
| Array<uint8_t> *out, EVP_CIPHER_CTX *cipher_ctx, HMAC_CTX *hmac_ctx, |
| Span<const uint8_t> ticket) { |
| size_t iv_len = EVP_CIPHER_CTX_iv_length(cipher_ctx); |
| |
| // Check the MAC at the end of the ticket. |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| size_t mac_len = HMAC_size(hmac_ctx); |
| if (ticket.size() < SSL_TICKET_KEY_NAME_LEN + iv_len + 1 + mac_len) { |
| // The ticket must be large enough for key name, IV, data, and MAC. |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| // Split the ticket into the ticket and the MAC. |
| auto ticket_mac = ticket.last(mac_len); |
| ticket = ticket.first(ticket.size() - mac_len); |
| HMAC_Update(hmac_ctx, ticket.data(), ticket.size()); |
| HMAC_Final(hmac_ctx, mac, NULL); |
| assert(mac_len == ticket_mac.size()); |
| bool mac_ok = CRYPTO_memcmp(mac, ticket_mac.data(), mac_len) == 0; |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| mac_ok = true; |
| #endif |
| if (!mac_ok) { |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| |
| // Decrypt the session data. |
| auto ciphertext = ticket.subspan(SSL_TICKET_KEY_NAME_LEN + iv_len); |
| Array<uint8_t> plaintext; |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| if (!plaintext.CopyFrom(ciphertext)) { |
| return ssl_ticket_aead_error; |
| } |
| #else |
| if (ciphertext.size() >= INT_MAX) { |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| if (!plaintext.Init(ciphertext.size())) { |
| return ssl_ticket_aead_error; |
| } |
| int len1, len2; |
| if (!EVP_DecryptUpdate(cipher_ctx, plaintext.data(), &len1, ciphertext.data(), |
| (int)ciphertext.size()) || |
| !EVP_DecryptFinal_ex(cipher_ctx, plaintext.data() + len1, &len2)) { |
| ERR_clear_error(); |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| plaintext.Shrink(static_cast<size_t>(len1) + len2); |
| #endif |
| |
| *out = std::move(plaintext); |
| return ssl_ticket_aead_success; |
| } |
| |
| static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_cb( |
| SSL_HANDSHAKE *hs, Array<uint8_t> *out, bool *out_renew_ticket, |
| Span<const uint8_t> ticket) { |
| assert(ticket.size() >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH); |
| ScopedEVP_CIPHER_CTX cipher_ctx; |
| ScopedHMAC_CTX hmac_ctx; |
| auto name = ticket.subspan(0, SSL_TICKET_KEY_NAME_LEN); |
| // The actual IV is shorter, but the length is determined by the callback's |
| // chosen cipher. Instead we pass in |EVP_MAX_IV_LENGTH| worth of IV to ensure |
| // the callback has enough. |
| auto iv = ticket.subspan(SSL_TICKET_KEY_NAME_LEN, EVP_MAX_IV_LENGTH); |
| int cb_ret = hs->ssl->session_ctx->ticket_key_cb( |
| hs->ssl, const_cast<uint8_t *>(name.data()), |
| const_cast<uint8_t *>(iv.data()), cipher_ctx.get(), hmac_ctx.get(), |
| 0 /* decrypt */); |
| if (cb_ret < 0) { |
| return ssl_ticket_aead_error; |
| } else if (cb_ret == 0) { |
| return ssl_ticket_aead_ignore_ticket; |
| } else if (cb_ret == 2) { |
| *out_renew_ticket = true; |
| } else { |
| assert(cb_ret == 1); |
| } |
| return decrypt_ticket_with_cipher_ctx(out, cipher_ctx.get(), hmac_ctx.get(), |
| ticket); |
| } |
| |
| static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_ticket_keys( |
| SSL_HANDSHAKE *hs, Array<uint8_t> *out, Span<const uint8_t> ticket) { |
| assert(ticket.size() >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH); |
| SSL_CTX *ctx = hs->ssl->session_ctx.get(); |
| |
| // Rotate the ticket key if necessary. |
| if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) { |
| return ssl_ticket_aead_error; |
| } |
| |
| const EVP_CIPHER *cipher = EVP_aes_128_cbc(); |
| auto name = ticket.subspan(0, SSL_TICKET_KEY_NAME_LEN); |
| auto iv = |
| ticket.subspan(SSL_TICKET_KEY_NAME_LEN, EVP_CIPHER_iv_length(cipher)); |
| |
| // Pick the matching ticket key and decrypt. |
| ScopedEVP_CIPHER_CTX cipher_ctx; |
| ScopedHMAC_CTX hmac_ctx; |
| { |
| MutexReadLock lock(&ctx->lock); |
| const TicketKey *key; |
| if (ctx->ticket_key_current && name == ctx->ticket_key_current->name) { |
| key = ctx->ticket_key_current.get(); |
| } else if (ctx->ticket_key_prev && name == ctx->ticket_key_prev->name) { |
| key = ctx->ticket_key_prev.get(); |
| } else { |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| if (!HMAC_Init_ex(hmac_ctx.get(), key->hmac_key, sizeof(key->hmac_key), |
| tlsext_tick_md(), NULL) || |
| !EVP_DecryptInit_ex(cipher_ctx.get(), cipher, NULL, |
| key->aes_key, iv.data())) { |
| return ssl_ticket_aead_error; |
| } |
| } |
| return decrypt_ticket_with_cipher_ctx(out, cipher_ctx.get(), hmac_ctx.get(), |
| ticket); |
| } |
| |
| static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_method( |
| SSL_HANDSHAKE *hs, Array<uint8_t> *out, bool *out_renew_ticket, |
| Span<const uint8_t> ticket) { |
| Array<uint8_t> plaintext; |
| if (!plaintext.Init(ticket.size())) { |
| return ssl_ticket_aead_error; |
| } |
| |
| size_t plaintext_len; |
| const enum ssl_ticket_aead_result_t result = |
| hs->ssl->session_ctx->ticket_aead_method->open( |
| hs->ssl, plaintext.data(), &plaintext_len, ticket.size(), |
| ticket.data(), ticket.size()); |
| if (result != ssl_ticket_aead_success) { |
| return result; |
| } |
| |
| plaintext.Shrink(plaintext_len); |
| *out = std::move(plaintext); |
| return ssl_ticket_aead_success; |
| } |
| |
| enum ssl_ticket_aead_result_t ssl_process_ticket( |
| SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session, |
| bool *out_renew_ticket, Span<const uint8_t> ticket, |
| Span<const uint8_t> session_id) { |
| SSL *const ssl = hs->ssl; |
| *out_renew_ticket = false; |
| out_session->reset(); |
| |
| if ((SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) || |
| session_id.size() > SSL_MAX_SSL_SESSION_ID_LENGTH) { |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| |
| // Tickets in TLS 1.3 are tied into pre-shared keys (PSKs), unlike in TLS 1.2 |
| // where that concept doesn't exist. The |decrypted_psk| and |ignore_psk| |
| // hints only apply to PSKs. We check the version to determine which this is. |
| const bool is_psk = ssl_protocol_version(ssl) >= TLS1_3_VERSION; |
| |
| Array<uint8_t> plaintext; |
| enum ssl_ticket_aead_result_t result; |
| SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); |
| if (is_psk && hints && !hs->hints_requested && |
| !hints->decrypted_psk.empty()) { |
| result = plaintext.CopyFrom(hints->decrypted_psk) ? ssl_ticket_aead_success |
| : ssl_ticket_aead_error; |
| } else if (is_psk && hints && !hs->hints_requested && hints->ignore_psk) { |
| result = ssl_ticket_aead_ignore_ticket; |
| } else if (!is_psk && hints && !hs->hints_requested && |
| !hints->decrypted_ticket.empty()) { |
| if (plaintext.CopyFrom(hints->decrypted_ticket)) { |
| result = ssl_ticket_aead_success; |
| *out_renew_ticket = hints->renew_ticket; |
| } else { |
| result = ssl_ticket_aead_error; |
| } |
| } else if (!is_psk && hints && !hs->hints_requested && hints->ignore_ticket) { |
| result = ssl_ticket_aead_ignore_ticket; |
| } else if (ssl->session_ctx->ticket_aead_method != NULL) { |
| result = ssl_decrypt_ticket_with_method(hs, &plaintext, out_renew_ticket, |
| ticket); |
| } else { |
| // Ensure there is room for the key name and the largest IV |ticket_key_cb| |
| // may try to consume. The real limit may be lower, but the maximum IV |
| // length should be well under the minimum size for the session material and |
| // HMAC. |
| if (ticket.size() < SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH) { |
| result = ssl_ticket_aead_ignore_ticket; |
| } else if (ssl->session_ctx->ticket_key_cb != NULL) { |
| result = |
| ssl_decrypt_ticket_with_cb(hs, &plaintext, out_renew_ticket, ticket); |
| } else { |
| result = ssl_decrypt_ticket_with_ticket_keys(hs, &plaintext, ticket); |
| } |
| } |
| |
| if (hints && hs->hints_requested) { |
| if (result == ssl_ticket_aead_ignore_ticket) { |
| if (is_psk) { |
| hints->ignore_psk = true; |
| } else { |
| hints->ignore_ticket = true; |
| } |
| } else if (result == ssl_ticket_aead_success) { |
| if (is_psk) { |
| if (!hints->decrypted_psk.CopyFrom(plaintext)) { |
| return ssl_ticket_aead_error; |
| } |
| } else { |
| if (!hints->decrypted_ticket.CopyFrom(plaintext)) { |
| return ssl_ticket_aead_error; |
| } |
| hints->renew_ticket = *out_renew_ticket; |
| } |
| } |
| } |
| |
| if (result != ssl_ticket_aead_success) { |
| return result; |
| } |
| |
| // Decode the session. |
| UniquePtr<SSL_SESSION> session(SSL_SESSION_from_bytes( |
| plaintext.data(), plaintext.size(), ssl->ctx.get())); |
| if (!session) { |
| ERR_clear_error(); // Don't leave an error on the queue. |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| |
| // Envoy's tests expect the session to have a session ID that matches the |
| // placeholder used by the client. It's unclear whether this is a good idea, |
| // but we maintain it for now. |
| SHA256(ticket.data(), ticket.size(), session->session_id); |
| // Other consumers may expect a non-empty session ID to indicate resumption. |
| session->session_id_length = SHA256_DIGEST_LENGTH; |
| |
| *out_session = std::move(session); |
| return ssl_ticket_aead_success; |
| } |
| |
| bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *in_sigalgs) { |
| // Extension ignored for inappropriate versions |
| if (ssl_protocol_version(hs->ssl) < TLS1_2_VERSION) { |
| return true; |
| } |
| |
| // In all contexts, the signature algorithms list may not be empty. (It may be |
| // omitted by clients in TLS 1.2, but then the entire extension is omitted.) |
| return CBS_len(in_sigalgs) != 0 && |
| parse_u16_array(in_sigalgs, &hs->peer_sigalgs); |
| } |
| |
| bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey) { |
| switch (EVP_PKEY_id(pkey)) { |
| case EVP_PKEY_RSA: |
| *out = SSL_SIGN_RSA_PKCS1_MD5_SHA1; |
| return true; |
| case EVP_PKEY_EC: |
| *out = SSL_SIGN_ECDSA_SHA1; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, |
| const SSL_CREDENTIAL *cred, |
| uint16_t *out) { |
| SSL *const ssl = hs->ssl; |
| if (!cred->UsesPrivateKey()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| return false; |
| } |
| |
| // Before TLS 1.2, the signature algorithm isn't negotiated as part of the |
| // handshake. |
| uint16_t version = ssl_protocol_version(ssl); |
| if (version < TLS1_2_VERSION) { |
| if (!tls1_get_legacy_signature_algorithm(out, cred->pubkey.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS); |
| return false; |
| } |
| return true; |
| } |
| |
| Span<const uint16_t> peer_sigalgs; |
| if (cred->type == SSLCredentialType::kDelegated) { |
| peer_sigalgs = hs->peer_delegated_credential_sigalgs; |
| } else { |
| peer_sigalgs = hs->peer_sigalgs; |
| if (peer_sigalgs.empty() && version == TLS1_2_VERSION) { |
| // If the client didn't specify any signature_algorithms extension, it is |
| // interpreted as SHA-1. See |
| // http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 |
| static const uint16_t kTLS12Default[] = {SSL_SIGN_RSA_PKCS1_SHA1, |
| SSL_SIGN_ECDSA_SHA1}; |
| peer_sigalgs = kTLS12Default; |
| } |
| } |
| |
| Span<const uint16_t> sigalgs = cred->sigalgs.empty() |
| ? MakeConstSpan(kSignSignatureAlgorithms) |
| : cred->sigalgs; |
| for (uint16_t sigalg : sigalgs) { |
| if (!ssl_pkey_supports_algorithm(ssl, cred->pubkey.get(), sigalg)) { |
| continue; |
| } |
| |
| if (std::find(peer_sigalgs.begin(), peer_sigalgs.end(), sigalg) != |
| peer_sigalgs.end()) { |
| *out = sigalg; |
| return true; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS); |
| return false; |
| } |
| |
| bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg) { |
| SSL *const ssl = hs->ssl; |
| // A Channel ID handshake message is structured to contain multiple |
| // extensions, but the only one that can be present is Channel ID. |
| uint16_t extension_type; |
| CBS channel_id = msg.body, extension; |
| if (!CBS_get_u16(&channel_id, &extension_type) || |
| !CBS_get_u16_length_prefixed(&channel_id, &extension) || |
| CBS_len(&channel_id) != 0 || |
| extension_type != TLSEXT_TYPE_channel_id || |
| CBS_len(&extension) != TLSEXT_CHANNEL_ID_SIZE) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return false; |
| } |
| |
| const EC_GROUP *p256 = EC_group_p256(); |
| UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); |
| UniquePtr<BIGNUM> x(BN_new()), y(BN_new()); |
| if (!sig || !x || !y) { |
| return false; |
| } |
| |
| const uint8_t *p = CBS_data(&extension); |
| if (BN_bin2bn(p + 0, 32, x.get()) == NULL || |
| BN_bin2bn(p + 32, 32, y.get()) == NULL || |
| BN_bin2bn(p + 64, 32, sig->r) == NULL || |
| BN_bin2bn(p + 96, 32, sig->s) == NULL) { |
| return false; |
| } |
| |
| UniquePtr<EC_KEY> key(EC_KEY_new()); |
| UniquePtr<EC_POINT> point(EC_POINT_new(p256)); |
| if (!key || !point || |
| !EC_POINT_set_affine_coordinates_GFp(p256, point.get(), x.get(), y.get(), |
| nullptr) || |
| !EC_KEY_set_group(key.get(), p256) || |
| !EC_KEY_set_public_key(key.get(), point.get())) { |
| return false; |
| } |
| |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| size_t digest_len; |
| if (!tls1_channel_id_hash(hs, digest, &digest_len)) { |
| return false; |
| } |
| |
| bool sig_ok = ECDSA_do_verify(digest, digest_len, sig.get(), key.get()); |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| sig_ok = true; |
| ERR_clear_error(); |
| #endif |
| if (!sig_ok) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_SIGNATURE_INVALID); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| return false; |
| } |
| |
| OPENSSL_memcpy(ssl->s3->channel_id, p, 64); |
| ssl->s3->channel_id_valid = true; |
| return true; |
| } |
| |
| bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb) { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| size_t digest_len; |
| if (!tls1_channel_id_hash(hs, digest, &digest_len)) { |
| return false; |
| } |
| |
| EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(hs->config->channel_id_private.get()); |
| if (ec_key == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| UniquePtr<BIGNUM> x(BN_new()), y(BN_new()); |
| if (!x || !y || |
| !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key), |
| EC_KEY_get0_public_key(ec_key), |
| x.get(), y.get(), nullptr)) { |
| return false; |
| } |
| |
| UniquePtr<ECDSA_SIG> sig(ECDSA_do_sign(digest, digest_len, ec_key)); |
| if (!sig) { |
| return false; |
| } |
| |
| CBB child; |
| if (!CBB_add_u16(cbb, TLSEXT_TYPE_channel_id) || |
| !CBB_add_u16_length_prefixed(cbb, &child) || |
| !BN_bn2cbb_padded(&child, 32, x.get()) || |
| !BN_bn2cbb_padded(&child, 32, y.get()) || |
| !BN_bn2cbb_padded(&child, 32, sig->r) || |
| !BN_bn2cbb_padded(&child, 32, sig->s) || |
| !CBB_flush(cbb)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len) { |
| SSL *const ssl = hs->ssl; |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| Array<uint8_t> msg; |
| if (!tls13_get_cert_verify_signature_input(hs, &msg, |
| ssl_cert_verify_channel_id)) { |
| return false; |
| } |
| SHA256(msg.data(), msg.size(), out); |
| *out_len = SHA256_DIGEST_LENGTH; |
| return true; |
| } |
| |
| SHA256_CTX ctx; |
| |
| SHA256_Init(&ctx); |
| static const char kClientIDMagic[] = "TLS Channel ID signature"; |
| SHA256_Update(&ctx, kClientIDMagic, sizeof(kClientIDMagic)); |
| |
| if (ssl->session != NULL) { |
| static const char kResumptionMagic[] = "Resumption"; |
| SHA256_Update(&ctx, kResumptionMagic, sizeof(kResumptionMagic)); |
| if (ssl->session->original_handshake_hash_len == 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| SHA256_Update(&ctx, ssl->session->original_handshake_hash, |
| ssl->session->original_handshake_hash_len); |
| } |
| |
| uint8_t hs_hash[EVP_MAX_MD_SIZE]; |
| size_t hs_hash_len; |
| if (!hs->transcript.GetHash(hs_hash, &hs_hash_len)) { |
| return false; |
| } |
| SHA256_Update(&ctx, hs_hash, (size_t)hs_hash_len); |
| SHA256_Final(out, &ctx); |
| *out_len = SHA256_DIGEST_LENGTH; |
| return true; |
| } |
| |
| bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| // This function should never be called for a resumed session because the |
| // handshake hashes that we wish to record are for the original, full |
| // handshake. |
| if (ssl->session != NULL) { |
| return false; |
| } |
| |
| static_assert( |
| sizeof(hs->new_session->original_handshake_hash) == EVP_MAX_MD_SIZE, |
| "original_handshake_hash is too small"); |
| |
| size_t digest_len; |
| if (!hs->transcript.GetHash(hs->new_session->original_handshake_hash, |
| &digest_len)) { |
| return false; |
| } |
| |
| static_assert(EVP_MAX_MD_SIZE <= 0xff, |
| "EVP_MAX_MD_SIZE does not fit in uint8_t"); |
| hs->new_session->original_handshake_hash_len = (uint8_t)digest_len; |
| |
| return true; |
| } |
| |
| bool ssl_is_sct_list_valid(const CBS *contents) { |
| // Shallow parse the SCT list for sanity. By the RFC |
| // (https://tools.ietf.org/html/rfc6962#section-3.3) neither the list nor any |
| // of the SCTs may be empty. |
| CBS copy = *contents; |
| CBS sct_list; |
| if (!CBS_get_u16_length_prefixed(©, &sct_list) || |
| CBS_len(©) != 0 || |
| CBS_len(&sct_list) == 0) { |
| return false; |
| } |
| |
| while (CBS_len(&sct_list) > 0) { |
| CBS sct; |
| if (!CBS_get_u16_length_prefixed(&sct_list, &sct) || |
| CBS_len(&sct) == 0) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| BSSL_NAMESPACE_END |
| |
| using namespace bssl; |
| |
| int SSL_early_callback_ctx_extension_get(const SSL_CLIENT_HELLO *client_hello, |
| uint16_t extension_type, |
| const uint8_t **out_data, |
| size_t *out_len) { |
| CBS cbs; |
| if (!ssl_client_hello_get_extension(client_hello, &cbs, extension_type)) { |
| return 0; |
| } |
| |
| *out_data = CBS_data(&cbs); |
| *out_len = CBS_len(&cbs); |
| return 1; |
| } |