| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/obj.h> |
| #include <openssl/span.h> |
| |
| #include "../../ec_extra/internal.h" |
| #include "../../test/file_test.h" |
| #include "../../test/test_util.h" |
| #include "../bn/internal.h" |
| #include "internal.h" |
| |
| |
| // kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field |
| // omitted. |
| static const uint8_t kECKeyWithoutPublic[] = { |
| 0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, |
| 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, |
| 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, |
| }; |
| |
| // kECKeySpecifiedCurve is the above key with P-256's parameters explicitly |
| // spelled out rather than using a named curve. |
| static const uint8_t kECKeySpecifiedCurve[] = { |
| 0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, |
| 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, |
| 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, |
| 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02, |
| 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, |
| 0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
| 0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, |
| 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
| 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, |
| 0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, |
| 0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, |
| 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, |
| 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, |
| 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, |
| 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
| 0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, |
| 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, |
| 0x63, 0x25, 0x51, 0x02, 0x01, 0x01, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is incorrectly encoded without zero |
| // padding. |
| static const uint8_t kECKeyMissingZeros[] = { |
| 0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, |
| 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, |
| 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, |
| 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, |
| 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, |
| 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is encoded with the required zero |
| // padding. |
| static const uint8_t kECKeyWithZeros[] = { |
| 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, |
| 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, |
| 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, |
| 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, |
| 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, |
| 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
| 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| static const uint8_t kECKeyWithZerosPublic[] = { |
| 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, |
| 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, |
| 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, |
| 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, |
| 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, |
| 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| static const uint8_t kECKeyWithZerosRawPrivate[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}; |
| |
| // DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the |
| // result or nullptr on error. |
| static bssl::UniquePtr<EC_KEY> DecodeECPrivateKey(const uint8_t *in, |
| size_t in_len) { |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| bssl::UniquePtr<EC_KEY> ret(EC_KEY_parse_private_key(&cbs, NULL)); |
| if (!ret || CBS_len(&cbs) != 0) { |
| return nullptr; |
| } |
| return ret; |
| } |
| |
| // EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It |
| // returns true on success or false on error. |
| static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) { |
| bssl::ScopedCBB cbb; |
| uint8_t *der; |
| size_t der_len; |
| if (!CBB_init(cbb.get(), 0) || |
| !EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| out->assign(der, der + der_len); |
| OPENSSL_free(der); |
| return true; |
| } |
| |
| static bool EncodeECPoint(std::vector<uint8_t> *out, const EC_GROUP *group, |
| const EC_POINT *p, point_conversion_form_t form) { |
| size_t len = EC_POINT_point2oct(group, p, form, nullptr, 0, nullptr); |
| if (len == 0) { |
| return false; |
| } |
| |
| out->resize(len); |
| len = EC_POINT_point2oct(group, p, form, out->data(), out->size(), nullptr); |
| if (len != out->size()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| TEST(ECTest, Encoding) { |
| bssl::UniquePtr<EC_KEY> key = |
| DecodeECPrivateKey(kECKeyWithoutPublic, sizeof(kECKeyWithoutPublic)); |
| ASSERT_TRUE(key); |
| |
| // Test that the encoding round-trips. |
| std::vector<uint8_t> out; |
| ASSERT_TRUE(EncodeECPrivateKey(&out, key.get())); |
| EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); |
| |
| const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); |
| ASSERT_TRUE(pub_key) << "Public key missing"; |
| |
| bssl::UniquePtr<BIGNUM> x(BN_new()); |
| bssl::UniquePtr<BIGNUM> y(BN_new()); |
| ASSERT_TRUE(x); |
| ASSERT_TRUE(y); |
| ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
| EC_KEY_get0_group(key.get()), pub_key, x.get(), y.get(), NULL)); |
| bssl::UniquePtr<char> x_hex(BN_bn2hex(x.get())); |
| bssl::UniquePtr<char> y_hex(BN_bn2hex(y.get())); |
| ASSERT_TRUE(x_hex); |
| ASSERT_TRUE(y_hex); |
| |
| EXPECT_STREQ( |
| "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681", |
| x_hex.get()); |
| EXPECT_STREQ( |
| "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88", |
| y_hex.get()); |
| } |
| |
| TEST(ECTest, ZeroPadding) { |
| // Check that the correct encoding round-trips. |
| bssl::UniquePtr<EC_KEY> key = |
| DecodeECPrivateKey(kECKeyWithZeros, sizeof(kECKeyWithZeros)); |
| ASSERT_TRUE(key); |
| std::vector<uint8_t> out; |
| EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
| EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); |
| |
| // Check the private key encodes correctly, including with the leading zeros. |
| EXPECT_EQ(32u, EC_KEY_priv2oct(key.get(), nullptr, 0)); |
| uint8_t buf[32]; |
| ASSERT_EQ(32u, EC_KEY_priv2oct(key.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes(buf), Bytes(kECKeyWithZerosRawPrivate)); |
| |
| // Buffer too small. |
| EXPECT_EQ(0u, EC_KEY_priv2oct(key.get(), buf, sizeof(buf) - 1)); |
| |
| // Extra space in buffer. |
| uint8_t large_buf[33]; |
| ASSERT_EQ(32u, EC_KEY_priv2oct(key.get(), large_buf, sizeof(large_buf))); |
| EXPECT_EQ(Bytes(buf), Bytes(kECKeyWithZerosRawPrivate)); |
| |
| // Allocating API. |
| uint8_t *buf_alloc; |
| size_t len = EC_KEY_priv2buf(key.get(), &buf_alloc); |
| ASSERT_GT(len, 0u); |
| bssl::UniquePtr<uint8_t> free_buf_alloc(buf_alloc); |
| EXPECT_EQ(Bytes(buf_alloc, len), Bytes(kECKeyWithZerosRawPrivate)); |
| |
| // Keys without leading zeros also parse, but they encode correctly. |
| key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); |
| ASSERT_TRUE(key); |
| EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
| EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); |
| |
| // Test the key can be constructed with |EC_KEY_oct2*|. |
| key.reset(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_oct2key(key.get(), kECKeyWithZerosPublic, |
| sizeof(kECKeyWithZerosPublic), nullptr)); |
| ASSERT_TRUE(EC_KEY_oct2priv(key.get(), kECKeyWithZerosRawPrivate, |
| sizeof(kECKeyWithZerosRawPrivate))); |
| EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
| EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); |
| |
| // |EC_KEY_oct2priv|'s format is fixed-width and must match the group order. |
| key.reset(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| ASSERT_TRUE(key); |
| EXPECT_FALSE(EC_KEY_oct2priv(key.get(), kECKeyWithZerosRawPrivate + 1, |
| sizeof(kECKeyWithZerosRawPrivate) - 1)); |
| uint8_t padded[sizeof(kECKeyWithZerosRawPrivate) + 1] = {0}; |
| memcpy(padded + 1, kECKeyWithZerosRawPrivate, |
| sizeof(kECKeyWithZerosRawPrivate)); |
| EXPECT_FALSE(EC_KEY_oct2priv(key.get(), padded, sizeof(padded))); |
| } |
| |
| TEST(ECTest, SpecifiedCurve) { |
| // Test keys with specified curves may be decoded. |
| bssl::UniquePtr<EC_KEY> key = |
| DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve)); |
| ASSERT_TRUE(key); |
| |
| // The group should have been interpreted as P-256. |
| EXPECT_EQ(NID_X9_62_prime256v1, |
| EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get()))); |
| |
| // Encoding the key should still use named form. |
| std::vector<uint8_t> out; |
| EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
| EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); |
| } |
| |
| TEST(ECTest, ArbitraryCurve) { |
| // Make a P-256 key and extract the affine coordinates. |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
| |
| // Make an arbitrary curve which is identical to P-256. |
| static const uint8_t kP[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| }; |
| static const uint8_t kA[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
| }; |
| static const uint8_t kB[] = { |
| 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, |
| 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
| 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, |
| }; |
| static const uint8_t kX[] = { |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, |
| 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, |
| 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, |
| }; |
| static const uint8_t kY[] = { |
| 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, |
| 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, |
| 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| static const uint8_t kOrder[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, |
| 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, |
| }; |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); |
| ASSERT_TRUE(p); |
| bssl::UniquePtr<BIGNUM> a(BN_bin2bn(kA, sizeof(kA), nullptr)); |
| ASSERT_TRUE(a); |
| bssl::UniquePtr<BIGNUM> b(BN_bin2bn(kB, sizeof(kB), nullptr)); |
| ASSERT_TRUE(b); |
| bssl::UniquePtr<BIGNUM> gx(BN_bin2bn(kX, sizeof(kX), nullptr)); |
| ASSERT_TRUE(gx); |
| bssl::UniquePtr<BIGNUM> gy(BN_bin2bn(kY, sizeof(kY), nullptr)); |
| ASSERT_TRUE(gy); |
| bssl::UniquePtr<BIGNUM> order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); |
| ASSERT_TRUE(order); |
| |
| bssl::UniquePtr<EC_GROUP> group( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group.get())); |
| ASSERT_TRUE(generator); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
| group.get(), generator.get(), gx.get(), gy.get(), ctx.get())); |
| ASSERT_TRUE(EC_GROUP_set_generator(group.get(), generator.get(), order.get(), |
| BN_value_one())); |
| |
| // |group| should not have a curve name. |
| EXPECT_EQ(NID_undef, EC_GROUP_get_curve_name(group.get())); |
| |
| // Copy |key| to |key2| using |group|. |
| bssl::UniquePtr<EC_KEY> key2(EC_KEY_new()); |
| ASSERT_TRUE(key2); |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group.get())); |
| ASSERT_TRUE(point); |
| bssl::UniquePtr<BIGNUM> x(BN_new()), y(BN_new()); |
| ASSERT_TRUE(x); |
| ASSERT_TRUE(EC_KEY_set_group(key2.get(), group.get())); |
| ASSERT_TRUE( |
| EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get()))); |
| ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
| EC_KEY_get0_group(key.get()), EC_KEY_get0_public_key(key.get()), x.get(), |
| y.get(), nullptr)); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), |
| x.get(), y.get(), nullptr)); |
| ASSERT_TRUE(EC_KEY_set_public_key(key2.get(), point.get())); |
| |
| // The key must be valid according to the new group too. |
| EXPECT_TRUE(EC_KEY_check_key(key2.get())); |
| |
| // Make a second instance of |group|. |
| bssl::UniquePtr<EC_GROUP> group2( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
| ASSERT_TRUE(group2); |
| bssl::UniquePtr<EC_POINT> generator2(EC_POINT_new(group2.get())); |
| ASSERT_TRUE(generator2); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
| group2.get(), generator2.get(), gx.get(), gy.get(), ctx.get())); |
| ASSERT_TRUE(EC_GROUP_set_generator(group2.get(), generator2.get(), |
| order.get(), BN_value_one())); |
| |
| EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); |
| EXPECT_EQ(0, EC_GROUP_cmp(group2.get(), group.get(), NULL)); |
| |
| // group3 uses the wrong generator. |
| bssl::UniquePtr<EC_GROUP> group3( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
| ASSERT_TRUE(group3); |
| bssl::UniquePtr<EC_POINT> generator3(EC_POINT_new(group3.get())); |
| ASSERT_TRUE(generator3); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
| group3.get(), generator3.get(), x.get(), y.get(), ctx.get())); |
| ASSERT_TRUE(EC_GROUP_set_generator(group3.get(), generator3.get(), |
| order.get(), BN_value_one())); |
| |
| EXPECT_NE(0, EC_GROUP_cmp(group.get(), group3.get(), NULL)); |
| |
| #if !defined(BORINGSSL_SHARED_LIBRARY) |
| // group4 has non-minimal components that do not fit in |EC_SCALAR| and the |
| // future |EC_FELEM|. |
| ASSERT_TRUE(bn_resize_words(p.get(), 32)); |
| ASSERT_TRUE(bn_resize_words(a.get(), 32)); |
| ASSERT_TRUE(bn_resize_words(b.get(), 32)); |
| ASSERT_TRUE(bn_resize_words(gx.get(), 32)); |
| ASSERT_TRUE(bn_resize_words(gy.get(), 32)); |
| ASSERT_TRUE(bn_resize_words(order.get(), 32)); |
| |
| bssl::UniquePtr<EC_GROUP> group4( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
| ASSERT_TRUE(group4); |
| bssl::UniquePtr<EC_POINT> generator4(EC_POINT_new(group4.get())); |
| ASSERT_TRUE(generator4); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
| group4.get(), generator4.get(), gx.get(), gy.get(), ctx.get())); |
| ASSERT_TRUE(EC_GROUP_set_generator(group4.get(), generator4.get(), |
| order.get(), BN_value_one())); |
| |
| EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group4.get(), NULL)); |
| #endif |
| |
| // group5 is the same group, but the curve coefficients are passed in |
| // unreduced and the caller does not pass in a |BN_CTX|. |
| ASSERT_TRUE(BN_sub(a.get(), a.get(), p.get())); |
| ASSERT_TRUE(BN_add(b.get(), b.get(), p.get())); |
| bssl::UniquePtr<EC_GROUP> group5( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), NULL)); |
| ASSERT_TRUE(group5); |
| bssl::UniquePtr<EC_POINT> generator5(EC_POINT_new(group5.get())); |
| ASSERT_TRUE(generator5); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
| group5.get(), generator5.get(), gx.get(), gy.get(), ctx.get())); |
| ASSERT_TRUE(EC_GROUP_set_generator(group5.get(), generator5.get(), |
| order.get(), BN_value_one())); |
| |
| EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); |
| EXPECT_EQ(0, EC_GROUP_cmp(group5.get(), group.get(), NULL)); |
| } |
| |
| TEST(ECTest, SetKeyWithoutGroup) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
| ASSERT_TRUE(key); |
| |
| // Private keys may not be configured without a group. |
| EXPECT_FALSE(EC_KEY_set_private_key(key.get(), BN_value_one())); |
| |
| // Public keys may not be configured without a group. |
| EXPECT_FALSE(EC_KEY_set_public_key(key.get(), |
| EC_GROUP_get0_generator(EC_group_p256()))); |
| } |
| |
| TEST(ECTest, SetNULLKey) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| ASSERT_TRUE(key); |
| |
| EXPECT_TRUE(EC_KEY_set_public_key( |
| key.get(), EC_GROUP_get0_generator(EC_KEY_get0_group(key.get())))); |
| EXPECT_TRUE(EC_KEY_get0_public_key(key.get())); |
| |
| // Setting a NULL public-key should clear the public-key and return zero, in |
| // order to match OpenSSL behaviour exactly. |
| EXPECT_FALSE(EC_KEY_set_public_key(key.get(), nullptr)); |
| EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); |
| } |
| |
| TEST(ECTest, GroupMismatch) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_secp384r1)); |
| ASSERT_TRUE(key); |
| |
| // Changing a key's group is invalid. |
| EXPECT_FALSE(EC_KEY_set_group(key.get(), EC_group_p256())); |
| |
| // Configuring a public key with the wrong group is invalid. |
| EXPECT_FALSE(EC_KEY_set_public_key(key.get(), |
| EC_GROUP_get0_generator(EC_group_p256()))); |
| } |
| |
| TEST(ECTest, EmptyKey) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
| ASSERT_TRUE(key); |
| EXPECT_FALSE(EC_KEY_get0_group(key.get())); |
| EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); |
| EXPECT_FALSE(EC_KEY_get0_private_key(key.get())); |
| } |
| |
| static bssl::UniquePtr<BIGNUM> HexToBIGNUM(const char *hex) { |
| BIGNUM *bn = nullptr; |
| BN_hex2bn(&bn, hex); |
| return bssl::UniquePtr<BIGNUM>(bn); |
| } |
| |
| // Test that point arithmetic works with custom curves using an arbitrary |a|, |
| // rather than -3, as is common (and more efficient). |
| TEST(ECTest, BrainpoolP256r1) { |
| static const char kP[] = |
| "a9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377"; |
| static const char kA[] = |
| "7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9"; |
| static const char kB[] = |
| "26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6"; |
| static const char kX[] = |
| "8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262"; |
| static const char kY[] = |
| "547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997"; |
| static const char kN[] = |
| "a9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7"; |
| static const char kD[] = |
| "0da21d76fed40dd82ac3314cce91abb585b5c4246e902b238a839609ea1e7ce1"; |
| static const char kQX[] = |
| "3a55e0341cab50452fe27b8a87e4775dec7a9daca94b0d84ad1e9f85b53ea513"; |
| static const char kQY[] = |
| "40088146b33bbbe81b092b41146774b35dd478cf056437cfb35ef0df2d269339"; |
| |
| bssl::UniquePtr<BIGNUM> p = HexToBIGNUM(kP), a = HexToBIGNUM(kA), |
| b = HexToBIGNUM(kB), x = HexToBIGNUM(kX), |
| y = HexToBIGNUM(kY), n = HexToBIGNUM(kN), |
| d = HexToBIGNUM(kD), qx = HexToBIGNUM(kQX), |
| qy = HexToBIGNUM(kQY); |
| ASSERT_TRUE(p && a && b && x && y && n && d && qx && qy); |
| |
| bssl::UniquePtr<EC_GROUP> group( |
| EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), nullptr)); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<EC_POINT> g(EC_POINT_new(group.get())); |
| ASSERT_TRUE(g); |
| ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), g.get(), x.get(), |
| y.get(), nullptr)); |
| ASSERT_TRUE( |
| EC_GROUP_set_generator(group.get(), g.get(), n.get(), BN_value_one())); |
| |
| bssl::UniquePtr<EC_POINT> q(EC_POINT_new(group.get())); |
| ASSERT_TRUE(q); |
| ASSERT_TRUE( |
| EC_POINT_mul(group.get(), q.get(), d.get(), nullptr, nullptr, nullptr)); |
| ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp(group.get(), q.get(), x.get(), |
| y.get(), nullptr)); |
| EXPECT_EQ(0, BN_cmp(x.get(), qx.get())); |
| EXPECT_EQ(0, BN_cmp(y.get(), qy.get())); |
| } |
| |
| class ECCurveTest : public testing::TestWithParam<int> { |
| public: |
| const EC_GROUP *group() const { return group_; } |
| |
| void SetUp() override { |
| group_ = EC_GROUP_new_by_curve_name(GetParam()); |
| ASSERT_TRUE(group_); |
| } |
| |
| private: |
| const EC_GROUP *group_; |
| }; |
| |
| TEST_P(ECCurveTest, SetAffine) { |
| // Generate an EC_KEY. |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
| |
| // Get the public key's coordinates. |
| bssl::UniquePtr<BIGNUM> x(BN_new()); |
| ASSERT_TRUE(x); |
| bssl::UniquePtr<BIGNUM> y(BN_new()); |
| ASSERT_TRUE(y); |
| bssl::UniquePtr<BIGNUM> p(BN_new()); |
| ASSERT_TRUE(p); |
| EXPECT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
| group(), EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); |
| EXPECT_TRUE( |
| EC_GROUP_get_curve_GFp(group(), p.get(), nullptr, nullptr, nullptr)); |
| |
| // Points on the curve should be accepted. |
| auto point = bssl::UniquePtr<EC_POINT>(EC_POINT_new(group())); |
| ASSERT_TRUE(point); |
| EXPECT_TRUE(EC_POINT_set_affine_coordinates_GFp(group(), point.get(), x.get(), |
| y.get(), nullptr)); |
| |
| // Subtract one from |y| to make the point no longer on the curve. |
| EXPECT_TRUE(BN_sub(y.get(), y.get(), BN_value_one())); |
| |
| // Points not on the curve should be rejected. |
| bssl::UniquePtr<EC_POINT> invalid_point(EC_POINT_new(group())); |
| ASSERT_TRUE(invalid_point); |
| EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), |
| x.get(), y.get(), nullptr)); |
| |
| // Coordinates out of range should be rejected. |
| EXPECT_TRUE(BN_add(y.get(), y.get(), BN_value_one())); |
| EXPECT_TRUE(BN_add(y.get(), y.get(), p.get())); |
| |
| EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), |
| x.get(), y.get(), nullptr)); |
| EXPECT_FALSE( |
| EC_KEY_set_public_key_affine_coordinates(key.get(), x.get(), y.get())); |
| } |
| |
| TEST_P(ECCurveTest, IsOnCurve) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
| |
| // The generated point is on the curve. |
| EXPECT_TRUE(EC_POINT_is_on_curve(group(), EC_KEY_get0_public_key(key.get()), |
| nullptr)); |
| |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(EC_POINT_copy(p.get(), EC_KEY_get0_public_key(key.get()))); |
| |
| // This should never happen outside of a bug, but |EC_POINT_is_on_curve| |
| // rejects points not on the curve. |
| OPENSSL_memset(&p->raw.X, 0, sizeof(p->raw.X)); |
| EXPECT_FALSE(EC_POINT_is_on_curve(group(), p.get(), nullptr)); |
| |
| // The point at infinity is always on the curve. |
| ASSERT_TRUE(EC_POINT_copy(p.get(), EC_KEY_get0_public_key(key.get()))); |
| OPENSSL_memset(&p->raw.Z, 0, sizeof(p->raw.Z)); |
| EXPECT_TRUE(EC_POINT_is_on_curve(group(), p.get(), nullptr)); |
| } |
| |
| TEST_P(ECCurveTest, Compare) { |
| bssl::UniquePtr<EC_KEY> key1(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key1); |
| ASSERT_TRUE(EC_KEY_generate_key(key1.get())); |
| const EC_POINT *pub1 = EC_KEY_get0_public_key(key1.get()); |
| |
| bssl::UniquePtr<EC_KEY> key2(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key2); |
| ASSERT_TRUE(EC_KEY_generate_key(key2.get())); |
| const EC_POINT *pub2 = EC_KEY_get0_public_key(key2.get()); |
| |
| // Two different points should not compare as equal. |
| EXPECT_EQ(1, EC_POINT_cmp(group(), pub1, pub2, nullptr)); |
| |
| // Serialize |pub1| and parse it back out. This gives a point in affine |
| // coordinates. |
| std::vector<uint8_t> serialized; |
| ASSERT_TRUE( |
| EncodeECPoint(&serialized, group(), pub1, POINT_CONVERSION_UNCOMPRESSED)); |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(EC_POINT_oct2point(group(), p.get(), serialized.data(), |
| serialized.size(), nullptr)); |
| |
| // The points should be equal. |
| EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
| |
| // Add something to the point. It no longer compares as equal. |
| ASSERT_TRUE(EC_POINT_add(group(), p.get(), p.get(), pub2, nullptr)); |
| EXPECT_EQ(1, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
| |
| // Negate |pub2|. It should no longer compare as equal. This tests that we |
| // check both x and y coordinate. |
| bssl::UniquePtr<EC_POINT> q(EC_POINT_new(group())); |
| ASSERT_TRUE(q); |
| ASSERT_TRUE(EC_POINT_copy(q.get(), pub2)); |
| ASSERT_TRUE(EC_POINT_invert(group(), q.get(), nullptr)); |
| EXPECT_EQ(1, EC_POINT_cmp(group(), q.get(), pub2, nullptr)); |
| |
| // Return |p| to the original value. It should be equal to |pub1| again. |
| ASSERT_TRUE(EC_POINT_add(group(), p.get(), p.get(), q.get(), nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
| |
| // Infinity compares as equal to itself, but not other points. |
| bssl::UniquePtr<EC_POINT> inf1(EC_POINT_new(group())), |
| inf2(EC_POINT_new(group())); |
| ASSERT_TRUE(inf1); |
| ASSERT_TRUE(inf2); |
| ASSERT_TRUE(EC_POINT_set_to_infinity(group(), inf1.get())); |
| // |q| is currently -|pub2|. |
| ASSERT_TRUE(EC_POINT_add(group(), inf2.get(), pub2, q.get(), nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), inf1.get(), inf2.get(), nullptr)); |
| EXPECT_EQ(1, EC_POINT_cmp(group(), inf1.get(), p.get(), nullptr)); |
| } |
| |
| TEST_P(ECCurveTest, GenerateFIPS) { |
| // Generate an EC_KEY. |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_generate_key_fips(key.get())); |
| } |
| |
| TEST_P(ECCurveTest, AddingEqualPoints) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
| |
| bssl::UniquePtr<EC_POINT> p1(EC_POINT_new(group())); |
| ASSERT_TRUE(p1); |
| ASSERT_TRUE(EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get()))); |
| |
| bssl::UniquePtr<EC_POINT> p2(EC_POINT_new(group())); |
| ASSERT_TRUE(p2); |
| ASSERT_TRUE(EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))); |
| |
| bssl::UniquePtr<EC_POINT> double_p1(EC_POINT_new(group())); |
| ASSERT_TRUE(double_p1); |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(EC_POINT_dbl(group(), double_p1.get(), p1.get(), ctx.get())); |
| |
| bssl::UniquePtr<EC_POINT> p1_plus_p2(EC_POINT_new(group())); |
| ASSERT_TRUE(p1_plus_p2); |
| ASSERT_TRUE( |
| EC_POINT_add(group(), p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())); |
| |
| EXPECT_EQ(0, |
| EC_POINT_cmp(group(), double_p1.get(), p1_plus_p2.get(), ctx.get())) |
| << "A+A != 2A"; |
| } |
| |
| TEST_P(ECCurveTest, MulZero) { |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
| ASSERT_TRUE(point); |
| bssl::UniquePtr<BIGNUM> zero(BN_new()); |
| ASSERT_TRUE(zero); |
| BN_zero(zero.get()); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), zero.get(), nullptr, nullptr, |
| nullptr)); |
| |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
| << "g * 0 did not return point at infinity."; |
| |
| // Test that zero times an arbitrary point is also infinity. The generator is |
| // used as the arbitrary point. |
| bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group())); |
| ASSERT_TRUE(generator); |
| ASSERT_TRUE(EC_POINT_mul(group(), generator.get(), BN_value_one(), nullptr, |
| nullptr, nullptr)); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, generator.get(), |
| zero.get(), nullptr)); |
| |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
| << "p * 0 did not return point at infinity."; |
| } |
| |
| // Test that multiplying by the order produces ∞ and, moreover, that callers may |
| // do so. |EC_POINT_mul| is almost exclusively used with reduced scalars, with |
| // this exception. This comes from consumers following NIST SP 800-56A section |
| // 5.6.2.3.2. (Though all our curves have cofactor one, so this check isn't |
| // useful.) |
| TEST_P(ECCurveTest, MulOrder) { |
| // Test that g × order = ∞. |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
| ASSERT_TRUE(point); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), EC_GROUP_get0_order(group()), |
| nullptr, nullptr, nullptr)); |
| |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
| << "g * order did not return point at infinity."; |
| |
| // Test that p × order = ∞, for some arbitrary p. |
| bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
| ASSERT_TRUE(forty_two); |
| ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
| nullptr, nullptr)); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, point.get(), |
| EC_GROUP_get0_order(group()), nullptr)); |
| |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
| << "p * order did not return point at infinity."; |
| } |
| |
| // Test that |EC_POINT_mul| works with out-of-range scalars. The operation will |
| // not be constant-time, but we'll compute the right answer. |
| TEST_P(ECCurveTest, MulOutOfRange) { |
| bssl::UniquePtr<BIGNUM> n_minus_one(BN_dup(EC_GROUP_get0_order(group()))); |
| ASSERT_TRUE(n_minus_one); |
| ASSERT_TRUE(BN_sub_word(n_minus_one.get(), 1)); |
| |
| bssl::UniquePtr<BIGNUM> minus_one(BN_new()); |
| ASSERT_TRUE(minus_one); |
| ASSERT_TRUE(BN_one(minus_one.get())); |
| BN_set_negative(minus_one.get(), 1); |
| |
| bssl::UniquePtr<BIGNUM> seven(BN_new()); |
| ASSERT_TRUE(seven); |
| ASSERT_TRUE(BN_set_word(seven.get(), 7)); |
| |
| bssl::UniquePtr<BIGNUM> ten_n_plus_seven( |
| BN_dup(EC_GROUP_get0_order(group()))); |
| ASSERT_TRUE(ten_n_plus_seven); |
| ASSERT_TRUE(BN_mul_word(ten_n_plus_seven.get(), 10)); |
| ASSERT_TRUE(BN_add_word(ten_n_plus_seven.get(), 7)); |
| |
| bssl::UniquePtr<EC_POINT> point1(EC_POINT_new(group())), |
| point2(EC_POINT_new(group())); |
| ASSERT_TRUE(point1); |
| ASSERT_TRUE(point2); |
| |
| ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), n_minus_one.get(), nullptr, |
| nullptr, nullptr)); |
| ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), minus_one.get(), nullptr, |
| nullptr, nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) |
| << "-1 * G and (n-1) * G did not give the same result"; |
| |
| ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), seven.get(), nullptr, nullptr, |
| nullptr)); |
| ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), ten_n_plus_seven.get(), |
| nullptr, nullptr, nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) |
| << "7 * G and (10n + 7) * G did not give the same result"; |
| } |
| |
| // Test that 10×∞ + G = G. |
| TEST_P(ECCurveTest, Mul) { |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
| ASSERT_TRUE(p); |
| bssl::UniquePtr<EC_POINT> result(EC_POINT_new(group())); |
| ASSERT_TRUE(result); |
| bssl::UniquePtr<BIGNUM> n(BN_new()); |
| ASSERT_TRUE(n); |
| ASSERT_TRUE(EC_POINT_set_to_infinity(group(), p.get())); |
| ASSERT_TRUE(BN_set_word(n.get(), 10)); |
| |
| // First check that 10×∞ = ∞. |
| ASSERT_TRUE( |
| EC_POINT_mul(group(), result.get(), nullptr, p.get(), n.get(), nullptr)); |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), result.get())); |
| |
| // Now check that 10×∞ + G = G. |
| const EC_POINT *generator = EC_GROUP_get0_generator(group()); |
| ASSERT_TRUE(EC_POINT_mul(group(), result.get(), BN_value_one(), p.get(), |
| n.get(), nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), result.get(), generator, nullptr)); |
| } |
| |
| TEST_P(ECCurveTest, MulNonMinimal) { |
| bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
| ASSERT_TRUE(forty_two); |
| ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
| |
| // Compute g × 42. |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
| ASSERT_TRUE(point); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
| nullptr, nullptr)); |
| |
| // Compute it again with a non-minimal 42, much larger than the scalar. |
| ASSERT_TRUE(bn_resize_words(forty_two.get(), 64)); |
| |
| bssl::UniquePtr<EC_POINT> point2(EC_POINT_new(group())); |
| ASSERT_TRUE(point2); |
| ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), forty_two.get(), nullptr, |
| nullptr, nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), point.get(), point2.get(), nullptr)); |
| } |
| |
| // Test that EC_KEY_set_private_key rejects invalid values. |
| TEST_P(ECCurveTest, SetInvalidPrivateKey) { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam())); |
| ASSERT_TRUE(key); |
| |
| bssl::UniquePtr<BIGNUM> bn(BN_dup(BN_value_one())); |
| ASSERT_TRUE(bn); |
| BN_set_negative(bn.get(), 1); |
| EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) |
| << "Unexpectedly set a key of -1"; |
| ERR_clear_error(); |
| |
| ASSERT_TRUE( |
| BN_copy(bn.get(), EC_GROUP_get0_order(EC_KEY_get0_group(key.get())))); |
| EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) |
| << "Unexpectedly set a key of the group order."; |
| ERR_clear_error(); |
| |
| BN_zero(bn.get()); |
| EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) |
| << "Unexpectedly set a key of 0"; |
| ERR_clear_error(); |
| } |
| |
| TEST_P(ECCurveTest, IgnoreOct2PointReturnValue) { |
| bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
| ASSERT_TRUE(forty_two); |
| ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
| |
| // Compute g × 42. |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
| ASSERT_TRUE(point); |
| ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
| nullptr, nullptr)); |
| |
| // Serialize the point. |
| std::vector<uint8_t> serialized; |
| ASSERT_TRUE(EncodeECPoint(&serialized, group(), point.get(), |
| POINT_CONVERSION_UNCOMPRESSED)); |
| |
| // Create a serialized point that is not on the curve. |
| serialized[serialized.size() - 1]++; |
| |
| ASSERT_FALSE(EC_POINT_oct2point(group(), point.get(), serialized.data(), |
| serialized.size(), nullptr)); |
| // After a failure, |point| should have been set to the generator to defend |
| // against code that doesn't check the return value. |
| ASSERT_EQ(0, EC_POINT_cmp(group(), point.get(), |
| EC_GROUP_get0_generator(group()), nullptr)); |
| } |
| |
| TEST_P(ECCurveTest, DoubleSpecialCase) { |
| const EC_POINT *g = EC_GROUP_get0_generator(group()); |
| |
| bssl::UniquePtr<EC_POINT> two_g(EC_POINT_new(group())); |
| ASSERT_TRUE(two_g); |
| ASSERT_TRUE(EC_POINT_dbl(group(), two_g.get(), g, nullptr)); |
| |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(EC_POINT_mul(group(), p.get(), BN_value_one(), g, BN_value_one(), |
| nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); |
| |
| EC_SCALAR one; |
| ASSERT_TRUE(ec_bignum_to_scalar(group(), &one, BN_value_one())); |
| ASSERT_TRUE( |
| ec_point_mul_scalar_public(group(), &p->raw, &one, &g->raw, &one)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); |
| } |
| |
| // This a regression test for a P-224 bug, but we may as well run it for all |
| // curves. |
| TEST_P(ECCurveTest, P224Bug) { |
| // P = -G |
| const EC_POINT *g = EC_GROUP_get0_generator(group()); |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_dup(g, group())); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); |
| |
| // Compute 31 * P + 32 * G = G |
| bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(group())); |
| ASSERT_TRUE(ret); |
| bssl::UniquePtr<BIGNUM> bn31(BN_new()), bn32(BN_new()); |
| ASSERT_TRUE(bn31); |
| ASSERT_TRUE(bn32); |
| ASSERT_TRUE(BN_set_word(bn31.get(), 31)); |
| ASSERT_TRUE(BN_set_word(bn32.get(), 32)); |
| ASSERT_TRUE(EC_POINT_mul(group(), ret.get(), bn32.get(), p.get(), bn31.get(), |
| nullptr)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); |
| |
| // Repeat the computation with |ec_point_mul_scalar_public|, which ties the |
| // additions together. |
| EC_SCALAR sc31, sc32; |
| ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc31, bn31.get())); |
| ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc32, bn32.get())); |
| ASSERT_TRUE( |
| ec_point_mul_scalar_public(group(), &ret->raw, &sc32, &p->raw, &sc31)); |
| EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); |
| } |
| |
| TEST_P(ECCurveTest, GPlusMinusG) { |
| const EC_POINT *g = EC_GROUP_get0_generator(group()); |
| |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_dup(g, group())); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); |
| |
| bssl::UniquePtr<EC_POINT> sum(EC_POINT_new(group())); |
| ASSERT_TRUE(sum); |
| ASSERT_TRUE(EC_POINT_add(group(), sum.get(), g, p.get(), nullptr)); |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group(), sum.get())); |
| } |
| |
| // Test that we refuse to encode or decode the point at infinity. |
| TEST_P(ECCurveTest, EncodeInfinity) { |
| // The point at infinity is encoded as a single zero byte, but we do not |
| // support it. |
| static const uint8_t kInfinity[] = {0}; |
| bssl::UniquePtr<EC_POINT> inf(EC_POINT_new(group())); |
| ASSERT_TRUE(inf); |
| EXPECT_FALSE(EC_POINT_oct2point(group(), inf.get(), kInfinity, |
| sizeof(kInfinity), nullptr)); |
| |
| // Encoding it also fails. |
| ASSERT_TRUE(EC_POINT_set_to_infinity(group(), inf.get())); |
| uint8_t buf[128]; |
| EXPECT_EQ( |
| 0u, EC_POINT_point2oct(group(), inf.get(), POINT_CONVERSION_UNCOMPRESSED, |
| buf, sizeof(buf), nullptr)); |
| |
| // Measuring the length of the encoding also fails. |
| EXPECT_EQ( |
| 0u, EC_POINT_point2oct(group(), inf.get(), POINT_CONVERSION_UNCOMPRESSED, |
| nullptr, 0, nullptr)); |
| } |
| |
| static std::vector<int> AllCurves() { |
| const size_t num_curves = EC_get_builtin_curves(nullptr, 0); |
| std::vector<EC_builtin_curve> curves(num_curves); |
| EC_get_builtin_curves(curves.data(), num_curves); |
| std::vector<int> nids; |
| for (const auto& curve : curves) { |
| nids.push_back(curve.nid); |
| } |
| return nids; |
| } |
| |
| static std::string CurveToString(const testing::TestParamInfo<int> ¶ms) { |
| return OBJ_nid2sn(params.param); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(All, ECCurveTest, testing::ValuesIn(AllCurves()), |
| CurveToString); |
| |
| static const EC_GROUP *GetCurve(FileTest *t, const char *key) { |
| std::string curve_name; |
| if (!t->GetAttribute(&curve_name, key)) { |
| return nullptr; |
| } |
| |
| if (curve_name == "P-224") { |
| return EC_group_p224(); |
| } |
| if (curve_name == "P-256") { |
| return EC_group_p256(); |
| } |
| if (curve_name == "P-384") { |
| return EC_group_p384(); |
| } |
| if (curve_name == "P-521") { |
| return EC_group_p521(); |
| } |
| |
| t->PrintLine("Unknown curve '%s'", curve_name.c_str()); |
| return nullptr; |
| } |
| |
| static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *key) { |
| std::vector<uint8_t> bytes; |
| if (!t->GetBytes(&bytes, key)) { |
| return nullptr; |
| } |
| |
| return bssl::UniquePtr<BIGNUM>( |
| BN_bin2bn(bytes.data(), bytes.size(), nullptr)); |
| } |
| |
| TEST(ECTest, ScalarBaseMultVectors) { |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| ASSERT_TRUE(ctx); |
| |
| FileTestGTest("crypto/fipsmodule/ec/ec_scalar_base_mult_tests.txt", |
| [&](FileTest *t) { |
| const EC_GROUP *group = GetCurve(t, "Curve"); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<BIGNUM> n = GetBIGNUM(t, "N"); |
| ASSERT_TRUE(n); |
| bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
| ASSERT_TRUE(x); |
| bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
| ASSERT_TRUE(y); |
| bool is_infinity = BN_is_zero(x.get()) && BN_is_zero(y.get()); |
| |
| bssl::UniquePtr<BIGNUM> px(BN_new()); |
| ASSERT_TRUE(px); |
| bssl::UniquePtr<BIGNUM> py(BN_new()); |
| ASSERT_TRUE(py); |
| auto check_point = [&](const EC_POINT *p) { |
| if (is_infinity) { |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group, p)); |
| } else { |
| ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
| group, p, px.get(), py.get(), ctx.get())); |
| EXPECT_EQ(0, BN_cmp(x.get(), px.get())); |
| EXPECT_EQ(0, BN_cmp(y.get(), py.get())); |
| } |
| }; |
| |
| const EC_POINT *g = EC_GROUP_get0_generator(group); |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group)); |
| ASSERT_TRUE(p); |
| // Test single-point multiplication. |
| ASSERT_TRUE(EC_POINT_mul(group, p.get(), n.get(), nullptr, nullptr, |
| ctx.get())); |
| check_point(p.get()); |
| |
| ASSERT_TRUE(EC_POINT_mul(group, p.get(), nullptr, g, n.get(), ctx.get())); |
| check_point(p.get()); |
| }); |
| } |
| |
| // These tests take a very long time, but are worth running when we make |
| // non-trivial changes to the EC code. |
| TEST(ECTest, DISABLED_ScalarBaseMultVectorsTwoPoint) { |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| ASSERT_TRUE(ctx); |
| |
| FileTestGTest("crypto/fipsmodule/ec/ec_scalar_base_mult_tests.txt", |
| [&](FileTest *t) { |
| const EC_GROUP *group = GetCurve(t, "Curve"); |
| ASSERT_TRUE(group); |
| bssl::UniquePtr<BIGNUM> n = GetBIGNUM(t, "N"); |
| ASSERT_TRUE(n); |
| bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
| ASSERT_TRUE(x); |
| bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
| ASSERT_TRUE(y); |
| bool is_infinity = BN_is_zero(x.get()) && BN_is_zero(y.get()); |
| |
| bssl::UniquePtr<BIGNUM> px(BN_new()); |
| ASSERT_TRUE(px); |
| bssl::UniquePtr<BIGNUM> py(BN_new()); |
| ASSERT_TRUE(py); |
| auto check_point = [&](const EC_POINT *p) { |
| if (is_infinity) { |
| EXPECT_TRUE(EC_POINT_is_at_infinity(group, p)); |
| } else { |
| ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
| group, p, px.get(), py.get(), ctx.get())); |
| EXPECT_EQ(0, BN_cmp(x.get(), px.get())); |
| EXPECT_EQ(0, BN_cmp(y.get(), py.get())); |
| } |
| }; |
| |
| const EC_POINT *g = EC_GROUP_get0_generator(group); |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group)); |
| ASSERT_TRUE(p); |
| bssl::UniquePtr<BIGNUM> a(BN_new()), b(BN_new()); |
| for (int i = -64; i < 64; i++) { |
| SCOPED_TRACE(i); |
| ASSERT_TRUE(BN_set_word(a.get(), abs(i))); |
| if (i < 0) { |
| ASSERT_TRUE(BN_sub(a.get(), EC_GROUP_get0_order(group), a.get())); |
| } |
| |
| ASSERT_TRUE(BN_copy(b.get(), n.get())); |
| ASSERT_TRUE(BN_sub(b.get(), b.get(), a.get())); |
| if (BN_is_negative(b.get())) { |
| ASSERT_TRUE(BN_add(b.get(), b.get(), EC_GROUP_get0_order(group))); |
| } |
| |
| ASSERT_TRUE(EC_POINT_mul(group, p.get(), a.get(), g, b.get(), ctx.get())); |
| check_point(p.get()); |
| |
| EC_SCALAR a_scalar, b_scalar; |
| ASSERT_TRUE(ec_bignum_to_scalar(group, &a_scalar, a.get())); |
| ASSERT_TRUE(ec_bignum_to_scalar(group, &b_scalar, b.get())); |
| ASSERT_TRUE(ec_point_mul_scalar_public(group, &p->raw, &a_scalar, &g->raw, |
| &b_scalar)); |
| check_point(p.get()); |
| } |
| }); |
| } |
| |
| static std::vector<uint8_t> HexToBytes(const char *str) { |
| std::vector<uint8_t> ret; |
| if (!DecodeHex(&ret, str)) { |
| abort(); |
| } |
| return ret; |
| } |
| |
| TEST(ECTest, DeriveFromSecret) { |
| struct DeriveTest { |
| const EC_GROUP *group; |
| std::vector<uint8_t> secret; |
| std::vector<uint8_t> expected_priv; |
| std::vector<uint8_t> expected_pub; |
| }; |
| const DeriveTest kDeriveTests[] = { |
| {EC_group_p256(), HexToBytes(""), |
| HexToBytes( |
| "b98a86a71efb51ebdac4759937b977e9b0c05224675bb2b6a58ba306e237f4b8"), |
| HexToBytes( |
| "04fbe6cab439918e00231a2ff073cdc25823998864a9eb36f809095a1a919ece875" |
| "a145803fbe89a6cde53936e3c6d9c253ed3d38f5f58cae455c27e95645ceda9")}, |
| {EC_group_p256(), HexToBytes("123456"), |
| HexToBytes( |
| "44a72bc62087b88e5ab7126766177ed0d8f1ed09ad066cd746527fc201105a7e"), |
| HexToBytes( |
| "04ec0555cd76e991fef7f5504343937d0f38696db3360a4854052cb0d84a377a5a0" |
| "ff64c352755c28692b4ae085c2b817db9a1eddbd22e9cf39c12751e0870791b")}, |
| {EC_group_p256(), HexToBytes("00000000000000000000000000000000"), |
| HexToBytes( |
| "7ca1e2c83e6a5f2c1b3e7d58180226f269930c4b9fbe2a275096079630b7c57d"), |
| HexToBytes( |
| "0442ef70c8fc0fbe383ed0a0da36f39f9a590f3feebc07863cc858c9a8ef0465731" |
| "0408c249bd4d61929c54b71ffe056e6b4fa1eb537039b43d1c175f0ceab0f89")}, |
| {EC_group_p256(), |
| HexToBytes( |
| "de9c9b35543aaa0fba039e34e8ca9695da3225c7161c9e3a8c70356cac28c780"), |
| HexToBytes( |
| "659f5abf3b62b9931c29d6ed0722efd2349fa56f54e708cf3272f620f1bc44d0"), |
| HexToBytes( |
| "046741f806b593bf3a3d4a9d76bdcb9b0d7874633cbea8f42c05e78561f7e8ec362" |
| "b9b6f1913ded796fbdafe7f210cea897ac22a4e580c06a60f2659fd09f1830f")}, |
| {EC_group_p384(), HexToBytes("123456"), |
| HexToBytes("95cd90d548997de090c7622708eccb7edc1b1bd78d2422235ad97406dada" |
| "076555309da200096f6e4b36c46002beee89"), |
| HexToBytes( |
| "04007b2d026aa7636fa912c3f970d62bb6c10fa81c8f3290ed90b2d701696d1c6b9" |
| "5af88ce13e962996a7ac37e16527cb5d69bd081b8641d07634cf84b438600ec9434" |
| "15ac6bd7a0236f7ab0ea31ece67df03fa11646ea2b75e73d1b5e45b75c18")}, |
| }; |
| |
| for (const auto &test : kDeriveTests) { |
| SCOPED_TRACE(Bytes(test.secret)); |
| |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_derive_from_secret( |
| test.group, test.secret.data(), test.secret.size())); |
| ASSERT_TRUE(key); |
| |
| std::vector<uint8_t> priv(BN_num_bytes(EC_GROUP_get0_order(test.group))); |
| ASSERT_TRUE(BN_bn2bin_padded(priv.data(), priv.size(), |
| EC_KEY_get0_private_key(key.get()))); |
| EXPECT_EQ(Bytes(priv), Bytes(test.expected_priv)); |
| |
| uint8_t *pub = nullptr; |
| size_t pub_len = |
| EC_KEY_key2buf(key.get(), POINT_CONVERSION_UNCOMPRESSED, &pub, nullptr); |
| bssl::UniquePtr<uint8_t> free_pub(pub); |
| EXPECT_NE(pub_len, 0u); |
| EXPECT_EQ(Bytes(pub, pub_len), Bytes(test.expected_pub)); |
| } |
| } |
| |
| TEST(ECTest, HashToCurve) { |
| auto hash_to_curve_p384_sha512_draft07 = |
| [](const EC_GROUP *group, EC_POINT *out, const uint8_t *dst, |
| size_t dst_len, const uint8_t *msg, size_t msg_len) -> int { |
| if (EC_GROUP_cmp(group, out->group, NULL) != 0) { |
| return 0; |
| } |
| return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(group, &out->raw, dst, |
| dst_len, msg, msg_len); |
| }; |
| |
| struct HashToCurveTest { |
| int (*hash_to_curve)(const EC_GROUP *group, EC_POINT *out, |
| const uint8_t *dst, size_t dst_len, const uint8_t *msg, |
| size_t msg_len); |
| const EC_GROUP *group; |
| const char *dst; |
| const char *msg; |
| const char *x_hex; |
| const char *y_hex; |
| }; |
| const HashToCurveTest kTests[] = { |
| // See RFC 9380, appendix J.1.1. |
| {&EC_hash_to_curve_p256_xmd_sha256_sswu, EC_group_p256(), |
| "QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_", "", |
| "2c15230b26dbc6fc9a37051158c95b79656e17a1a920b11394ca91" |
| "c44247d3e4", |
| "8a7a74985cc5c776cdfe4b1f19884970453912e9d31528c060be9a" |
| "b5c43e8415"}, |
| {&EC_hash_to_curve_p256_xmd_sha256_sswu, EC_group_p256(), |
| "QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_", "abc", |
| "0bb8b87485551aa43ed54f009230450b492fead5f1cc91658775da" |
| "c4a3388a0f", |
| "5c41b3d0731a27a7b14bc0bf0ccded2d8751f83493404c84a88e71" |
| "ffd424212e"}, |
| {&EC_hash_to_curve_p256_xmd_sha256_sswu, EC_group_p256(), |
| "QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_", "abcdef0123456789", |
| "65038ac8f2b1def042a5df0b33b1f4eca6bff7cb0f9c6c15268118" |
| "64e544ed80", |
| "cad44d40a656e7aff4002a8de287abc8ae0482b5ae825822bb870d" |
| "6df9b56ca3"}, |
| {&EC_hash_to_curve_p256_xmd_sha256_sswu, EC_group_p256(), |
| "QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_", |
| "q128_qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" |
| "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" |
| "qqqqqqqqqqqqqqqqqqqqqqqqq", |
| "4be61ee205094282ba8a2042bcb48d88dfbb609301c49aa8b07853" |
| "3dc65a0b5d", |
| "98f8df449a072c4721d241a3b1236d3caccba603f916ca680f4539" |
| "d2bfb3c29e"}, |
| {&EC_hash_to_curve_p256_xmd_sha256_sswu, EC_group_p256(), |
| "QUUX-V01-CS02-with-P256_XMD:SHA-256_SSWU_RO_", |
| "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", |
| "457ae2981f70ca85d8e24c308b14db22f3e3862c5ea0f652ca38b5" |
| "e49cd64bc5", |
| "ecb9f0eadc9aeed232dabc53235368c1394c78de05dd96893eefa6" |
| "2b0f4757dc"}, |
| |
| // See draft-irtf-cfrg-hash-to-curve-07, appendix G.2.1. |
| {hash_to_curve_p384_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SSWU_RO_TESTGEN", "", |
| "2fc0b9efdd63a8e43b4db88dc12f03c798f6fd91bccac0c9096185" |
| "4386e58fdc54fc2a01f0f358759054ce1f9b762025", |
| "949b936fabb72cdb02cd7980b86cb6a3adf286658e81301648851d" |
| "b8a49d9bec00ccb57698d559fc5960fa5030a8e54b"}, |
| {hash_to_curve_p384_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SSWU_RO_TESTGEN", "abc", |
| "4f3338035391e8ce8ce40c974136f0edc97f392ffd44a643338741" |
| "8ed1b8c2603487e1688ec151f048fbc6b2c138c92f", |
| "152b90aef6558be328a3168855fb1906452e7167b0f7c8a56ff9d4" |
| "fa87d6fb522cdf8e409db54418b2c764fd26260757"}, |
| {hash_to_curve_p384_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SSWU_RO_TESTGEN", "abcdef0123456789", |
| "e9e5d7ac397e123d060ad44301cbc8eb972f6e64ebcff29dcc9b9a" |
| "10357902aace2240c580fec85e5b427d98b4e80703", |
| "916cb8963521ad75105be43cc4148e5a5bbb4fcf107f1577e4f7fa" |
| "3ca58cd786aa76890c8e687d2353393bc16c78ec4d"}, |
| {hash_to_curve_p384_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SSWU_RO_TESTGEN", |
| "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", |
| "41941db59a7b8b633bd5bfa462f1e29a9f18e5a341445d90fc6eb9" |
| "37f2913224287b9dfb64742851f760eb14ca115ff9", |
| "1510e764f1be968d661b7aaecb26a6d38c98e5205ca150f0ae426d" |
| "2c3983c68e3a9ffb283c6ae4891d891b5705500475"}, |
| }; |
| |
| for (const auto &test : kTests) { |
| SCOPED_TRACE(test.dst); |
| SCOPED_TRACE(test.msg); |
| |
| bssl::UniquePtr<EC_POINT> p(EC_POINT_new(test.group)); |
| ASSERT_TRUE(p); |
| ASSERT_TRUE(test.hash_to_curve( |
| test.group, p.get(), reinterpret_cast<const uint8_t *>(test.dst), |
| strlen(test.dst), reinterpret_cast<const uint8_t *>(test.msg), |
| strlen(test.msg))); |
| |
| std::vector<uint8_t> buf; |
| ASSERT_TRUE(EncodeECPoint(&buf, test.group, p.get(), |
| POINT_CONVERSION_UNCOMPRESSED)); |
| size_t field_len = (buf.size() - 1) / 2; |
| EXPECT_EQ(test.x_hex, |
| EncodeHex(bssl::MakeConstSpan(buf).subspan(1, field_len))); |
| EXPECT_EQ(test.y_hex, EncodeHex(bssl::MakeConstSpan(buf).subspan( |
| 1 + field_len, field_len))); |
| } |
| |
| // hash-to-curve functions should check for the wrong group. |
| EC_JACOBIAN raw; |
| bssl::UniquePtr<EC_POINT> p_p384(EC_POINT_new(EC_group_p384())); |
| ASSERT_TRUE(p_p384); |
| bssl::UniquePtr<EC_POINT> p_p224(EC_POINT_new(EC_group_p224())); |
| ASSERT_TRUE(p_p224); |
| static const uint8_t kDST[] = {0, 1, 2, 3}; |
| static const uint8_t kMessage[] = {4, 5, 6, 7}; |
| EXPECT_FALSE(ec_hash_to_curve_p384_xmd_sha384_sswu( |
| EC_group_p224(), &raw, kDST, sizeof(kDST), kMessage, sizeof(kMessage))); |
| EXPECT_FALSE(EC_hash_to_curve_p384_xmd_sha384_sswu( |
| EC_group_p224(), p_p224.get(), kDST, sizeof(kDST), kMessage, |
| sizeof(kMessage))); |
| EXPECT_FALSE(EC_hash_to_curve_p384_xmd_sha384_sswu( |
| EC_group_p224(), p_p384.get(), kDST, sizeof(kDST), kMessage, |
| sizeof(kMessage))); |
| EXPECT_FALSE(EC_hash_to_curve_p384_xmd_sha384_sswu( |
| EC_group_p384(), p_p224.get(), kDST, sizeof(kDST), kMessage, |
| sizeof(kMessage))); |
| |
| // Zero-length DSTs are not allowed. |
| EXPECT_FALSE(ec_hash_to_curve_p384_xmd_sha384_sswu( |
| EC_group_p384(), &raw, nullptr, 0, kMessage, sizeof(kMessage))); |
| } |
| |
| TEST(ECTest, HashToScalar) { |
| struct HashToScalarTest { |
| int (*hash_to_scalar)(const EC_GROUP *group, EC_SCALAR *out, |
| const uint8_t *dst, size_t dst_len, |
| const uint8_t *msg, size_t msg_len); |
| const EC_GROUP *group; |
| const char *dst; |
| const char *msg; |
| const char *result_hex; |
| }; |
| const HashToScalarTest kTests[] = { |
| {&ec_hash_to_scalar_p384_xmd_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SCALAR_TEST", "", |
| "9687acc2de56c3cf94c0e05b6811a21aa480092254ec0532bdce63" |
| "140ecd340f09dc2d45d77e21fb0aa76f7707b8a676"}, |
| {&ec_hash_to_scalar_p384_xmd_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SCALAR_TEST", "abcdef0123456789", |
| "8f8076022a68233cbcecaceae68c2068f132724f001caa78619eff" |
| "1ffc58fa871db73fe9034fc9cf853c384ed34b5666"}, |
| {&ec_hash_to_scalar_p384_xmd_sha512_draft07, EC_group_p384(), |
| "P384_XMD:SHA-512_SCALAR_TEST", |
| "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
| "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", |
| "750f2fae7d2b2f41ac737d180c1d4363d85a1504798b4976d40921" |
| "1ddb3651c13a5b4daba9975cdfce18336791131915"}, |
| }; |
| |
| for (const auto &test : kTests) { |
| SCOPED_TRACE(test.dst); |
| SCOPED_TRACE(test.msg); |
| |
| EC_SCALAR scalar; |
| ASSERT_TRUE(test.hash_to_scalar( |
| test.group, &scalar, reinterpret_cast<const uint8_t *>(test.dst), |
| strlen(test.dst), reinterpret_cast<const uint8_t *>(test.msg), |
| strlen(test.msg))); |
| uint8_t buf[EC_MAX_BYTES]; |
| size_t len; |
| ec_scalar_to_bytes(test.group, buf, &len, &scalar); |
| EXPECT_EQ(test.result_hex, EncodeHex(bssl::MakeConstSpan(buf, len))); |
| } |
| |
| // hash-to-scalar functions should check for the wrong group. |
| EC_SCALAR scalar; |
| static const uint8_t kDST[] = {0, 1, 2, 3}; |
| static const uint8_t kMessage[] = {4, 5, 6, 7}; |
| EXPECT_FALSE(ec_hash_to_scalar_p384_xmd_sha512_draft07( |
| EC_group_p224(), &scalar, kDST, sizeof(kDST), kMessage, |
| sizeof(kMessage))); |
| } |