blob: 7ce3c20c2064b1acc2282d036130a566473b827d [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/cipher.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include "internal.h"
#include "../service_indicator/internal.h"
#include "../../internal.h"
void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
}
EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
if (ctx) {
EVP_CIPHER_CTX_init(ctx);
}
return ctx;
}
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
if (c->cipher != NULL && c->cipher->cleanup) {
c->cipher->cleanup(c);
}
OPENSSL_free(c->cipher_data);
OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX));
return 1;
}
void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
if (ctx) {
EVP_CIPHER_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
}
int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
if (in == NULL || in->cipher == NULL) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
return 0;
}
if (in->poisoned) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
EVP_CIPHER_CTX_cleanup(out);
OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX));
if (in->cipher_data && in->cipher->ctx_size) {
out->cipher_data = OPENSSL_memdup(in->cipher_data, in->cipher->ctx_size);
if (!out->cipher_data) {
out->cipher = NULL;
return 0;
}
}
if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) {
out->cipher = NULL;
return 0;
}
}
return 1;
}
int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) {
EVP_CIPHER_CTX_cleanup(ctx);
EVP_CIPHER_CTX_init(ctx);
return 1;
}
int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *engine, const uint8_t *key, const uint8_t *iv,
int enc) {
if (enc == -1) {
enc = ctx->encrypt;
} else {
if (enc) {
enc = 1;
}
ctx->encrypt = enc;
}
if (cipher) {
// Ensure a context left from last time is cleared (the previous check
// attempted to avoid this if the same ENGINE and EVP_CIPHER could be
// used).
if (ctx->cipher) {
EVP_CIPHER_CTX_cleanup(ctx);
// Restore encrypt and flags
ctx->encrypt = enc;
}
ctx->cipher = cipher;
if (ctx->cipher->ctx_size) {
ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
if (!ctx->cipher_data) {
ctx->cipher = NULL;
return 0;
}
} else {
ctx->cipher_data = NULL;
}
ctx->key_len = cipher->key_len;
ctx->flags = 0;
if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
ctx->cipher = NULL;
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
return 0;
}
}
} else if (!ctx->cipher) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
return 0;
}
// we assume block size is a power of 2 in *cryptUpdate
assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
ctx->cipher->block_size == 16);
if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
switch (EVP_CIPHER_CTX_mode(ctx)) {
case EVP_CIPH_STREAM_CIPHER:
case EVP_CIPH_ECB_MODE:
break;
case EVP_CIPH_CFB_MODE:
ctx->num = 0;
OPENSSL_FALLTHROUGH;
case EVP_CIPH_CBC_MODE:
assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
if (iv) {
OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
}
OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
break;
case EVP_CIPH_CTR_MODE:
case EVP_CIPH_OFB_MODE:
ctx->num = 0;
// Don't reuse IV for CTR mode
if (iv) {
OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
}
break;
default:
return 0;
}
}
if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
if (!ctx->cipher->init(ctx, key, iv, enc)) {
return 0;
}
}
ctx->buf_len = 0;
ctx->final_used = 0;
// Clear the poisoned flag to permit re-use of a CTX that previously had a
// failed operation.
ctx->poisoned = 0;
return 1;
}
int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
}
int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
}
// block_remainder returns the number of bytes to remove from |len| to get a
// multiple of |ctx|'s block size.
static int block_remainder(const EVP_CIPHER_CTX *ctx, int len) {
// |block_size| must be a power of two.
assert(ctx->cipher->block_size != 0);
assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0);
return len & (ctx->cipher->block_size - 1);
}
int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
const uint8_t *in, int in_len) {
if (ctx->poisoned) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
// If the first call to |cipher| succeeds and the second fails, |ctx| may be
// left in an indeterminate state. We set a poison flag on failure to ensure
// callers do not continue to use the object in that case.
ctx->poisoned = 1;
// Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output
// does not overflow |*out_len|.
int bl = ctx->cipher->block_size;
if (bl > 1 && in_len > INT_MAX - bl) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW);
return 0;
}
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
int ret = ctx->cipher->cipher(ctx, out, in, in_len);
if (ret < 0) {
return 0;
} else {
*out_len = ret;
}
ctx->poisoned = 0;
return 1;
}
if (in_len <= 0) {
*out_len = 0;
if (in_len == 0) {
ctx->poisoned = 0;
return 1;
}
return 0;
}
if (ctx->buf_len == 0 && block_remainder(ctx, in_len) == 0) {
if (ctx->cipher->cipher(ctx, out, in, in_len)) {
*out_len = in_len;
ctx->poisoned = 0;
return 1;
} else {
*out_len = 0;
return 0;
}
}
int i = ctx->buf_len;
assert(bl <= (int)sizeof(ctx->buf));
if (i != 0) {
if (bl - i > in_len) {
OPENSSL_memcpy(&ctx->buf[i], in, in_len);
ctx->buf_len += in_len;
*out_len = 0;
ctx->poisoned = 0;
return 1;
} else {
int j = bl - i;
OPENSSL_memcpy(&ctx->buf[i], in, j);
if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
return 0;
}
in_len -= j;
in += j;
out += bl;
*out_len = bl;
}
} else {
*out_len = 0;
}
i = block_remainder(ctx, in_len);
in_len -= i;
if (in_len > 0) {
if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
return 0;
}
*out_len += in_len;
}
if (i != 0) {
OPENSSL_memcpy(ctx->buf, &in[in_len], i);
}
ctx->buf_len = i;
ctx->poisoned = 0;
return 1;
}
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
int n;
unsigned int i, b, bl;
if (ctx->poisoned) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
// When EVP_CIPH_FLAG_CUSTOM_CIPHER is set, the return value of |cipher| is
// the number of bytes written, or -1 on error. Otherwise the return value
// is one on success and zero on error.
const int num_bytes = ctx->cipher->cipher(ctx, out, NULL, 0);
if (num_bytes < 0) {
return 0;
}
*out_len = num_bytes;
goto out;
}
b = ctx->cipher->block_size;
assert(b <= sizeof(ctx->buf));
if (b == 1) {
*out_len = 0;
goto out;
}
bl = ctx->buf_len;
if (ctx->flags & EVP_CIPH_NO_PADDING) {
if (bl) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
*out_len = 0;
goto out;
}
n = b - bl;
for (i = bl; i < b; i++) {
ctx->buf[i] = n;
}
if (!ctx->cipher->cipher(ctx, out, ctx->buf, b)) {
return 0;
}
*out_len = b;
out:
EVP_Cipher_verify_service_indicator(ctx);
return 1;
}
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
const uint8_t *in, int in_len) {
if (ctx->poisoned) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
// Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output
// does not overflow |*out_len|.
unsigned int b = ctx->cipher->block_size;
if (b > 1 && in_len > INT_MAX - (int)b) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW);
return 0;
}
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
int r = ctx->cipher->cipher(ctx, out, in, in_len);
if (r < 0) {
*out_len = 0;
return 0;
} else {
*out_len = r;
}
return 1;
}
if (in_len <= 0) {
*out_len = 0;
return in_len == 0;
}
if (ctx->flags & EVP_CIPH_NO_PADDING) {
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
}
assert(b <= sizeof(ctx->final));
int fix_len = 0;
if (ctx->final_used) {
OPENSSL_memcpy(out, ctx->final, b);
out += b;
fix_len = 1;
}
if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
return 0;
}
// if we have 'decrypted' a multiple of block size, make sure
// we have a copy of this last block
if (b > 1 && !ctx->buf_len) {
*out_len -= b;
ctx->final_used = 1;
OPENSSL_memcpy(ctx->final, &out[*out_len], b);
} else {
ctx->final_used = 0;
}
if (fix_len) {
*out_len += b;
}
return 1;
}
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
int i, n;
unsigned int b;
*out_len = 0;
if (ctx->poisoned) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
i = ctx->cipher->cipher(ctx, out, NULL, 0);
if (i < 0) {
return 0;
} else {
*out_len = i;
}
goto out;
}
b = ctx->cipher->block_size;
if (ctx->flags & EVP_CIPH_NO_PADDING) {
if (ctx->buf_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
*out_len = 0;
goto out;
}
if (b > 1) {
if (ctx->buf_len || !ctx->final_used) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
assert(b <= sizeof(ctx->final));
// The following assumes that the ciphertext has been authenticated.
// Otherwise it provides a padding oracle.
n = ctx->final[b - 1];
if (n == 0 || n > (int)b) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
for (i = 0; i < n; i++) {
if (ctx->final[--b] != n) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
}
n = ctx->cipher->block_size - n;
for (i = 0; i < n; i++) {
out[i] = ctx->final[i];
}
*out_len = n;
} else {
*out_len = 0;
}
out:
EVP_Cipher_verify_service_indicator(ctx);
return 1;
}
int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t in_len) {
const int ret = ctx->cipher->cipher(ctx, out, in, in_len);
// |EVP_CIPH_FLAG_CUSTOM_CIPHER| never sets the FIPS indicator via
// |EVP_Cipher| because it's complicated whether the operation has completed
// or not. E.g. AES-GCM with a non-NULL |in| argument hasn't completed an
// operation. Callers should use the |EVP_AEAD| API or, at least,
// |EVP_CipherUpdate| etc.
//
// This call can't be pushed into |EVP_Cipher_verify_service_indicator|
// because whether |ret| indicates success or not depends on whether
// |EVP_CIPH_FLAG_CUSTOM_CIPHER| is set. (This unreasonable, but matches
// OpenSSL.)
if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && ret) {
EVP_Cipher_verify_service_indicator(ctx);
}
return ret;
}
int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
const uint8_t *in, int in_len) {
if (ctx->encrypt) {
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
} else {
return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
}
}
int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
if (ctx->encrypt) {
return EVP_EncryptFinal_ex(ctx, out, out_len);
} else {
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
}
const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
return ctx->cipher;
}
int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
return ctx->cipher->nid;
}
int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) {
return ctx->encrypt;
}
unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
return ctx->cipher->block_size;
}
unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
return ctx->key_len;
}
unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
if (EVP_CIPHER_mode(ctx->cipher) == EVP_CIPH_GCM_MODE) {
int length;
int res = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0,
&length);
// EVP_CIPHER_CTX_ctrl returning an error should be impossible under this
// circumstance. If it somehow did, fallback to the static cipher iv_len.
if (res == 1) {
return length;
}
}
return ctx->cipher->iv_len;
}
void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
return ctx->app_data;
}
void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
ctx->app_data = data;
}
uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
}
uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
}
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
int ret;
if (!ctx->cipher) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
return 0;
}
if (!ctx->cipher->ctrl) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
if (ret == -1) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
return 0;
}
return ret;
}
int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
if (pad) {
ctx->flags &= ~EVP_CIPH_NO_PADDING;
} else {
ctx->flags |= EVP_CIPH_NO_PADDING;
}
return 1;
}
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
if (c->key_len == key_len) {
return 1;
}
if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
return 0;
}
c->key_len = key_len;
return 1;
}
int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
return cipher->block_size;
}
unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
return cipher->key_len;
}
unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
return cipher->iv_len;
}
uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
return cipher->flags & ~EVP_CIPH_MODE_MASK;
}
uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
return cipher->flags & EVP_CIPH_MODE_MASK;
}
int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const uint8_t *key, const uint8_t *iv, int enc) {
if (cipher) {
EVP_CIPHER_CTX_init(ctx);
}
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
}
int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const uint8_t *key, const uint8_t *iv) {
return EVP_CipherInit(ctx, cipher, key, iv, 1);
}
int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const uint8_t *key, const uint8_t *iv) {
return EVP_CipherInit(ctx, cipher, key, iv, 0);
}
int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
return EVP_CipherFinal_ex(ctx, out, out_len);
}
int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
return EVP_EncryptFinal_ex(ctx, out, out_len);
}
int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
return EVP_DecryptFinal_ex(ctx, out, out_len);
}
int EVP_add_cipher_alias(const char *a, const char *b) {
return 1;
}
void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {}