blob: 4d0d38f0678112368ecdf1bc7912355a6c23b822 [file] [log] [blame]
#! /usr/bin/env perl
# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
######################################################################
## Constant-time SSSE3 AES core implementation.
## version 0.1
##
## By Mike Hamburg (Stanford University), 2009
## Public domain.
##
## For details see http://shiftleft.org/papers/vector_aes/ and
## http://crypto.stanford.edu/vpaes/.
######################################################################
# September 2011.
#
# Interface to OpenSSL as "almost" drop-in replacement for
# aes-x86_64.pl. "Almost" refers to the fact that AES_cbc_encrypt
# doesn't handle partial vectors (doesn't have to if called from
# EVP only). "Drop-in" implies that this module doesn't share key
# schedule structure with the original nor does it make assumption
# about its alignment...
#
# Performance summary. aes-x86_64.pl column lists large-block CBC
# encrypt/decrypt/with-hyper-threading-off(*) results in cycles per
# byte processed with 128-bit key, and vpaes-x86_64.pl column -
# [also large-block CBC] encrypt/decrypt.
#
# aes-x86_64.pl vpaes-x86_64.pl
#
# Core 2(**) 29.6/41.1/14.3 21.9/25.2(***)
# Nehalem 29.6/40.3/14.6 10.0/11.8
# Atom 57.3/74.2/32.1 60.9/77.2(***)
# Silvermont 52.7/64.0/19.5 48.8/60.8(***)
# Goldmont 38.9/49.0/17.8 10.6/12.6
#
# (*) "Hyper-threading" in the context refers rather to cache shared
# among multiple cores, than to specifically Intel HTT. As vast
# majority of contemporary cores share cache, slower code path
# is common place. In other words "with-hyper-threading-off"
# results are presented mostly for reference purposes.
#
# (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe.
#
# (***) Less impressive improvement on Core 2 and Atom is due to slow
# pshufb, yet it's respectable +36%/62% improvement on Core 2
# (as implied, over "hyper-threading-safe" code path).
#
# <appro@openssl.org>
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
$PREFIX="vpaes";
$code.=<<___;
.text
##
## _aes_encrypt_core
##
## AES-encrypt %xmm0.
##
## Inputs:
## %xmm0 = input
## %xmm9-%xmm15 as in _vpaes_preheat
## (%rdx) = scheduled keys
##
## Output in %xmm0
## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax
## Preserves %xmm6 - %xmm8 so you get some local vectors
##
##
.type _vpaes_encrypt_core,\@abi-omnipotent
.align 16
_vpaes_encrypt_core:
.cfi_startproc
mov %rdx, %r9
mov \$16, %r11
mov 240(%rdx),%eax
movdqa %xmm9, %xmm1
movdqa .Lk_ipt(%rip), %xmm2 # iptlo
pandn %xmm0, %xmm1
movdqu (%r9), %xmm5 # round0 key
psrld \$4, %xmm1
pand %xmm9, %xmm0
pshufb %xmm0, %xmm2
movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi
pshufb %xmm1, %xmm0
pxor %xmm5, %xmm2
add \$16, %r9
pxor %xmm2, %xmm0
lea .Lk_mc_backward(%rip),%r10
jmp .Lenc_entry
.align 16
.Lenc_loop:
# middle of middle round
movdqa %xmm13, %xmm4 # 4 : sb1u
movdqa %xmm12, %xmm0 # 0 : sb1t
pshufb %xmm2, %xmm4 # 4 = sb1u
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm5, %xmm4 # 4 = sb1u + k
movdqa %xmm15, %xmm5 # 4 : sb2u
pxor %xmm4, %xmm0 # 0 = A
movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
pshufb %xmm2, %xmm5 # 4 = sb2u
movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
movdqa %xmm14, %xmm2 # 2 : sb2t
pshufb %xmm3, %xmm2 # 2 = sb2t
movdqa %xmm0, %xmm3 # 3 = A
pxor %xmm5, %xmm2 # 2 = 2A
pshufb %xmm1, %xmm0 # 0 = B
add \$16, %r9 # next key
pxor %xmm2, %xmm0 # 0 = 2A+B
pshufb %xmm4, %xmm3 # 3 = D
add \$16, %r11 # next mc
pxor %xmm0, %xmm3 # 3 = 2A+B+D
pshufb %xmm1, %xmm0 # 0 = 2B+C
and \$0x30, %r11 # ... mod 4
sub \$1,%rax # nr--
pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D
.Lenc_entry:
# top of round
movdqa %xmm9, %xmm1 # 1 : i
movdqa %xmm11, %xmm5 # 2 : a/k
pandn %xmm0, %xmm1 # 1 = i<<4
psrld \$4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
pshufb %xmm0, %xmm5 # 2 = a/k
movdqa %xmm10, %xmm3 # 3 : 1/i
pxor %xmm1, %xmm0 # 0 = j
pshufb %xmm1, %xmm3 # 3 = 1/i
movdqa %xmm10, %xmm4 # 4 : 1/j
pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k
pshufb %xmm0, %xmm4 # 4 = 1/j
movdqa %xmm10, %xmm2 # 2 : 1/iak
pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k
pshufb %xmm3, %xmm2 # 2 = 1/iak
movdqa %xmm10, %xmm3 # 3 : 1/jak
pxor %xmm0, %xmm2 # 2 = io
pshufb %xmm4, %xmm3 # 3 = 1/jak
movdqu (%r9), %xmm5
pxor %xmm1, %xmm3 # 3 = jo
jnz .Lenc_loop
# middle of last round
movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
pshufb %xmm2, %xmm4 # 4 = sbou
pxor %xmm5, %xmm4 # 4 = sb1u + k
pshufb %xmm3, %xmm0 # 0 = sb1t
movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
pxor %xmm4, %xmm0 # 0 = A
pshufb %xmm1, %xmm0
ret
.cfi_endproc
.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
##
## _aes_encrypt_core_2x
##
## AES-encrypt %xmm0 and %xmm6 in parallel.
##
## Inputs:
## %xmm0 and %xmm6 = input
## %xmm9 and %xmm10 as in _vpaes_preheat
## (%rdx) = scheduled keys
##
## Output in %xmm0 and %xmm6
## Clobbers %xmm1-%xmm5, %xmm7, %xmm8, %xmm11-%xmm13, %r9, %r10, %r11, %rax
## Preserves %xmm14 and %xmm15
##
## This function stitches two parallel instances of _vpaes_encrypt_core. x86_64
## provides 16 XMM registers. _vpaes_encrypt_core computes over six registers
## (%xmm0-%xmm5) and additionally uses seven registers with preloaded constants
## from _vpaes_preheat (%xmm9-%xmm15). This does not quite fit two instances,
## so we spill some of %xmm9 through %xmm15 back to memory. We keep %xmm9 and
## %xmm10 in registers as these values are used several times in a row. The
## remainder are read once per round and are spilled to memory. This leaves two
## registers preserved for the caller.
##
## Thus, of the two _vpaes_encrypt_core instances, the first uses (%xmm0-%xmm5)
## as before. The second uses %xmm6-%xmm8,%xmm11-%xmm13. (Add 6 to %xmm2 and
## below. Add 8 to %xmm3 and up.) Instructions in the second instance are
## indented by one space.
##
##
.type _vpaes_encrypt_core_2x,\@abi-omnipotent
.align 16
_vpaes_encrypt_core_2x:
.cfi_startproc
mov %rdx, %r9
mov \$16, %r11
mov 240(%rdx),%eax
movdqa %xmm9, %xmm1
movdqa %xmm9, %xmm7
movdqa .Lk_ipt(%rip), %xmm2 # iptlo
movdqa %xmm2, %xmm8
pandn %xmm0, %xmm1
pandn %xmm6, %xmm7
movdqu (%r9), %xmm5 # round0 key
# Also use %xmm5 in the second instance.
psrld \$4, %xmm1
psrld \$4, %xmm7
pand %xmm9, %xmm0
pand %xmm9, %xmm6
pshufb %xmm0, %xmm2
pshufb %xmm6, %xmm8
movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi
movdqa %xmm0, %xmm6
pshufb %xmm1, %xmm0
pshufb %xmm7, %xmm6
pxor %xmm5, %xmm2
pxor %xmm5, %xmm8
add \$16, %r9
pxor %xmm2, %xmm0
pxor %xmm8, %xmm6
lea .Lk_mc_backward(%rip),%r10
jmp .Lenc2x_entry
.align 16
.Lenc2x_loop:
# middle of middle round
movdqa .Lk_sb1(%rip), %xmm4 # 4 : sb1u
movdqa .Lk_sb1+16(%rip),%xmm0 # 0 : sb1t
movdqa %xmm4, %xmm12
movdqa %xmm0, %xmm6
pshufb %xmm2, %xmm4 # 4 = sb1u
pshufb %xmm8, %xmm12
pshufb %xmm3, %xmm0 # 0 = sb1t
pshufb %xmm11, %xmm6
pxor %xmm5, %xmm4 # 4 = sb1u + k
pxor %xmm5, %xmm12
movdqa .Lk_sb2(%rip), %xmm5 # 4 : sb2u
movdqa %xmm5, %xmm13
pxor %xmm4, %xmm0 # 0 = A
pxor %xmm12, %xmm6
movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
# Also use %xmm1 in the second instance.
pshufb %xmm2, %xmm5 # 4 = sb2u
pshufb %xmm8, %xmm13
movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
# Also use %xmm4 in the second instance.
movdqa .Lk_sb2+16(%rip), %xmm2 # 2 : sb2t
movdqa %xmm2, %xmm8
pshufb %xmm3, %xmm2 # 2 = sb2t
pshufb %xmm11, %xmm8
movdqa %xmm0, %xmm3 # 3 = A
movdqa %xmm6, %xmm11
pxor %xmm5, %xmm2 # 2 = 2A
pxor %xmm13, %xmm8
pshufb %xmm1, %xmm0 # 0 = B
pshufb %xmm1, %xmm6
add \$16, %r9 # next key
pxor %xmm2, %xmm0 # 0 = 2A+B
pxor %xmm8, %xmm6
pshufb %xmm4, %xmm3 # 3 = D
pshufb %xmm4, %xmm11
add \$16, %r11 # next mc
pxor %xmm0, %xmm3 # 3 = 2A+B+D
pxor %xmm6, %xmm11
pshufb %xmm1, %xmm0 # 0 = 2B+C
pshufb %xmm1, %xmm6
and \$0x30, %r11 # ... mod 4
sub \$1,%rax # nr--
pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D
pxor %xmm11, %xmm6
.Lenc2x_entry:
# top of round
movdqa %xmm9, %xmm1 # 1 : i
movdqa %xmm9, %xmm7
movdqa .Lk_inv+16(%rip), %xmm5 # 2 : a/k
movdqa %xmm5, %xmm13
pandn %xmm0, %xmm1 # 1 = i<<4
pandn %xmm6, %xmm7
psrld \$4, %xmm1 # 1 = i
psrld \$4, %xmm7
pand %xmm9, %xmm0 # 0 = k
pand %xmm9, %xmm6
pshufb %xmm0, %xmm5 # 2 = a/k
pshufb %xmm6, %xmm13
movdqa %xmm10, %xmm3 # 3 : 1/i
movdqa %xmm10, %xmm11
pxor %xmm1, %xmm0 # 0 = j
pxor %xmm7, %xmm6
pshufb %xmm1, %xmm3 # 3 = 1/i
pshufb %xmm7, %xmm11
movdqa %xmm10, %xmm4 # 4 : 1/j
movdqa %xmm10, %xmm12
pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k
pxor %xmm13, %xmm11
pshufb %xmm0, %xmm4 # 4 = 1/j
pshufb %xmm6, %xmm12
movdqa %xmm10, %xmm2 # 2 : 1/iak
movdqa %xmm10, %xmm8
pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k
pxor %xmm13, %xmm12
pshufb %xmm3, %xmm2 # 2 = 1/iak
pshufb %xmm11, %xmm8
movdqa %xmm10, %xmm3 # 3 : 1/jak
movdqa %xmm10, %xmm11
pxor %xmm0, %xmm2 # 2 = io
pxor %xmm6, %xmm8
pshufb %xmm4, %xmm3 # 3 = 1/jak
pshufb %xmm12, %xmm11
movdqu (%r9), %xmm5
# Also use %xmm5 in the second instance.
pxor %xmm1, %xmm3 # 3 = jo
pxor %xmm7, %xmm11
jnz .Lenc2x_loop
# middle of last round
movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
movdqa %xmm4, %xmm12
movdqa %xmm0, %xmm6
pshufb %xmm2, %xmm4 # 4 = sbou
pshufb %xmm8, %xmm12
pxor %xmm5, %xmm4 # 4 = sb1u + k
pxor %xmm5, %xmm12
pshufb %xmm3, %xmm0 # 0 = sb1t
pshufb %xmm11, %xmm6
movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
# Also use %xmm1 in the second instance.
pxor %xmm4, %xmm0 # 0 = A
pxor %xmm12, %xmm6
pshufb %xmm1, %xmm0
pshufb %xmm1, %xmm6
ret
.cfi_endproc
.size _vpaes_encrypt_core_2x,.-_vpaes_encrypt_core_2x
##
## Decryption core
##
## Same API as encryption core.
##
.type _vpaes_decrypt_core,\@abi-omnipotent
.align 16
_vpaes_decrypt_core:
.cfi_startproc
mov %rdx, %r9 # load key
mov 240(%rdx),%eax
movdqa %xmm9, %xmm1
movdqa .Lk_dipt(%rip), %xmm2 # iptlo
pandn %xmm0, %xmm1
mov %rax, %r11
psrld \$4, %xmm1
movdqu (%r9), %xmm5 # round0 key
shl \$4, %r11
pand %xmm9, %xmm0
pshufb %xmm0, %xmm2
movdqa .Lk_dipt+16(%rip), %xmm0 # ipthi
xor \$0x30, %r11
lea .Lk_dsbd(%rip),%r10
pshufb %xmm1, %xmm0
and \$0x30, %r11
pxor %xmm5, %xmm2
movdqa .Lk_mc_forward+48(%rip), %xmm5
pxor %xmm2, %xmm0
add \$16, %r9
add %r10, %r11
jmp .Ldec_entry
.align 16
.Ldec_loop:
##
## Inverse mix columns
##
movdqa -0x20(%r10),%xmm4 # 4 : sb9u
movdqa -0x10(%r10),%xmm1 # 0 : sb9t
pshufb %xmm2, %xmm4 # 4 = sb9u
pshufb %xmm3, %xmm1 # 0 = sb9t
pxor %xmm4, %xmm0
movdqa 0x00(%r10),%xmm4 # 4 : sbdu
pxor %xmm1, %xmm0 # 0 = ch
movdqa 0x10(%r10),%xmm1 # 0 : sbdt
pshufb %xmm2, %xmm4 # 4 = sbdu
pshufb %xmm5, %xmm0 # MC ch
pshufb %xmm3, %xmm1 # 0 = sbdt
pxor %xmm4, %xmm0 # 4 = ch
movdqa 0x20(%r10),%xmm4 # 4 : sbbu
pxor %xmm1, %xmm0 # 0 = ch
movdqa 0x30(%r10),%xmm1 # 0 : sbbt
pshufb %xmm2, %xmm4 # 4 = sbbu
pshufb %xmm5, %xmm0 # MC ch
pshufb %xmm3, %xmm1 # 0 = sbbt
pxor %xmm4, %xmm0 # 4 = ch
movdqa 0x40(%r10),%xmm4 # 4 : sbeu
pxor %xmm1, %xmm0 # 0 = ch
movdqa 0x50(%r10),%xmm1 # 0 : sbet
pshufb %xmm2, %xmm4 # 4 = sbeu
pshufb %xmm5, %xmm0 # MC ch
pshufb %xmm3, %xmm1 # 0 = sbet
pxor %xmm4, %xmm0 # 4 = ch
add \$16, %r9 # next round key
palignr \$12, %xmm5, %xmm5
pxor %xmm1, %xmm0 # 0 = ch
sub \$1,%rax # nr--
.Ldec_entry:
# top of round
movdqa %xmm9, %xmm1 # 1 : i
pandn %xmm0, %xmm1 # 1 = i<<4
movdqa %xmm11, %xmm2 # 2 : a/k
psrld \$4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
pshufb %xmm0, %xmm2 # 2 = a/k
movdqa %xmm10, %xmm3 # 3 : 1/i
pxor %xmm1, %xmm0 # 0 = j
pshufb %xmm1, %xmm3 # 3 = 1/i
movdqa %xmm10, %xmm4 # 4 : 1/j
pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
pshufb %xmm0, %xmm4 # 4 = 1/j
pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
movdqa %xmm10, %xmm2 # 2 : 1/iak
pshufb %xmm3, %xmm2 # 2 = 1/iak
movdqa %xmm10, %xmm3 # 3 : 1/jak
pxor %xmm0, %xmm2 # 2 = io
pshufb %xmm4, %xmm3 # 3 = 1/jak
movdqu (%r9), %xmm0
pxor %xmm1, %xmm3 # 3 = jo
jnz .Ldec_loop
# middle of last round
movdqa 0x60(%r10), %xmm4 # 3 : sbou
pshufb %xmm2, %xmm4 # 4 = sbou
pxor %xmm0, %xmm4 # 4 = sb1u + k
movdqa 0x70(%r10), %xmm0 # 0 : sbot
movdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = A
pshufb %xmm2, %xmm0
ret
.cfi_endproc
.size _vpaes_decrypt_core,.-_vpaes_decrypt_core
########################################################
## ##
## AES key schedule ##
## ##
########################################################
.type _vpaes_schedule_core,\@abi-omnipotent
.align 16
_vpaes_schedule_core:
.cfi_startproc
# rdi = key
# rsi = size in bits
# rdx = buffer
# rcx = direction. 0=encrypt, 1=decrypt
call _vpaes_preheat # load the tables
movdqa .Lk_rcon(%rip), %xmm8 # load rcon
movdqu (%rdi), %xmm0 # load key (unaligned)
# input transform
movdqa %xmm0, %xmm3
lea .Lk_ipt(%rip), %r11
call _vpaes_schedule_transform
movdqa %xmm0, %xmm7
lea .Lk_sr(%rip),%r10
test %rcx, %rcx
jnz .Lschedule_am_decrypting
# encrypting, output zeroth round key after transform
movdqu %xmm0, (%rdx)
jmp .Lschedule_go
.Lschedule_am_decrypting:
# decrypting, output zeroth round key after shiftrows
movdqa (%r8,%r10),%xmm1
pshufb %xmm1, %xmm3
movdqu %xmm3, (%rdx)
xor \$0x30, %r8
.Lschedule_go:
cmp \$192, %esi
ja .Lschedule_256
je .Lschedule_192
# 128: fall though
##
## .schedule_128
##
## 128-bit specific part of key schedule.
##
## This schedule is really simple, because all its parts
## are accomplished by the subroutines.
##
.Lschedule_128:
mov \$10, %esi
.Loop_schedule_128:
call _vpaes_schedule_round
dec %rsi
jz .Lschedule_mangle_last
call _vpaes_schedule_mangle # write output
jmp .Loop_schedule_128
##
## .aes_schedule_192
##
## 192-bit specific part of key schedule.
##
## The main body of this schedule is the same as the 128-bit
## schedule, but with more smearing. The long, high side is
## stored in %xmm7 as before, and the short, low side is in
## the high bits of %xmm6.
##
## This schedule is somewhat nastier, however, because each
## round produces 192 bits of key material, or 1.5 round keys.
## Therefore, on each cycle we do 2 rounds and produce 3 round
## keys.
##
.align 16
.Lschedule_192:
movdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
call _vpaes_schedule_transform # input transform
movdqa %xmm0, %xmm6 # save short part
pxor %xmm4, %xmm4 # clear 4
movhlps %xmm4, %xmm6 # clobber low side with zeros
mov \$4, %esi
.Loop_schedule_192:
call _vpaes_schedule_round
palignr \$8,%xmm6,%xmm0
call _vpaes_schedule_mangle # save key n
call _vpaes_schedule_192_smear
call _vpaes_schedule_mangle # save key n+1
call _vpaes_schedule_round
dec %rsi
jz .Lschedule_mangle_last
call _vpaes_schedule_mangle # save key n+2
call _vpaes_schedule_192_smear
jmp .Loop_schedule_192
##
## .aes_schedule_256
##
## 256-bit specific part of key schedule.
##
## The structure here is very similar to the 128-bit
## schedule, but with an additional "low side" in
## %xmm6. The low side's rounds are the same as the
## high side's, except no rcon and no rotation.
##
.align 16
.Lschedule_256:
movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
call _vpaes_schedule_transform # input transform
mov \$7, %esi
.Loop_schedule_256:
call _vpaes_schedule_mangle # output low result
movdqa %xmm0, %xmm6 # save cur_lo in xmm6
# high round
call _vpaes_schedule_round
dec %rsi
jz .Lschedule_mangle_last
call _vpaes_schedule_mangle
# low round. swap xmm7 and xmm6
pshufd \$0xFF, %xmm0, %xmm0
movdqa %xmm7, %xmm5
movdqa %xmm6, %xmm7
call _vpaes_schedule_low_round
movdqa %xmm5, %xmm7
jmp .Loop_schedule_256
##
## .aes_schedule_mangle_last
##
## Mangler for last round of key schedule
## Mangles %xmm0
## when encrypting, outputs out(%xmm0) ^ 63
## when decrypting, outputs unskew(%xmm0)
##
## Always called right before return... jumps to cleanup and exits
##
.align 16
.Lschedule_mangle_last:
# schedule last round key from xmm0
lea .Lk_deskew(%rip),%r11 # prepare to deskew
test %rcx, %rcx
jnz .Lschedule_mangle_last_dec
# encrypting
movdqa (%r8,%r10),%xmm1
pshufb %xmm1, %xmm0 # output permute
lea .Lk_opt(%rip), %r11 # prepare to output transform
add \$32, %rdx
.Lschedule_mangle_last_dec:
add \$-16, %rdx
pxor .Lk_s63(%rip), %xmm0
call _vpaes_schedule_transform # output transform
movdqu %xmm0, (%rdx) # save last key
# cleanup
pxor %xmm0, %xmm0
pxor %xmm1, %xmm1
pxor %xmm2, %xmm2
pxor %xmm3, %xmm3
pxor %xmm4, %xmm4
pxor %xmm5, %xmm5
pxor %xmm6, %xmm6
pxor %xmm7, %xmm7
ret
.cfi_endproc
.size _vpaes_schedule_core,.-_vpaes_schedule_core
##
## .aes_schedule_192_smear
##
## Smear the short, low side in the 192-bit key schedule.
##
## Inputs:
## %xmm7: high side, b a x y
## %xmm6: low side, d c 0 0
## %xmm13: 0
##
## Outputs:
## %xmm6: b+c+d b+c 0 0
## %xmm0: b+c+d b+c b a
##
.type _vpaes_schedule_192_smear,\@abi-omnipotent
.align 16
_vpaes_schedule_192_smear:
.cfi_startproc
pshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
pshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
pxor %xmm1, %xmm6 # -> c+d c 0 0
pxor %xmm1, %xmm1
pxor %xmm0, %xmm6 # -> b+c+d b+c b a
movdqa %xmm6, %xmm0
movhlps %xmm1, %xmm6 # clobber low side with zeros
ret
.cfi_endproc
.size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
##
## .aes_schedule_round
##
## Runs one main round of the key schedule on %xmm0, %xmm7
##
## Specifically, runs subbytes on the high dword of %xmm0
## then rotates it by one byte and xors into the low dword of
## %xmm7.
##
## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
## next rcon.
##
## Smears the dwords of %xmm7 by xoring the low into the
## second low, result into third, result into highest.
##
## Returns results in %xmm7 = %xmm0.
## Clobbers %xmm1-%xmm4, %r11.
##
.type _vpaes_schedule_round,\@abi-omnipotent
.align 16
_vpaes_schedule_round:
.cfi_startproc
# extract rcon from xmm8
pxor %xmm1, %xmm1
palignr \$15, %xmm8, %xmm1
palignr \$15, %xmm8, %xmm8
pxor %xmm1, %xmm7
# rotate
pshufd \$0xFF, %xmm0, %xmm0
palignr \$1, %xmm0, %xmm0
# fall through...
# low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
# smear xmm7
movdqa %xmm7, %xmm1
pslldq \$4, %xmm7
pxor %xmm1, %xmm7
movdqa %xmm7, %xmm1
pslldq \$8, %xmm7
pxor %xmm1, %xmm7
pxor .Lk_s63(%rip), %xmm7
# subbytes
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld \$4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
movdqa %xmm11, %xmm2 # 2 : a/k
pshufb %xmm0, %xmm2 # 2 = a/k
pxor %xmm1, %xmm0 # 0 = j
movdqa %xmm10, %xmm3 # 3 : 1/i
pshufb %xmm1, %xmm3 # 3 = 1/i
pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
movdqa %xmm10, %xmm4 # 4 : 1/j
pshufb %xmm0, %xmm4 # 4 = 1/j
pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
movdqa %xmm10, %xmm2 # 2 : 1/iak
pshufb %xmm3, %xmm2 # 2 = 1/iak
pxor %xmm0, %xmm2 # 2 = io
movdqa %xmm10, %xmm3 # 3 : 1/jak
pshufb %xmm4, %xmm3 # 3 = 1/jak
pxor %xmm1, %xmm3 # 3 = jo
movdqa %xmm13, %xmm4 # 4 : sbou
pshufb %xmm2, %xmm4 # 4 = sbou
movdqa %xmm12, %xmm0 # 0 : sbot
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = sbox output
# add in smeared stuff
pxor %xmm7, %xmm0
movdqa %xmm0, %xmm7
ret
.cfi_endproc
.size _vpaes_schedule_round,.-_vpaes_schedule_round
##
## .aes_schedule_transform
##
## Linear-transform %xmm0 according to tables at (%r11)
##
## Requires that %xmm9 = 0x0F0F... as in preheat
## Output in %xmm0
## Clobbers %xmm1, %xmm2
##
.type _vpaes_schedule_transform,\@abi-omnipotent
.align 16
_vpaes_schedule_transform:
.cfi_startproc
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld \$4, %xmm1
pand %xmm9, %xmm0
movdqa (%r11), %xmm2 # lo
pshufb %xmm0, %xmm2
movdqa 16(%r11), %xmm0 # hi
pshufb %xmm1, %xmm0
pxor %xmm2, %xmm0
ret
.cfi_endproc
.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
##
## .aes_schedule_mangle
##
## Mangle xmm0 from (basis-transformed) standard version
## to our version.
##
## On encrypt,
## xor with 0x63
## multiply by circulant 0,1,1,1
## apply shiftrows transform
##
## On decrypt,
## xor with 0x63
## multiply by "inverse mixcolumns" circulant E,B,D,9
## deskew
## apply shiftrows transform
##
##
## Writes out to (%rdx), and increments or decrements it
## Keeps track of round number mod 4 in %r8
## Preserves xmm0
## Clobbers xmm1-xmm5
##
.type _vpaes_schedule_mangle,\@abi-omnipotent
.align 16
_vpaes_schedule_mangle:
.cfi_startproc
movdqa %xmm0, %xmm4 # save xmm0 for later
movdqa .Lk_mc_forward(%rip),%xmm5
test %rcx, %rcx
jnz .Lschedule_mangle_dec
# encrypting
add \$16, %rdx
pxor .Lk_s63(%rip),%xmm4
pshufb %xmm5, %xmm4
movdqa %xmm4, %xmm3
pshufb %xmm5, %xmm4
pxor %xmm4, %xmm3
pshufb %xmm5, %xmm4
pxor %xmm4, %xmm3
jmp .Lschedule_mangle_both
.align 16
.Lschedule_mangle_dec:
# inverse mix columns
lea .Lk_dksd(%rip),%r11
movdqa %xmm9, %xmm1
pandn %xmm4, %xmm1
psrld \$4, %xmm1 # 1 = hi
pand %xmm9, %xmm4 # 4 = lo
movdqa 0x00(%r11), %xmm2
pshufb %xmm4, %xmm2
movdqa 0x10(%r11), %xmm3
pshufb %xmm1, %xmm3
pxor %xmm2, %xmm3
pshufb %xmm5, %xmm3
movdqa 0x20(%r11), %xmm2
pshufb %xmm4, %xmm2
pxor %xmm3, %xmm2
movdqa 0x30(%r11), %xmm3
pshufb %xmm1, %xmm3
pxor %xmm2, %xmm3
pshufb %xmm5, %xmm3
movdqa 0x40(%r11), %xmm2
pshufb %xmm4, %xmm2
pxor %xmm3, %xmm2
movdqa 0x50(%r11), %xmm3
pshufb %xmm1, %xmm3
pxor %xmm2, %xmm3
pshufb %xmm5, %xmm3
movdqa 0x60(%r11), %xmm2
pshufb %xmm4, %xmm2
pxor %xmm3, %xmm2
movdqa 0x70(%r11), %xmm3
pshufb %xmm1, %xmm3
pxor %xmm2, %xmm3
add \$-16, %rdx
.Lschedule_mangle_both:
movdqa (%r8,%r10),%xmm1
pshufb %xmm1,%xmm3
add \$-16, %r8
and \$0x30, %r8
movdqu %xmm3, (%rdx)
ret
.cfi_endproc
.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
#
# Interface to OpenSSL
#
.globl ${PREFIX}_set_encrypt_key
.type ${PREFIX}_set_encrypt_key,\@function,3
.align 16
${PREFIX}_set_encrypt_key:
.cfi_startproc
_CET_ENDBR
#ifdef BORINGSSL_DISPATCH_TEST
.extern BORINGSSL_function_hit
movb \$1, BORINGSSL_function_hit+5(%rip)
#endif
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Lenc_key_body:
___
$code.=<<___;
mov %esi,%eax
shr \$5,%eax
add \$5,%eax
mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
mov \$0,%ecx
mov \$0x30,%r8d
call _vpaes_schedule_core
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Lenc_key_epilogue:
___
$code.=<<___;
xor %eax,%eax
ret
.cfi_endproc
.size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key
.globl ${PREFIX}_set_decrypt_key
.type ${PREFIX}_set_decrypt_key,\@function,3
.align 16
${PREFIX}_set_decrypt_key:
.cfi_startproc
_CET_ENDBR
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Ldec_key_body:
___
$code.=<<___;
mov %esi,%eax
shr \$5,%eax
add \$5,%eax
mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
shl \$4,%eax
lea 16(%rdx,%rax),%rdx
mov \$1,%ecx
mov %esi,%r8d
shr \$1,%r8d
and \$32,%r8d
xor \$32,%r8d # nbits==192?0:32
call _vpaes_schedule_core
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Ldec_key_epilogue:
___
$code.=<<___;
xor %eax,%eax
ret
.cfi_endproc
.size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key
.globl ${PREFIX}_encrypt
.type ${PREFIX}_encrypt,\@function,3
.align 16
${PREFIX}_encrypt:
.cfi_startproc
_CET_ENDBR
#ifdef BORINGSSL_DISPATCH_TEST
.extern BORINGSSL_function_hit
movb \$1, BORINGSSL_function_hit+4(%rip)
#endif
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Lenc_body:
___
$code.=<<___;
movdqu (%rdi),%xmm0
call _vpaes_preheat
call _vpaes_encrypt_core
movdqu %xmm0,(%rsi)
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Lenc_epilogue:
___
$code.=<<___;
ret
.cfi_endproc
.size ${PREFIX}_encrypt,.-${PREFIX}_encrypt
.globl ${PREFIX}_decrypt
.type ${PREFIX}_decrypt,\@function,3
.align 16
${PREFIX}_decrypt:
.cfi_startproc
_CET_ENDBR
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Ldec_body:
___
$code.=<<___;
movdqu (%rdi),%xmm0
call _vpaes_preheat
call _vpaes_decrypt_core
movdqu %xmm0,(%rsi)
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Ldec_epilogue:
___
$code.=<<___;
ret
.cfi_endproc
.size ${PREFIX}_decrypt,.-${PREFIX}_decrypt
___
{
my ($inp,$out,$len,$key,$ivp,$enc)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
# void AES_cbc_encrypt (const void char *inp, unsigned char *out,
# size_t length, const AES_KEY *key,
# unsigned char *ivp,const int enc);
$code.=<<___;
.globl ${PREFIX}_cbc_encrypt
.type ${PREFIX}_cbc_encrypt,\@function,6
.align 16
${PREFIX}_cbc_encrypt:
.cfi_startproc
_CET_ENDBR
xchg $key,$len
___
($len,$key)=($key,$len);
$code.=<<___;
sub \$16,$len
jc .Lcbc_abort
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Lcbc_body:
___
$code.=<<___;
movdqu ($ivp),%xmm6 # load IV
sub $inp,$out
call _vpaes_preheat
cmp \$0,${enc}d
je .Lcbc_dec_loop
jmp .Lcbc_enc_loop
.align 16
.Lcbc_enc_loop:
movdqu ($inp),%xmm0
pxor %xmm6,%xmm0
call _vpaes_encrypt_core
movdqa %xmm0,%xmm6
movdqu %xmm0,($out,$inp)
lea 16($inp),$inp
sub \$16,$len
jnc .Lcbc_enc_loop
jmp .Lcbc_done
.align 16
.Lcbc_dec_loop:
movdqu ($inp),%xmm0
movdqa %xmm0,%xmm7
call _vpaes_decrypt_core
pxor %xmm6,%xmm0
movdqa %xmm7,%xmm6
movdqu %xmm0,($out,$inp)
lea 16($inp),$inp
sub \$16,$len
jnc .Lcbc_dec_loop
.Lcbc_done:
movdqu %xmm6,($ivp) # save IV
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Lcbc_epilogue:
___
$code.=<<___;
.Lcbc_abort:
ret
.cfi_endproc
.size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt
___
}
{
my ($inp,$out,$blocks,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx","%r8");
# void vpaes_ctr32_encrypt_blocks(const uint8_t *inp, uint8_t *out,
# size_t blocks, const AES_KEY *key,
# const uint8_t ivp[16]);
$code.=<<___;
.globl ${PREFIX}_ctr32_encrypt_blocks
.type ${PREFIX}_ctr32_encrypt_blocks,\@function,5
.align 16
${PREFIX}_ctr32_encrypt_blocks:
.cfi_startproc
_CET_ENDBR
# _vpaes_encrypt_core and _vpaes_encrypt_core_2x expect the key in %rdx.
xchg $key, $blocks
___
($blocks,$key)=($key,$blocks);
$code.=<<___;
test $blocks, $blocks
jz .Lctr32_abort
___
$code.=<<___ if ($win64);
lea -0xb8(%rsp),%rsp
movaps %xmm6,0x10(%rsp)
movaps %xmm7,0x20(%rsp)
movaps %xmm8,0x30(%rsp)
movaps %xmm9,0x40(%rsp)
movaps %xmm10,0x50(%rsp)
movaps %xmm11,0x60(%rsp)
movaps %xmm12,0x70(%rsp)
movaps %xmm13,0x80(%rsp)
movaps %xmm14,0x90(%rsp)
movaps %xmm15,0xa0(%rsp)
.Lctr32_body:
___
$code.=<<___;
movdqu ($ivp), %xmm0 # Load IV.
movdqa .Lctr_add_one(%rip), %xmm8
sub $inp, $out # This allows only incrementing $inp.
call _vpaes_preheat
movdqa %xmm0, %xmm6
pshufb .Lrev_ctr(%rip), %xmm6
test \$1, $blocks
jz .Lctr32_prep_loop
# Handle one block so the remaining block count is even for
# _vpaes_encrypt_core_2x.
movdqu ($inp), %xmm7 # Load input.
call _vpaes_encrypt_core
pxor %xmm7, %xmm0
paddd %xmm8, %xmm6
movdqu %xmm0, ($out,$inp)
sub \$1, $blocks
lea 16($inp), $inp
jz .Lctr32_done
.Lctr32_prep_loop:
# _vpaes_encrypt_core_2x leaves only %xmm14 and %xmm15 as spare
# registers. We maintain two byte-swapped counters in them.
movdqa %xmm6, %xmm14
movdqa %xmm6, %xmm15
paddd %xmm8, %xmm15
.Lctr32_loop:
movdqa .Lrev_ctr(%rip), %xmm1 # Set up counters.
movdqa %xmm14, %xmm0
movdqa %xmm15, %xmm6
pshufb %xmm1, %xmm0
pshufb %xmm1, %xmm6
call _vpaes_encrypt_core_2x
movdqu ($inp), %xmm1 # Load input.
movdqu 16($inp), %xmm2
movdqa .Lctr_add_two(%rip), %xmm3
pxor %xmm1, %xmm0 # XOR input.
pxor %xmm2, %xmm6
paddd %xmm3, %xmm14 # Increment counters.
paddd %xmm3, %xmm15
movdqu %xmm0, ($out,$inp) # Write output.
movdqu %xmm6, 16($out,$inp)
sub \$2, $blocks # Advance loop.
lea 32($inp), $inp
jnz .Lctr32_loop
.Lctr32_done:
___
$code.=<<___ if ($win64);
movaps 0x10(%rsp),%xmm6
movaps 0x20(%rsp),%xmm7
movaps 0x30(%rsp),%xmm8
movaps 0x40(%rsp),%xmm9
movaps 0x50(%rsp),%xmm10
movaps 0x60(%rsp),%xmm11
movaps 0x70(%rsp),%xmm12
movaps 0x80(%rsp),%xmm13
movaps 0x90(%rsp),%xmm14
movaps 0xa0(%rsp),%xmm15
lea 0xb8(%rsp),%rsp
.Lctr32_epilogue:
___
$code.=<<___;
.Lctr32_abort:
ret
.cfi_endproc
.size ${PREFIX}_ctr32_encrypt_blocks,.-${PREFIX}_ctr32_encrypt_blocks
___
}
$code.=<<___;
##
## _aes_preheat
##
## Fills register %r10 -> .aes_consts (so you can -fPIC)
## and %xmm9-%xmm15 as specified below.
##
.type _vpaes_preheat,\@abi-omnipotent
.align 16
_vpaes_preheat:
.cfi_startproc
lea .Lk_s0F(%rip), %r10
movdqa -0x20(%r10), %xmm10 # .Lk_inv
movdqa -0x10(%r10), %xmm11 # .Lk_inv+16
movdqa 0x00(%r10), %xmm9 # .Lk_s0F
movdqa 0x30(%r10), %xmm13 # .Lk_sb1
movdqa 0x40(%r10), %xmm12 # .Lk_sb1+16
movdqa 0x50(%r10), %xmm15 # .Lk_sb2
movdqa 0x60(%r10), %xmm14 # .Lk_sb2+16
ret
.cfi_endproc
.size _vpaes_preheat,.-_vpaes_preheat
########################################################
## ##
## Constants ##
## ##
########################################################
.type _vpaes_consts,\@object
.section .rodata
.align 64
_vpaes_consts:
.Lk_inv: # inv, inva
.quad 0x0E05060F0D080180, 0x040703090A0B0C02
.quad 0x01040A060F0B0780, 0x030D0E0C02050809
.Lk_s0F: # s0F
.quad 0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F
.Lk_ipt: # input transform (lo, hi)
.quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
.quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
.Lk_sb1: # sb1u, sb1t
.quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
.quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
.Lk_sb2: # sb2u, sb2t
.quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
.quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
.Lk_sbo: # sbou, sbot
.quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
.quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
.Lk_mc_forward: # mc_forward
.quad 0x0407060500030201, 0x0C0F0E0D080B0A09
.quad 0x080B0A0904070605, 0x000302010C0F0E0D
.quad 0x0C0F0E0D080B0A09, 0x0407060500030201
.quad 0x000302010C0F0E0D, 0x080B0A0904070605
.Lk_mc_backward:# mc_backward
.quad 0x0605040702010003, 0x0E0D0C0F0A09080B
.quad 0x020100030E0D0C0F, 0x0A09080B06050407
.quad 0x0E0D0C0F0A09080B, 0x0605040702010003
.quad 0x0A09080B06050407, 0x020100030E0D0C0F
.Lk_sr: # sr
.quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
.quad 0x030E09040F0A0500, 0x0B06010C07020D08
.quad 0x0F060D040B020900, 0x070E050C030A0108
.quad 0x0B0E0104070A0D00, 0x0306090C0F020508
.Lk_rcon: # rcon
.quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
.Lk_s63: # s63: all equal to 0x63 transformed
.quad 0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B
.Lk_opt: # output transform
.quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
.quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
.Lk_deskew: # deskew tables: inverts the sbox's "skew"
.quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
.quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
##
## Decryption stuff
## Key schedule constants
##
.Lk_dksd: # decryption key schedule: invskew x*D
.quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
.quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
.Lk_dksb: # decryption key schedule: invskew x*B
.quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
.quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
.Lk_dkse: # decryption key schedule: invskew x*E + 0x63
.quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
.quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
.Lk_dks9: # decryption key schedule: invskew x*9
.quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
.quad 0x4576516227143300, 0x8BB89FACE9DAFDCE
##
## Decryption stuff
## Round function constants
##
.Lk_dipt: # decryption input transform
.quad 0x0F505B040B545F00, 0x154A411E114E451A
.quad 0x86E383E660056500, 0x12771772F491F194
.Lk_dsb9: # decryption sbox output *9*u, *9*t
.quad 0x851C03539A86D600, 0xCAD51F504F994CC9
.quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565
.Lk_dsbd: # decryption sbox output *D*u, *D*t
.quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
.quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
.Lk_dsbb: # decryption sbox output *B*u, *B*t
.quad 0xD022649296B44200, 0x602646F6B0F2D404
.quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
.Lk_dsbe: # decryption sbox output *E*u, *E*t
.quad 0x46F2929626D4D000, 0x2242600464B4F6B0
.quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32
.Lk_dsbo: # decryption sbox final output
.quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
.quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C
# .Lrev_ctr is a permutation which byte-swaps the counter portion of the IV.
.Lrev_ctr:
.quad 0x0706050403020100, 0x0c0d0e0f0b0a0908
# .Lctr_add_* may be added to a byte-swapped xmm register to increment the
# counter. The register must be byte-swapped again to form the actual input.
.Lctr_add_one:
.quad 0x0000000000000000, 0x0000000100000000
.Lctr_add_two:
.quad 0x0000000000000000, 0x0000000200000000
.asciz "Vector Permutation AES for x86_64/SSSE3, Mike Hamburg (Stanford University)"
.align 64
.size _vpaes_consts,.-_vpaes_consts
.text
___
if ($win64) {
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
lea 16(%rax),%rsi # %xmm save area
lea 512($context),%rdi # &context.Xmm6
mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
.long 0xa548f3fc # cld; rep movsq
lea 0xb8(%rax),%rax # adjust stack pointer
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$`1232/8`,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size se_handler,.-se_handler
.section .pdata
.align 4
.rva .LSEH_begin_${PREFIX}_set_encrypt_key
.rva .LSEH_end_${PREFIX}_set_encrypt_key
.rva .LSEH_info_${PREFIX}_set_encrypt_key
.rva .LSEH_begin_${PREFIX}_set_decrypt_key
.rva .LSEH_end_${PREFIX}_set_decrypt_key
.rva .LSEH_info_${PREFIX}_set_decrypt_key
.rva .LSEH_begin_${PREFIX}_encrypt
.rva .LSEH_end_${PREFIX}_encrypt
.rva .LSEH_info_${PREFIX}_encrypt
.rva .LSEH_begin_${PREFIX}_decrypt
.rva .LSEH_end_${PREFIX}_decrypt
.rva .LSEH_info_${PREFIX}_decrypt
.rva .LSEH_begin_${PREFIX}_cbc_encrypt
.rva .LSEH_end_${PREFIX}_cbc_encrypt
.rva .LSEH_info_${PREFIX}_cbc_encrypt
.rva .LSEH_begin_${PREFIX}_ctr32_encrypt_blocks
.rva .LSEH_end_${PREFIX}_ctr32_encrypt_blocks
.rva .LSEH_info_${PREFIX}_ctr32_encrypt_blocks
.section .xdata
.align 8
.LSEH_info_${PREFIX}_set_encrypt_key:
.byte 9,0,0,0
.rva se_handler
.rva .Lenc_key_body,.Lenc_key_epilogue # HandlerData[]
.LSEH_info_${PREFIX}_set_decrypt_key:
.byte 9,0,0,0
.rva se_handler
.rva .Ldec_key_body,.Ldec_key_epilogue # HandlerData[]
.LSEH_info_${PREFIX}_encrypt:
.byte 9,0,0,0
.rva se_handler
.rva .Lenc_body,.Lenc_epilogue # HandlerData[]
.LSEH_info_${PREFIX}_decrypt:
.byte 9,0,0,0
.rva se_handler
.rva .Ldec_body,.Ldec_epilogue # HandlerData[]
.LSEH_info_${PREFIX}_cbc_encrypt:
.byte 9,0,0,0
.rva se_handler
.rva .Lcbc_body,.Lcbc_epilogue # HandlerData[]
.LSEH_info_${PREFIX}_ctr32_encrypt_blocks:
.byte 9,0,0,0
.rva se_handler
.rva .Lctr32_body,.Lctr32_epilogue # HandlerData[]
___
}
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT or die "error closing STDOUT: $!";