| /* ==================================================================== |
| * Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #include <openssl/cmac.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/aes.h> |
| #include <openssl/cipher.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| |
| |
| struct cmac_ctx_st { |
| EVP_CIPHER_CTX cipher_ctx; |
| // k1 and k2 are the CMAC subkeys. See |
| // https://tools.ietf.org/html/rfc4493#section-2.3 |
| uint8_t k1[AES_BLOCK_SIZE]; |
| uint8_t k2[AES_BLOCK_SIZE]; |
| // Last (possibly partial) scratch |
| uint8_t block[AES_BLOCK_SIZE]; |
| // block_used contains the number of valid bytes in |block|. |
| unsigned block_used; |
| }; |
| |
| static void CMAC_CTX_init(CMAC_CTX *ctx) { |
| EVP_CIPHER_CTX_init(&ctx->cipher_ctx); |
| } |
| |
| static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { |
| EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); |
| OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); |
| OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); |
| OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); |
| } |
| |
| int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, |
| const uint8_t *in, size_t in_len) { |
| const EVP_CIPHER *cipher; |
| switch (key_len) { |
| case 16: |
| cipher = EVP_aes_128_cbc(); |
| break; |
| case 32: |
| cipher = EVP_aes_256_cbc(); |
| break; |
| default: |
| return 0; |
| } |
| |
| size_t scratch_out_len; |
| CMAC_CTX ctx; |
| CMAC_CTX_init(&ctx); |
| |
| const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && |
| CMAC_Update(&ctx, in, in_len) && |
| CMAC_Final(&ctx, out, &scratch_out_len); |
| |
| CMAC_CTX_cleanup(&ctx); |
| return ok; |
| } |
| |
| CMAC_CTX *CMAC_CTX_new(void) { |
| CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); |
| if (ctx != NULL) { |
| CMAC_CTX_init(ctx); |
| } |
| return ctx; |
| } |
| |
| void CMAC_CTX_free(CMAC_CTX *ctx) { |
| if (ctx == NULL) { |
| return; |
| } |
| |
| CMAC_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| |
| int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { |
| if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { |
| return 0; |
| } |
| OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); |
| OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); |
| OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); |
| out->block_used = in->block_used; |
| return 1; |
| } |
| |
| // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) |
| // with a hard-coded reduction polynomial and sets |out| as x times the input. |
| // |
| // See https://tools.ietf.org/html/rfc4493#section-2.3 |
| static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { |
| unsigned i; |
| |
| // Shift |in| to left, including carry. |
| for (i = 0; i < 15; i++) { |
| out[i] = (in[i] << 1) | (in[i+1] >> 7); |
| } |
| |
| // If MSB set fixup with R. |
| const uint8_t carry = in[0] >> 7; |
| out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); |
| } |
| |
| // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an |
| // element of GF(2⁶⁴). |
| // |
| // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf |
| static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { |
| unsigned i; |
| |
| // Shift |in| to left, including carry. |
| for (i = 0; i < 7; i++) { |
| out[i] = (in[i] << 1) | (in[i+1] >> 7); |
| } |
| |
| // If MSB set fixup with R. |
| const uint8_t carry = in[0] >> 7; |
| out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); |
| } |
| |
| static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; |
| |
| int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, |
| const EVP_CIPHER *cipher, ENGINE *engine) { |
| uint8_t scratch[AES_BLOCK_SIZE]; |
| |
| size_t block_size = EVP_CIPHER_block_size(cipher); |
| if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || |
| EVP_CIPHER_key_length(cipher) != key_len || |
| !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || |
| !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || |
| // Reset context again ready for first data. |
| !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { |
| return 0; |
| } |
| |
| if (block_size == AES_BLOCK_SIZE) { |
| binary_field_mul_x_128(ctx->k1, scratch); |
| binary_field_mul_x_128(ctx->k2, ctx->k1); |
| } else { |
| binary_field_mul_x_64(ctx->k1, scratch); |
| binary_field_mul_x_64(ctx->k2, ctx->k1); |
| } |
| ctx->block_used = 0; |
| |
| return 1; |
| } |
| |
| int CMAC_Reset(CMAC_CTX *ctx) { |
| ctx->block_used = 0; |
| return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); |
| } |
| |
| int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { |
| size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
| assert(block_size <= AES_BLOCK_SIZE); |
| uint8_t scratch[AES_BLOCK_SIZE]; |
| |
| if (ctx->block_used > 0) { |
| size_t todo = block_size - ctx->block_used; |
| if (in_len < todo) { |
| todo = in_len; |
| } |
| |
| OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); |
| in += todo; |
| in_len -= todo; |
| ctx->block_used += todo; |
| |
| // If |in_len| is zero then either |ctx->block_used| is less than |
| // |block_size|, in which case we can stop here, or |ctx->block_used| is |
| // exactly |block_size| but there's no more data to process. In the latter |
| // case we don't want to process this block now because it might be the last |
| // block and that block is treated specially. |
| if (in_len == 0) { |
| return 1; |
| } |
| |
| assert(ctx->block_used == block_size); |
| |
| if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { |
| return 0; |
| } |
| } |
| |
| // Encrypt all but one of the remaining blocks. |
| while (in_len > block_size) { |
| if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { |
| return 0; |
| } |
| in += block_size; |
| in_len -= block_size; |
| } |
| |
| OPENSSL_memcpy(ctx->block, in, in_len); |
| ctx->block_used = in_len; |
| |
| return 1; |
| } |
| |
| int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { |
| size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
| assert(block_size <= AES_BLOCK_SIZE); |
| |
| *out_len = block_size; |
| if (out == NULL) { |
| return 1; |
| } |
| |
| const uint8_t *mask = ctx->k1; |
| |
| if (ctx->block_used != block_size) { |
| // If the last block is incomplete, terminate it with a single 'one' bit |
| // followed by zeros. |
| ctx->block[ctx->block_used] = 0x80; |
| OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, |
| block_size - (ctx->block_used + 1)); |
| |
| mask = ctx->k2; |
| } |
| |
| for (unsigned i = 0; i < block_size; i++) { |
| out[i] = ctx->block[i] ^ mask[i]; |
| } |
| |
| return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); |
| } |