| /* Copyright (c) 2018, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include "handshake_util.h" |
| |
| #include <assert.h> |
| #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID) |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <spawn.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| #endif |
| |
| #include <functional> |
| |
| #include "async_bio.h" |
| #include "packeted_bio.h" |
| #include "test_config.h" |
| #include "test_state.h" |
| |
| #include <openssl/ssl.h> |
| |
| using namespace bssl; |
| |
| bool RetryAsync(SSL *ssl, int ret) { |
| // No error; don't retry. |
| if (ret >= 0) { |
| return false; |
| } |
| |
| TestState *test_state = GetTestState(ssl); |
| assert(GetTestConfig(ssl)->async); |
| |
| if (test_state->packeted_bio != nullptr && |
| PacketedBioAdvanceClock(test_state->packeted_bio)) { |
| // The DTLS retransmit logic silently ignores write failures. So the test |
| // may progress, allow writes through synchronously. |
| AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
| int timeout_ret = DTLSv1_handle_timeout(ssl); |
| AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
| |
| if (timeout_ret < 0) { |
| fprintf(stderr, "Error retransmitting.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // See if we needed to read or write more. If so, allow one byte through on |
| // the appropriate end to maximally stress the state machine. |
| switch (SSL_get_error(ssl, ret)) { |
| case SSL_ERROR_WANT_READ: |
| AsyncBioAllowRead(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_WRITE: |
| AsyncBioAllowWrite(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { |
| UniquePtr<EVP_PKEY> pkey = |
| LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); |
| if (!pkey) { |
| return false; |
| } |
| test_state->channel_id = std::move(pkey); |
| return true; |
| } |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| test_state->cert_ready = true; |
| return true; |
| case SSL_ERROR_PENDING_SESSION: |
| test_state->session = std::move(test_state->pending_session); |
| return true; |
| case SSL_ERROR_PENDING_CERTIFICATE: |
| test_state->early_callback_ready = true; |
| return true; |
| case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
| test_state->private_key_retries++; |
| return true; |
| case SSL_ERROR_WANT_CERTIFICATE_VERIFY: |
| test_state->custom_verify_ready = true; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| int CheckIdempotentError(const char *name, SSL *ssl, |
| std::function<int()> func) { |
| int ret = func(); |
| int ssl_err = SSL_get_error(ssl, ret); |
| uint32_t err = ERR_peek_error(); |
| if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) { |
| int ret2 = func(); |
| int ssl_err2 = SSL_get_error(ssl, ret2); |
| uint32_t err2 = ERR_peek_error(); |
| if (ret != ret2 || ssl_err != ssl_err2 || err != err2) { |
| fprintf(stderr, "Repeating %s did not replay the error.\n", name); |
| char buf[256]; |
| ERR_error_string_n(err, buf, sizeof(buf)); |
| fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf); |
| ERR_error_string_n(err2, buf, sizeof(buf)); |
| fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf); |
| // runner treats exit code 90 as always failing. Otherwise, it may |
| // accidentally consider the result an expected protocol failure. |
| exit(90); |
| } |
| } |
| return ret; |
| } |
| |
| #if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID) |
| |
| // MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff. |
| static void MoveBIOs(SSL *dest, SSL *src) { |
| BIO *rbio = SSL_get_rbio(src); |
| BIO_up_ref(rbio); |
| SSL_set0_rbio(dest, rbio); |
| |
| BIO *wbio = SSL_get_wbio(src); |
| BIO_up_ref(wbio); |
| SSL_set0_wbio(dest, wbio); |
| |
| SSL_set0_rbio(src, nullptr); |
| SSL_set0_wbio(src, nullptr); |
| } |
| |
| static bool HandoffReady(SSL *ssl, int ret) { |
| return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF; |
| } |
| |
| static ssize_t read_eintr(int fd, void *out, size_t len) { |
| ssize_t ret; |
| do { |
| ret = read(fd, out, len); |
| } while (ret < 0 && errno == EINTR); |
| return ret; |
| } |
| |
| static ssize_t write_eintr(int fd, const void *in, size_t len) { |
| ssize_t ret; |
| do { |
| ret = write(fd, in, len); |
| } while (ret < 0 && errno == EINTR); |
| return ret; |
| } |
| |
| static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) { |
| pid_t ret; |
| do { |
| ret = waitpid(pid, wstatus, options); |
| } while (ret < 0 && errno == EINTR); |
| return ret; |
| } |
| |
| // Proxy relays data between |socket|, which is connected to the client, and the |
| // handshaker, which is connected to the numerically specified file descriptors, |
| // until the handshaker returns control. |
| static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) { |
| for (;;) { |
| fd_set rfds; |
| FD_ZERO(&rfds); |
| FD_SET(wfd, &rfds); |
| FD_SET(control, &rfds); |
| int fd_max = wfd > control ? wfd : control; |
| if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) { |
| perror("select"); |
| return false; |
| } |
| |
| char buf[64]; |
| ssize_t bytes; |
| if (FD_ISSET(wfd, &rfds) && |
| (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) { |
| char *b = buf; |
| while (bytes) { |
| int written = BIO_write(socket, b, bytes); |
| if (!written) { |
| fprintf(stderr, "BIO_write wrote nothing\n"); |
| return false; |
| } |
| if (written < 0) { |
| if (async) { |
| AsyncBioAllowWrite(socket, 1); |
| continue; |
| } |
| fprintf(stderr, "BIO_write failed\n"); |
| return false; |
| } |
| b += written; |
| bytes -= written; |
| } |
| // Flush all pending data from the handshaker to the client before |
| // considering control messages. |
| continue; |
| } |
| |
| if (!FD_ISSET(control, &rfds)) { |
| continue; |
| } |
| |
| char msg; |
| if (read_eintr(control, &msg, 1) != 1) { |
| perror("read"); |
| return false; |
| } |
| switch (msg) { |
| case kControlMsgHandback: |
| return true; |
| case kControlMsgError: |
| return false; |
| case kControlMsgWantRead: |
| break; |
| default: |
| fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); |
| return false; |
| } |
| |
| char readbuf[64]; |
| if (async) { |
| AsyncBioAllowRead(socket, 1); |
| } |
| int read = BIO_read(socket, readbuf, sizeof(readbuf)); |
| if (read < 1) { |
| fprintf(stderr, "BIO_read failed\n"); |
| return false; |
| } |
| ssize_t written = write_eintr(rfd, readbuf, read); |
| if (written == -1) { |
| perror("write"); |
| return false; |
| } |
| if (written != read) { |
| fprintf(stderr, "short write (%zu of %d bytes)\n", written, read); |
| return false; |
| } |
| // The handshaker blocks on the control channel, so we have to signal |
| // it that the data have been written. |
| msg = kControlMsgWriteCompleted; |
| if (write_eintr(control, &msg, 1) != 1) { |
| perror("write"); |
| return false; |
| } |
| } |
| } |
| |
| class ScopedFD { |
| public: |
| explicit ScopedFD(int fd): fd_(fd) {} |
| ~ScopedFD() { close(fd_); } |
| private: |
| const int fd_; |
| }; |
| |
| // RunHandshaker forks and execs the handshaker binary, handing off |input|, |
| // and, after proxying some amount of handshake traffic, handing back |out|. |
| static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume, |
| const Array<uint8_t> &input, |
| Array<uint8_t> *out) { |
| if (config->handshaker_path.empty()) { |
| fprintf(stderr, "no -handshaker-path specified\n"); |
| return false; |
| } |
| struct stat dummy; |
| if (stat(config->handshaker_path.c_str(), &dummy) == -1) { |
| perror(config->handshaker_path.c_str()); |
| return false; |
| } |
| |
| // A datagram socket guarantees that writes are all-or-nothing. |
| int control[2]; |
| if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) { |
| perror("socketpair"); |
| return false; |
| } |
| int rfd[2], wfd[2]; |
| // We use pipes, rather than some other mechanism, for their buffers. During |
| // the handshake, this process acts as a dumb proxy until receiving the |
| // handback signal, which arrives asynchronously. The race condition means |
| // that this process could incorrectly proxy post-handshake data from the |
| // client to the handshaker. |
| // |
| // To avoid this, this process never proxies data to the handshaker that the |
| // handshaker has not explicitly requested as a result of hitting |
| // |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the |
| // two processes synchronize over the |control| channel. |
| if (pipe(rfd) != 0 || pipe(wfd) != 0) { |
| perror("pipe2"); |
| return false; |
| } |
| |
| fflush(stdout); |
| fflush(stderr); |
| |
| std::vector<char *> args; |
| bssl::UniquePtr<char> handshaker_path( |
| OPENSSL_strdup(config->handshaker_path.c_str())); |
| args.push_back(handshaker_path.get()); |
| char resume[] = "-handshaker-resume"; |
| if (is_resume) { |
| args.push_back(resume); |
| } |
| // config->argv omits argv[0]. |
| for (int j = 0; j < config->argc; ++j) { |
| args.push_back(config->argv[j]); |
| } |
| args.push_back(nullptr); |
| |
| posix_spawn_file_actions_t actions; |
| if (posix_spawn_file_actions_init(&actions) != 0 || |
| posix_spawn_file_actions_addclose(&actions, control[0]) || |
| posix_spawn_file_actions_addclose(&actions, rfd[1]) || |
| posix_spawn_file_actions_addclose(&actions, wfd[0])) { |
| return false; |
| } |
| assert(kFdControl != rfd[0]); |
| assert(kFdControl != wfd[1]); |
| if (control[1] != kFdControl && |
| posix_spawn_file_actions_adddup2(&actions, control[1], kFdControl) != 0) { |
| return false; |
| } |
| assert(kFdProxyToHandshaker != wfd[1]); |
| if (rfd[0] != kFdProxyToHandshaker && |
| posix_spawn_file_actions_adddup2(&actions, rfd[0], |
| kFdProxyToHandshaker) != 0) { |
| return false; |
| } |
| if (wfd[1] != kFdHandshakerToProxy && |
| posix_spawn_file_actions_adddup2(&actions, wfd[1], |
| kFdHandshakerToProxy) != 0) { |
| return false; |
| } |
| |
| // MSan doesn't know that |posix_spawn| initializes its output, so initialize |
| // it to -1. |
| pid_t handshaker_pid = -1; |
| int ret = posix_spawn(&handshaker_pid, args[0], &actions, nullptr, |
| args.data(), environ); |
| if (posix_spawn_file_actions_destroy(&actions) != 0 || |
| ret != 0) { |
| return false; |
| } |
| |
| close(control[1]); |
| close(rfd[0]); |
| close(wfd[1]); |
| ScopedFD rfd_closer(rfd[1]); |
| ScopedFD wfd_closer(wfd[0]); |
| ScopedFD control_closer(control[0]); |
| |
| if (write_eintr(control[0], input.data(), input.size()) == -1) { |
| perror("write"); |
| return false; |
| } |
| bool ok = Proxy(bio, config->async, control[0], rfd[1], wfd[0]); |
| int wstatus; |
| if (waitpid_eintr(handshaker_pid, &wstatus, 0) != handshaker_pid) { |
| perror("waitpid"); |
| return false; |
| } |
| if (ok && wstatus) { |
| fprintf(stderr, "handshaker exited irregularly\n"); |
| return false; |
| } |
| if (!ok) { |
| return false; // This is a "good", i.e. expected, error. |
| } |
| |
| constexpr size_t kBufSize = 1024 * 1024; |
| bssl::UniquePtr<uint8_t> buf((uint8_t *) OPENSSL_malloc(kBufSize)); |
| int len = read_eintr(control[0], buf.get(), kBufSize); |
| if (len == -1) { |
| perror("read"); |
| return false; |
| } |
| out->CopyFrom({buf.get(), (size_t)len}); |
| return true; |
| } |
| |
| // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to |
| // be passed to the handshaker. The serialized state includes both the SSL |
| // handoff, as well test-related state. |
| static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer, |
| Array<uint8_t> *out_handoff) { |
| SSL_set_handoff_mode(ssl, 1); |
| |
| const TestConfig *config = GetTestConfig(ssl); |
| int ret = -1; |
| do { |
| ret = CheckIdempotentError( |
| "SSL_do_handshake", ssl, |
| [&]() -> int { return SSL_do_handshake(ssl); }); |
| } while (!HandoffReady(ssl, ret) && |
| config->async && |
| RetryAsync(ssl, ret)); |
| if (!HandoffReady(ssl, ret)) { |
| fprintf(stderr, "Handshake failed while waiting for handoff.\n"); |
| return false; |
| } |
| |
| ScopedCBB cbb; |
| SSL_CLIENT_HELLO hello; |
| if (!CBB_init(cbb.get(), 512) || |
| !SSL_serialize_handoff(ssl, cbb.get(), &hello) || |
| !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) || |
| !SerializeContextState(ssl->ctx.get(), cbb.get()) || |
| !GetTestState(ssl)->Serialize(cbb.get())) { |
| fprintf(stderr, "Handoff serialisation failed.\n"); |
| return false; |
| } |
| return CBBFinishArray(cbb.get(), out_handoff); |
| } |
| |
| // DoSplitHandshake delegates the SSL handshake to a separate process, called |
| // the handshaker. This process proxies I/O between the handshaker and the |
| // client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is |
| // replaced with a new |SSL| object, in a way that is intended to be invisible |
| // to the caller. |
| bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer, |
| bool is_resume) { |
| assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get())); |
| Array<uint8_t> handshaker_input; |
| const TestConfig *config = GetTestConfig(ssl->get()); |
| // out is the response from the handshaker, which includes a serialized |
| // handback message, but also serialized updates to the |TestState|. |
| Array<uint8_t> out; |
| if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) || |
| !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume, |
| handshaker_input, &out)) { |
| fprintf(stderr, "Handoff failed.\n"); |
| return false; |
| } |
| |
| UniquePtr<SSL> ssl_handback = |
| config->NewSSL((*ssl)->ctx.get(), nullptr, false, nullptr); |
| if (!ssl_handback) { |
| return false; |
| } |
| CBS output, handback; |
| CBS_init(&output, out.data(), out.size()); |
| if (!CBS_get_u24_length_prefixed(&output, &handback) || |
| !DeserializeContextState(&output, ssl_handback->ctx.get()) || |
| !SetTestState(ssl_handback.get(), TestState::Deserialize( |
| &output, ssl_handback->ctx.get())) || |
| !GetTestState(ssl_handback.get()) || |
| !writer->WriteHandback(handback) || |
| !SSL_apply_handback(ssl_handback.get(), handback)) { |
| fprintf(stderr, "Handback failed.\n"); |
| return false; |
| } |
| MoveBIOs(ssl_handback.get(), ssl->get()); |
| GetTestState(ssl_handback.get())->async_bio = |
| GetTestState(ssl->get())->async_bio; |
| GetTestState(ssl->get())->async_bio = nullptr; |
| |
| *ssl = std::move(ssl_handback); |
| return true; |
| } |
| |
| #endif // defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID) |