| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| |
| #include "internal.h" |
| |
| |
| // This file has two other implementations: x86 assembly language in |
| // asm/bn-586.pl and x86_64 inline assembly in asm/x86_64-gcc.c. |
| #if defined(OPENSSL_NO_ASM) || \ |
| !(defined(OPENSSL_X86) || \ |
| (defined(OPENSSL_X86_64) && (defined(__GNUC__) || defined(__clang__)))) |
| |
| #ifdef BN_ULLONG |
| #define mul_add(r, a, w, c) \ |
| do { \ |
| BN_ULLONG t; \ |
| t = (BN_ULLONG)(w) * (a) + (r) + (c); \ |
| (r) = Lw(t); \ |
| (c) = Hw(t); \ |
| } while (0) |
| |
| #define mul(r, a, w, c) \ |
| do { \ |
| BN_ULLONG t; \ |
| t = (BN_ULLONG)(w) * (a) + (c); \ |
| (r) = Lw(t); \ |
| (c) = Hw(t); \ |
| } while (0) |
| |
| #define sqr(r0, r1, a) \ |
| do { \ |
| BN_ULLONG t; \ |
| t = (BN_ULLONG)(a) * (a); \ |
| (r0) = Lw(t); \ |
| (r1) = Hw(t); \ |
| } while (0) |
| |
| #else |
| |
| #define mul_add(r, a, w, c) \ |
| do { \ |
| BN_ULONG high, low, ret, tmp = (a); \ |
| ret = (r); \ |
| BN_UMULT_LOHI(low, high, w, tmp); \ |
| ret += (c); \ |
| (c) = (ret < (c)) ? 1 : 0; \ |
| (c) += high; \ |
| ret += low; \ |
| (c) += (ret < low) ? 1 : 0; \ |
| (r) = ret; \ |
| } while (0) |
| |
| #define mul(r, a, w, c) \ |
| do { \ |
| BN_ULONG high, low, ret, ta = (a); \ |
| BN_UMULT_LOHI(low, high, w, ta); \ |
| ret = low + (c); \ |
| (c) = high; \ |
| (c) += (ret < low) ? 1 : 0; \ |
| (r) = ret; \ |
| } while (0) |
| |
| #define sqr(r0, r1, a) \ |
| do { \ |
| BN_ULONG tmp = (a); \ |
| BN_UMULT_LOHI(r0, r1, tmp, tmp); \ |
| } while (0) |
| |
| #endif // !BN_ULLONG |
| |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, |
| BN_ULONG w) { |
| BN_ULONG c1 = 0; |
| |
| if (num == 0) { |
| return c1; |
| } |
| |
| while (num & ~3) { |
| mul_add(rp[0], ap[0], w, c1); |
| mul_add(rp[1], ap[1], w, c1); |
| mul_add(rp[2], ap[2], w, c1); |
| mul_add(rp[3], ap[3], w, c1); |
| ap += 4; |
| rp += 4; |
| num -= 4; |
| } |
| |
| while (num) { |
| mul_add(rp[0], ap[0], w, c1); |
| ap++; |
| rp++; |
| num--; |
| } |
| |
| return c1; |
| } |
| |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, |
| BN_ULONG w) { |
| BN_ULONG c1 = 0; |
| |
| if (num == 0) { |
| return c1; |
| } |
| |
| while (num & ~3) { |
| mul(rp[0], ap[0], w, c1); |
| mul(rp[1], ap[1], w, c1); |
| mul(rp[2], ap[2], w, c1); |
| mul(rp[3], ap[3], w, c1); |
| ap += 4; |
| rp += 4; |
| num -= 4; |
| } |
| while (num) { |
| mul(rp[0], ap[0], w, c1); |
| ap++; |
| rp++; |
| num--; |
| } |
| return c1; |
| } |
| |
| void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, size_t n) { |
| if (n == 0) { |
| return; |
| } |
| |
| while (n & ~3) { |
| sqr(r[0], r[1], a[0]); |
| sqr(r[2], r[3], a[1]); |
| sqr(r[4], r[5], a[2]); |
| sqr(r[6], r[7], a[3]); |
| a += 4; |
| r += 8; |
| n -= 4; |
| } |
| while (n) { |
| sqr(r[0], r[1], a[0]); |
| a++; |
| r += 2; |
| n--; |
| } |
| } |
| |
| #ifdef BN_ULLONG |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| size_t n) { |
| BN_ULLONG ll = 0; |
| |
| if (n == 0) { |
| return 0; |
| } |
| |
| while (n & ~3) { |
| ll += (BN_ULLONG)a[0] + b[0]; |
| r[0] = (BN_ULONG)ll; |
| ll >>= BN_BITS2; |
| ll += (BN_ULLONG)a[1] + b[1]; |
| r[1] = (BN_ULONG)ll; |
| ll >>= BN_BITS2; |
| ll += (BN_ULLONG)a[2] + b[2]; |
| r[2] = (BN_ULONG)ll; |
| ll >>= BN_BITS2; |
| ll += (BN_ULLONG)a[3] + b[3]; |
| r[3] = (BN_ULONG)ll; |
| ll >>= BN_BITS2; |
| a += 4; |
| b += 4; |
| r += 4; |
| n -= 4; |
| } |
| while (n) { |
| ll += (BN_ULLONG)a[0] + b[0]; |
| r[0] = (BN_ULONG)ll; |
| ll >>= BN_BITS2; |
| a++; |
| b++; |
| r++; |
| n--; |
| } |
| return (BN_ULONG)ll; |
| } |
| |
| #else // !BN_ULLONG |
| |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| size_t n) { |
| BN_ULONG c, l, t; |
| |
| if (n == 0) { |
| return (BN_ULONG)0; |
| } |
| |
| c = 0; |
| while (n & ~3) { |
| t = a[0]; |
| t += c; |
| c = (t < c); |
| l = t + b[0]; |
| c += (l < t); |
| r[0] = l; |
| t = a[1]; |
| t += c; |
| c = (t < c); |
| l = t + b[1]; |
| c += (l < t); |
| r[1] = l; |
| t = a[2]; |
| t += c; |
| c = (t < c); |
| l = t + b[2]; |
| c += (l < t); |
| r[2] = l; |
| t = a[3]; |
| t += c; |
| c = (t < c); |
| l = t + b[3]; |
| c += (l < t); |
| r[3] = l; |
| a += 4; |
| b += 4; |
| r += 4; |
| n -= 4; |
| } |
| while (n) { |
| t = a[0]; |
| t += c; |
| c = (t < c); |
| l = t + b[0]; |
| c += (l < t); |
| r[0] = l; |
| a++; |
| b++; |
| r++; |
| n--; |
| } |
| return (BN_ULONG)c; |
| } |
| |
| #endif // !BN_ULLONG |
| |
| BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| size_t n) { |
| BN_ULONG t1, t2; |
| int c = 0; |
| |
| if (n == 0) { |
| return (BN_ULONG)0; |
| } |
| |
| while (n & ~3) { |
| t1 = a[0]; |
| t2 = b[0]; |
| r[0] = t1 - t2 - c; |
| if (t1 != t2) { |
| c = (t1 < t2); |
| } |
| t1 = a[1]; |
| t2 = b[1]; |
| r[1] = t1 - t2 - c; |
| if (t1 != t2) { |
| c = (t1 < t2); |
| } |
| t1 = a[2]; |
| t2 = b[2]; |
| r[2] = t1 - t2 - c; |
| if (t1 != t2) { |
| c = (t1 < t2); |
| } |
| t1 = a[3]; |
| t2 = b[3]; |
| r[3] = t1 - t2 - c; |
| if (t1 != t2) { |
| c = (t1 < t2); |
| } |
| a += 4; |
| b += 4; |
| r += 4; |
| n -= 4; |
| } |
| while (n) { |
| t1 = a[0]; |
| t2 = b[0]; |
| r[0] = t1 - t2 - c; |
| if (t1 != t2) { |
| c = (t1 < t2); |
| } |
| a++; |
| b++; |
| r++; |
| n--; |
| } |
| return c; |
| } |
| |
| // mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) |
| // mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) |
| // sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) |
| // sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) |
| |
| #ifdef BN_ULLONG |
| |
| // Keep in mind that additions to multiplication result can not overflow, |
| // because its high half cannot be all-ones. |
| #define mul_add_c(a, b, c0, c1, c2) \ |
| do { \ |
| BN_ULONG hi; \ |
| BN_ULLONG t = (BN_ULLONG)(a) * (b); \ |
| t += (c0); /* no carry */ \ |
| (c0) = (BN_ULONG)Lw(t); \ |
| hi = (BN_ULONG)Hw(t); \ |
| (c1) += (hi); \ |
| if ((c1) < hi) { \ |
| (c2)++; \ |
| } \ |
| } while (0) |
| |
| #define mul_add_c2(a, b, c0, c1, c2) \ |
| do { \ |
| BN_ULONG hi; \ |
| BN_ULLONG t = (BN_ULLONG)(a) * (b); \ |
| BN_ULLONG tt = t + (c0); /* no carry */ \ |
| (c0) = (BN_ULONG)Lw(tt); \ |
| hi = (BN_ULONG)Hw(tt); \ |
| (c1) += hi; \ |
| if ((c1) < hi) { \ |
| (c2)++; \ |
| } \ |
| t += (c0); /* no carry */ \ |
| (c0) = (BN_ULONG)Lw(t); \ |
| hi = (BN_ULONG)Hw(t); \ |
| (c1) += hi; \ |
| if ((c1) < hi) { \ |
| (c2)++; \ |
| } \ |
| } while (0) |
| |
| #define sqr_add_c(a, i, c0, c1, c2) \ |
| do { \ |
| BN_ULONG hi; \ |
| BN_ULLONG t = (BN_ULLONG)(a)[i] * (a)[i]; \ |
| t += (c0); /* no carry */ \ |
| (c0) = (BN_ULONG)Lw(t); \ |
| hi = (BN_ULONG)Hw(t); \ |
| (c1) += hi; \ |
| if ((c1) < hi) { \ |
| (c2)++; \ |
| } \ |
| } while (0) |
| |
| #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) |
| |
| #else |
| |
| // Keep in mind that additions to hi can not overflow, because the high word of |
| // a multiplication result cannot be all-ones. |
| #define mul_add_c(a, b, c0, c1, c2) \ |
| do { \ |
| BN_ULONG ta = (a), tb = (b); \ |
| BN_ULONG lo, hi; \ |
| BN_UMULT_LOHI(lo, hi, ta, tb); \ |
| (c0) += lo; \ |
| hi += ((c0) < lo) ? 1 : 0; \ |
| (c1) += hi; \ |
| (c2) += ((c1) < hi) ? 1 : 0; \ |
| } while (0) |
| |
| #define mul_add_c2(a, b, c0, c1, c2) \ |
| do { \ |
| BN_ULONG ta = (a), tb = (b); \ |
| BN_ULONG lo, hi, tt; \ |
| BN_UMULT_LOHI(lo, hi, ta, tb); \ |
| (c0) += lo; \ |
| tt = hi + (((c0) < lo) ? 1 : 0); \ |
| (c1) += tt; \ |
| (c2) += ((c1) < tt) ? 1 : 0; \ |
| (c0) += lo; \ |
| hi += (c0 < lo) ? 1 : 0; \ |
| (c1) += hi; \ |
| (c2) += ((c1) < hi) ? 1 : 0; \ |
| } while (0) |
| |
| #define sqr_add_c(a, i, c0, c1, c2) \ |
| do { \ |
| BN_ULONG ta = (a)[i]; \ |
| BN_ULONG lo, hi; \ |
| BN_UMULT_LOHI(lo, hi, ta, ta); \ |
| (c0) += lo; \ |
| hi += (c0 < lo) ? 1 : 0; \ |
| (c1) += hi; \ |
| (c2) += ((c1) < hi) ? 1 : 0; \ |
| } while (0) |
| |
| #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) |
| |
| #endif // !BN_ULLONG |
| |
| void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]) { |
| BN_ULONG c1, c2, c3; |
| |
| c1 = 0; |
| c2 = 0; |
| c3 = 0; |
| mul_add_c(a[0], b[0], c1, c2, c3); |
| r[0] = c1; |
| c1 = 0; |
| mul_add_c(a[0], b[1], c2, c3, c1); |
| mul_add_c(a[1], b[0], c2, c3, c1); |
| r[1] = c2; |
| c2 = 0; |
| mul_add_c(a[2], b[0], c3, c1, c2); |
| mul_add_c(a[1], b[1], c3, c1, c2); |
| mul_add_c(a[0], b[2], c3, c1, c2); |
| r[2] = c3; |
| c3 = 0; |
| mul_add_c(a[0], b[3], c1, c2, c3); |
| mul_add_c(a[1], b[2], c1, c2, c3); |
| mul_add_c(a[2], b[1], c1, c2, c3); |
| mul_add_c(a[3], b[0], c1, c2, c3); |
| r[3] = c1; |
| c1 = 0; |
| mul_add_c(a[4], b[0], c2, c3, c1); |
| mul_add_c(a[3], b[1], c2, c3, c1); |
| mul_add_c(a[2], b[2], c2, c3, c1); |
| mul_add_c(a[1], b[3], c2, c3, c1); |
| mul_add_c(a[0], b[4], c2, c3, c1); |
| r[4] = c2; |
| c2 = 0; |
| mul_add_c(a[0], b[5], c3, c1, c2); |
| mul_add_c(a[1], b[4], c3, c1, c2); |
| mul_add_c(a[2], b[3], c3, c1, c2); |
| mul_add_c(a[3], b[2], c3, c1, c2); |
| mul_add_c(a[4], b[1], c3, c1, c2); |
| mul_add_c(a[5], b[0], c3, c1, c2); |
| r[5] = c3; |
| c3 = 0; |
| mul_add_c(a[6], b[0], c1, c2, c3); |
| mul_add_c(a[5], b[1], c1, c2, c3); |
| mul_add_c(a[4], b[2], c1, c2, c3); |
| mul_add_c(a[3], b[3], c1, c2, c3); |
| mul_add_c(a[2], b[4], c1, c2, c3); |
| mul_add_c(a[1], b[5], c1, c2, c3); |
| mul_add_c(a[0], b[6], c1, c2, c3); |
| r[6] = c1; |
| c1 = 0; |
| mul_add_c(a[0], b[7], c2, c3, c1); |
| mul_add_c(a[1], b[6], c2, c3, c1); |
| mul_add_c(a[2], b[5], c2, c3, c1); |
| mul_add_c(a[3], b[4], c2, c3, c1); |
| mul_add_c(a[4], b[3], c2, c3, c1); |
| mul_add_c(a[5], b[2], c2, c3, c1); |
| mul_add_c(a[6], b[1], c2, c3, c1); |
| mul_add_c(a[7], b[0], c2, c3, c1); |
| r[7] = c2; |
| c2 = 0; |
| mul_add_c(a[7], b[1], c3, c1, c2); |
| mul_add_c(a[6], b[2], c3, c1, c2); |
| mul_add_c(a[5], b[3], c3, c1, c2); |
| mul_add_c(a[4], b[4], c3, c1, c2); |
| mul_add_c(a[3], b[5], c3, c1, c2); |
| mul_add_c(a[2], b[6], c3, c1, c2); |
| mul_add_c(a[1], b[7], c3, c1, c2); |
| r[8] = c3; |
| c3 = 0; |
| mul_add_c(a[2], b[7], c1, c2, c3); |
| mul_add_c(a[3], b[6], c1, c2, c3); |
| mul_add_c(a[4], b[5], c1, c2, c3); |
| mul_add_c(a[5], b[4], c1, c2, c3); |
| mul_add_c(a[6], b[3], c1, c2, c3); |
| mul_add_c(a[7], b[2], c1, c2, c3); |
| r[9] = c1; |
| c1 = 0; |
| mul_add_c(a[7], b[3], c2, c3, c1); |
| mul_add_c(a[6], b[4], c2, c3, c1); |
| mul_add_c(a[5], b[5], c2, c3, c1); |
| mul_add_c(a[4], b[6], c2, c3, c1); |
| mul_add_c(a[3], b[7], c2, c3, c1); |
| r[10] = c2; |
| c2 = 0; |
| mul_add_c(a[4], b[7], c3, c1, c2); |
| mul_add_c(a[5], b[6], c3, c1, c2); |
| mul_add_c(a[6], b[5], c3, c1, c2); |
| mul_add_c(a[7], b[4], c3, c1, c2); |
| r[11] = c3; |
| c3 = 0; |
| mul_add_c(a[7], b[5], c1, c2, c3); |
| mul_add_c(a[6], b[6], c1, c2, c3); |
| mul_add_c(a[5], b[7], c1, c2, c3); |
| r[12] = c1; |
| c1 = 0; |
| mul_add_c(a[6], b[7], c2, c3, c1); |
| mul_add_c(a[7], b[6], c2, c3, c1); |
| r[13] = c2; |
| c2 = 0; |
| mul_add_c(a[7], b[7], c3, c1, c2); |
| r[14] = c3; |
| r[15] = c1; |
| } |
| |
| void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]) { |
| BN_ULONG c1, c2, c3; |
| |
| c1 = 0; |
| c2 = 0; |
| c3 = 0; |
| mul_add_c(a[0], b[0], c1, c2, c3); |
| r[0] = c1; |
| c1 = 0; |
| mul_add_c(a[0], b[1], c2, c3, c1); |
| mul_add_c(a[1], b[0], c2, c3, c1); |
| r[1] = c2; |
| c2 = 0; |
| mul_add_c(a[2], b[0], c3, c1, c2); |
| mul_add_c(a[1], b[1], c3, c1, c2); |
| mul_add_c(a[0], b[2], c3, c1, c2); |
| r[2] = c3; |
| c3 = 0; |
| mul_add_c(a[0], b[3], c1, c2, c3); |
| mul_add_c(a[1], b[2], c1, c2, c3); |
| mul_add_c(a[2], b[1], c1, c2, c3); |
| mul_add_c(a[3], b[0], c1, c2, c3); |
| r[3] = c1; |
| c1 = 0; |
| mul_add_c(a[3], b[1], c2, c3, c1); |
| mul_add_c(a[2], b[2], c2, c3, c1); |
| mul_add_c(a[1], b[3], c2, c3, c1); |
| r[4] = c2; |
| c2 = 0; |
| mul_add_c(a[2], b[3], c3, c1, c2); |
| mul_add_c(a[3], b[2], c3, c1, c2); |
| r[5] = c3; |
| c3 = 0; |
| mul_add_c(a[3], b[3], c1, c2, c3); |
| r[6] = c1; |
| r[7] = c2; |
| } |
| |
| void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]) { |
| BN_ULONG c1, c2, c3; |
| |
| c1 = 0; |
| c2 = 0; |
| c3 = 0; |
| sqr_add_c(a, 0, c1, c2, c3); |
| r[0] = c1; |
| c1 = 0; |
| sqr_add_c2(a, 1, 0, c2, c3, c1); |
| r[1] = c2; |
| c2 = 0; |
| sqr_add_c(a, 1, c3, c1, c2); |
| sqr_add_c2(a, 2, 0, c3, c1, c2); |
| r[2] = c3; |
| c3 = 0; |
| sqr_add_c2(a, 3, 0, c1, c2, c3); |
| sqr_add_c2(a, 2, 1, c1, c2, c3); |
| r[3] = c1; |
| c1 = 0; |
| sqr_add_c(a, 2, c2, c3, c1); |
| sqr_add_c2(a, 3, 1, c2, c3, c1); |
| sqr_add_c2(a, 4, 0, c2, c3, c1); |
| r[4] = c2; |
| c2 = 0; |
| sqr_add_c2(a, 5, 0, c3, c1, c2); |
| sqr_add_c2(a, 4, 1, c3, c1, c2); |
| sqr_add_c2(a, 3, 2, c3, c1, c2); |
| r[5] = c3; |
| c3 = 0; |
| sqr_add_c(a, 3, c1, c2, c3); |
| sqr_add_c2(a, 4, 2, c1, c2, c3); |
| sqr_add_c2(a, 5, 1, c1, c2, c3); |
| sqr_add_c2(a, 6, 0, c1, c2, c3); |
| r[6] = c1; |
| c1 = 0; |
| sqr_add_c2(a, 7, 0, c2, c3, c1); |
| sqr_add_c2(a, 6, 1, c2, c3, c1); |
| sqr_add_c2(a, 5, 2, c2, c3, c1); |
| sqr_add_c2(a, 4, 3, c2, c3, c1); |
| r[7] = c2; |
| c2 = 0; |
| sqr_add_c(a, 4, c3, c1, c2); |
| sqr_add_c2(a, 5, 3, c3, c1, c2); |
| sqr_add_c2(a, 6, 2, c3, c1, c2); |
| sqr_add_c2(a, 7, 1, c3, c1, c2); |
| r[8] = c3; |
| c3 = 0; |
| sqr_add_c2(a, 7, 2, c1, c2, c3); |
| sqr_add_c2(a, 6, 3, c1, c2, c3); |
| sqr_add_c2(a, 5, 4, c1, c2, c3); |
| r[9] = c1; |
| c1 = 0; |
| sqr_add_c(a, 5, c2, c3, c1); |
| sqr_add_c2(a, 6, 4, c2, c3, c1); |
| sqr_add_c2(a, 7, 3, c2, c3, c1); |
| r[10] = c2; |
| c2 = 0; |
| sqr_add_c2(a, 7, 4, c3, c1, c2); |
| sqr_add_c2(a, 6, 5, c3, c1, c2); |
| r[11] = c3; |
| c3 = 0; |
| sqr_add_c(a, 6, c1, c2, c3); |
| sqr_add_c2(a, 7, 5, c1, c2, c3); |
| r[12] = c1; |
| c1 = 0; |
| sqr_add_c2(a, 7, 6, c2, c3, c1); |
| r[13] = c2; |
| c2 = 0; |
| sqr_add_c(a, 7, c3, c1, c2); |
| r[14] = c3; |
| r[15] = c1; |
| } |
| |
| void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]) { |
| BN_ULONG c1, c2, c3; |
| |
| c1 = 0; |
| c2 = 0; |
| c3 = 0; |
| sqr_add_c(a, 0, c1, c2, c3); |
| r[0] = c1; |
| c1 = 0; |
| sqr_add_c2(a, 1, 0, c2, c3, c1); |
| r[1] = c2; |
| c2 = 0; |
| sqr_add_c(a, 1, c3, c1, c2); |
| sqr_add_c2(a, 2, 0, c3, c1, c2); |
| r[2] = c3; |
| c3 = 0; |
| sqr_add_c2(a, 3, 0, c1, c2, c3); |
| sqr_add_c2(a, 2, 1, c1, c2, c3); |
| r[3] = c1; |
| c1 = 0; |
| sqr_add_c(a, 2, c2, c3, c1); |
| sqr_add_c2(a, 3, 1, c2, c3, c1); |
| r[4] = c2; |
| c2 = 0; |
| sqr_add_c2(a, 3, 2, c3, c1, c2); |
| r[5] = c3; |
| c3 = 0; |
| sqr_add_c(a, 3, c1, c2, c3); |
| r[6] = c1; |
| r[7] = c2; |
| } |
| |
| #undef mul_add |
| #undef mul |
| #undef sqr |
| #undef mul_add_c |
| #undef mul_add_c2 |
| #undef sqr_add_c |
| #undef sqr_add_c2 |
| |
| #endif |