| /* Written by Nils Larsch for the OpenSSL project. */ |
| /* ==================================================================== |
| * Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ec.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "../fipsmodule/ec/internal.h" |
| #include "../bytestring/internal.h" |
| #include "../internal.h" |
| |
| |
| static const unsigned kParametersTag = |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0; |
| static const unsigned kPublicKeyTag = |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1; |
| |
| EC_KEY *EC_KEY_parse_private_key(CBS *cbs, const EC_GROUP *group) { |
| CBS ec_private_key, private_key; |
| uint64_t version; |
| if (!CBS_get_asn1(cbs, &ec_private_key, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_uint64(&ec_private_key, &version) || |
| version != 1 || |
| !CBS_get_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| return NULL; |
| } |
| |
| // Parse the optional parameters field. |
| EC_GROUP *inner_group = NULL; |
| EC_KEY *ret = NULL; |
| BIGNUM *priv_key = NULL; |
| if (CBS_peek_asn1_tag(&ec_private_key, kParametersTag)) { |
| // Per SEC 1, as an alternative to omitting it, one is allowed to specify |
| // this field and put in a NULL to mean inheriting this value. This was |
| // omitted in a previous version of this logic without problems, so leave it |
| // unimplemented. |
| CBS child; |
| if (!CBS_get_asn1(&ec_private_key, &child, kParametersTag)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| goto err; |
| } |
| inner_group = EC_KEY_parse_parameters(&child); |
| if (inner_group == NULL) { |
| goto err; |
| } |
| if (group == NULL) { |
| group = inner_group; |
| } else if (EC_GROUP_cmp(group, inner_group, NULL) != 0) { |
| // If a group was supplied externally, it must match. |
| OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); |
| goto err; |
| } |
| if (CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| goto err; |
| } |
| } |
| |
| if (group == NULL) { |
| OPENSSL_PUT_ERROR(EC, EC_R_MISSING_PARAMETERS); |
| goto err; |
| } |
| |
| ret = EC_KEY_new(); |
| if (ret == NULL || !EC_KEY_set_group(ret, group)) { |
| goto err; |
| } |
| |
| // Although RFC 5915 specifies the length of the key, OpenSSL historically |
| // got this wrong, so accept any length. See upstream's |
| // 30cd4ff294252c4b6a4b69cbef6a5b4117705d22. |
| priv_key = BN_bin2bn(CBS_data(&private_key), CBS_len(&private_key), NULL); |
| ret->pub_key = EC_POINT_new(group); |
| if (priv_key == NULL || ret->pub_key == NULL || |
| !EC_KEY_set_private_key(ret, priv_key)) { |
| goto err; |
| } |
| |
| if (CBS_peek_asn1_tag(&ec_private_key, kPublicKeyTag)) { |
| CBS child, public_key; |
| uint8_t padding; |
| if (!CBS_get_asn1(&ec_private_key, &child, kPublicKeyTag) || |
| !CBS_get_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || |
| // As in a SubjectPublicKeyInfo, the byte-encoded public key is then |
| // encoded as a BIT STRING with bits ordered as in the DER encoding. |
| !CBS_get_u8(&public_key, &padding) || |
| padding != 0 || |
| // Explicitly check |public_key| is non-empty to save the conversion |
| // form later. |
| CBS_len(&public_key) == 0 || |
| !EC_POINT_oct2point(group, ret->pub_key, CBS_data(&public_key), |
| CBS_len(&public_key), NULL) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| // Save the point conversion form. |
| // TODO(davidben): Consider removing this. |
| ret->conv_form = |
| (point_conversion_form_t)(CBS_data(&public_key)[0] & ~0x01); |
| } else { |
| // Compute the public key instead. |
| if (!ec_point_mul_scalar_base(group, &ret->pub_key->raw, |
| &ret->priv_key->scalar)) { |
| goto err; |
| } |
| // Remember the original private-key-only encoding. |
| // TODO(davidben): Consider removing this. |
| ret->enc_flag |= EC_PKEY_NO_PUBKEY; |
| } |
| |
| if (CBS_len(&ec_private_key) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| // Ensure the resulting key is valid. |
| if (!EC_KEY_check_key(ret)) { |
| goto err; |
| } |
| |
| BN_free(priv_key); |
| EC_GROUP_free(inner_group); |
| return ret; |
| |
| err: |
| EC_KEY_free(ret); |
| BN_free(priv_key); |
| EC_GROUP_free(inner_group); |
| return NULL; |
| } |
| |
| int EC_KEY_marshal_private_key(CBB *cbb, const EC_KEY *key, |
| unsigned enc_flags) { |
| if (key == NULL || key->group == NULL || key->priv_key == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| CBB ec_private_key, private_key; |
| if (!CBB_add_asn1(cbb, &ec_private_key, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_uint64(&ec_private_key, 1 /* version */) || |
| !CBB_add_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING) || |
| !BN_bn2cbb_padded(&private_key, |
| BN_num_bytes(EC_GROUP_get0_order(key->group)), |
| EC_KEY_get0_private_key(key))) { |
| OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
| return 0; |
| } |
| |
| if (!(enc_flags & EC_PKEY_NO_PARAMETERS)) { |
| CBB child; |
| if (!CBB_add_asn1(&ec_private_key, &child, kParametersTag) || |
| !EC_KEY_marshal_curve_name(&child, key->group) || |
| !CBB_flush(&ec_private_key)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
| return 0; |
| } |
| } |
| |
| // TODO(fork): replace this flexibility with sensible default? |
| if (!(enc_flags & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) { |
| CBB child, public_key; |
| if (!CBB_add_asn1(&ec_private_key, &child, kPublicKeyTag) || |
| !CBB_add_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || |
| // As in a SubjectPublicKeyInfo, the byte-encoded public key is then |
| // encoded as a BIT STRING with bits ordered as in the DER encoding. |
| !CBB_add_u8(&public_key, 0 /* padding */) || |
| !EC_POINT_point2cbb(&public_key, key->group, key->pub_key, |
| key->conv_form, NULL) || |
| !CBB_flush(&ec_private_key)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
| return 0; |
| } |
| } |
| |
| if (!CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // kPrimeFieldOID is the encoding of 1.2.840.10045.1.1. |
| static const uint8_t kPrimeField[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01}; |
| |
| static int parse_explicit_prime_curve(CBS *in, CBS *out_prime, CBS *out_a, |
| CBS *out_b, CBS *out_base_x, |
| CBS *out_base_y, CBS *out_order) { |
| // See RFC 3279, section 2.3.5. Note that RFC 3279 calls this structure an |
| // ECParameters while RFC 5480 calls it a SpecifiedECDomain. |
| CBS params, field_id, field_type, curve, base, cofactor; |
| int has_cofactor; |
| uint64_t version; |
| if (!CBS_get_asn1(in, ¶ms, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_uint64(¶ms, &version) || |
| version != 1 || |
| !CBS_get_asn1(¶ms, &field_id, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&field_id, &field_type, CBS_ASN1_OBJECT) || |
| CBS_len(&field_type) != sizeof(kPrimeField) || |
| OPENSSL_memcmp(CBS_data(&field_type), kPrimeField, sizeof(kPrimeField)) != |
| 0 || |
| !CBS_get_asn1(&field_id, out_prime, CBS_ASN1_INTEGER) || |
| !CBS_is_unsigned_asn1_integer(out_prime) || |
| CBS_len(&field_id) != 0 || |
| !CBS_get_asn1(¶ms, &curve, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&curve, out_a, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1(&curve, out_b, CBS_ASN1_OCTETSTRING) || |
| // |curve| has an optional BIT STRING seed which we ignore. |
| !CBS_get_optional_asn1(&curve, NULL, NULL, CBS_ASN1_BITSTRING) || |
| CBS_len(&curve) != 0 || |
| !CBS_get_asn1(¶ms, &base, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1(¶ms, out_order, CBS_ASN1_INTEGER) || |
| !CBS_is_unsigned_asn1_integer(out_order) || |
| !CBS_get_optional_asn1(¶ms, &cofactor, &has_cofactor, |
| CBS_ASN1_INTEGER) || |
| CBS_len(¶ms) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (has_cofactor) { |
| // We only support prime-order curves so the cofactor must be one. |
| if (CBS_len(&cofactor) != 1 || |
| CBS_data(&cofactor)[0] != 1) { |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return 0; |
| } |
| } |
| |
| // Require that the base point use uncompressed form. |
| uint8_t form; |
| if (!CBS_get_u8(&base, &form) || form != POINT_CONVERSION_UNCOMPRESSED) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); |
| return 0; |
| } |
| |
| if (CBS_len(&base) % 2 != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| return 0; |
| } |
| size_t field_len = CBS_len(&base) / 2; |
| CBS_init(out_base_x, CBS_data(&base), field_len); |
| CBS_init(out_base_y, CBS_data(&base) + field_len, field_len); |
| |
| return 1; |
| } |
| |
| // integers_equal returns one if |a| and |b| are equal, up to leading zeros, and |
| // zero otherwise. |
| static int integers_equal(const CBS *a, const uint8_t *b, size_t b_len) { |
| // Remove leading zeros from |a| and |b|. |
| CBS a_copy = *a; |
| while (CBS_len(&a_copy) > 0 && CBS_data(&a_copy)[0] == 0) { |
| CBS_skip(&a_copy, 1); |
| } |
| while (b_len > 0 && b[0] == 0) { |
| b++; |
| b_len--; |
| } |
| return CBS_mem_equal(&a_copy, b, b_len); |
| } |
| |
| EC_GROUP *EC_KEY_parse_curve_name(CBS *cbs) { |
| CBS named_curve; |
| if (!CBS_get_asn1(cbs, &named_curve, CBS_ASN1_OBJECT)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| return NULL; |
| } |
| |
| // Look for a matching curve. |
| const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
| for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
| const struct built_in_curve *curve = &curves->curves[i]; |
| if (CBS_len(&named_curve) == curve->oid_len && |
| OPENSSL_memcmp(CBS_data(&named_curve), curve->oid, curve->oid_len) == |
| 0) { |
| return EC_GROUP_new_by_curve_name(curve->nid); |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return NULL; |
| } |
| |
| int EC_KEY_marshal_curve_name(CBB *cbb, const EC_GROUP *group) { |
| int nid = EC_GROUP_get_curve_name(group); |
| if (nid == NID_undef) { |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return 0; |
| } |
| |
| const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
| for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
| const struct built_in_curve *curve = &curves->curves[i]; |
| if (curve->nid == nid) { |
| CBB child; |
| return CBB_add_asn1(cbb, &child, CBS_ASN1_OBJECT) && |
| CBB_add_bytes(&child, curve->oid, curve->oid_len) && |
| CBB_flush(cbb); |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return 0; |
| } |
| |
| EC_GROUP *EC_KEY_parse_parameters(CBS *cbs) { |
| if (!CBS_peek_asn1_tag(cbs, CBS_ASN1_SEQUENCE)) { |
| return EC_KEY_parse_curve_name(cbs); |
| } |
| |
| // OpenSSL sometimes produces ECPrivateKeys with explicitly-encoded versions |
| // of named curves. |
| // |
| // TODO(davidben): Remove support for this. |
| CBS prime, a, b, base_x, base_y, order; |
| if (!parse_explicit_prime_curve(cbs, &prime, &a, &b, &base_x, &base_y, |
| &order)) { |
| return NULL; |
| } |
| |
| // Look for a matching prime curve. |
| const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
| for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
| const struct built_in_curve *curve = &curves->curves[i]; |
| const unsigned param_len = curve->param_len; |
| // |curve->params| is ordered p, a, b, x, y, order, each component |
| // zero-padded up to the field length. Although SEC 1 states that the |
| // Field-Element-to-Octet-String conversion also pads, OpenSSL mis-encodes |
| // |a| and |b|, so this comparison must allow omitting leading zeros. (This |
| // is relevant for P-521 whose |b| has a leading 0.) |
| if (integers_equal(&prime, curve->params, param_len) && |
| integers_equal(&a, curve->params + param_len, param_len) && |
| integers_equal(&b, curve->params + param_len * 2, param_len) && |
| integers_equal(&base_x, curve->params + param_len * 3, param_len) && |
| integers_equal(&base_y, curve->params + param_len * 4, param_len) && |
| integers_equal(&order, curve->params + param_len * 5, param_len)) { |
| return EC_GROUP_new_by_curve_name(curve->nid); |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
| return NULL; |
| } |
| |
| int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group, const EC_POINT *point, |
| point_conversion_form_t form, BN_CTX *ctx) { |
| size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); |
| if (len == 0) { |
| return 0; |
| } |
| uint8_t *p; |
| return CBB_add_space(out, &p, len) && |
| EC_POINT_point2oct(group, point, form, p, len, ctx) == len; |
| } |
| |
| EC_KEY *d2i_ECPrivateKey(EC_KEY **out, const uint8_t **inp, long len) { |
| // This function treats its |out| parameter differently from other |d2i| |
| // functions. If supplied, take the group from |*out|. |
| const EC_GROUP *group = NULL; |
| if (out != NULL && *out != NULL) { |
| group = EC_KEY_get0_group(*out); |
| } |
| |
| if (len < 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| EC_KEY *ret = EC_KEY_parse_private_key(&cbs, group); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| EC_KEY_free(*out); |
| *out = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) { |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !EC_KEY_marshal_private_key(&cbb, key, EC_KEY_get_enc_flags(key))) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |
| |
| EC_KEY *d2i_ECParameters(EC_KEY **out_key, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| EC_GROUP *group = EC_KEY_parse_parameters(&cbs); |
| if (group == NULL) { |
| return NULL; |
| } |
| |
| EC_KEY *ret = EC_KEY_new(); |
| if (ret == NULL || !EC_KEY_set_group(ret, group)) { |
| EC_GROUP_free(group); |
| EC_KEY_free(ret); |
| return NULL; |
| } |
| EC_GROUP_free(group); |
| |
| if (out_key != NULL) { |
| EC_KEY_free(*out_key); |
| *out_key = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| |
| int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) { |
| if (key == NULL || key->group == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return -1; |
| } |
| |
| CBB cbb; |
| if (!CBB_init(&cbb, 0) || |
| !EC_KEY_marshal_curve_name(&cbb, key->group)) { |
| CBB_cleanup(&cbb); |
| return -1; |
| } |
| return CBB_finish_i2d(&cbb, outp); |
| } |
| |
| EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) { |
| EC_KEY *ret = NULL; |
| |
| if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return NULL; |
| } |
| ret = *keyp; |
| if (ret->pub_key == NULL && |
| (ret->pub_key = EC_POINT_new(ret->group)) == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
| return NULL; |
| } |
| // save the point conversion form |
| ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01); |
| *inp += len; |
| return ret; |
| } |
| |
| int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) { |
| size_t buf_len = 0; |
| int new_buffer = 0; |
| |
| if (key == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| buf_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL, |
| 0, NULL); |
| |
| if (outp == NULL || buf_len == 0) { |
| // out == NULL => just return the length of the octet string |
| return buf_len; |
| } |
| |
| if (*outp == NULL) { |
| *outp = OPENSSL_malloc(buf_len); |
| if (*outp == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| new_buffer = 1; |
| } |
| if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, *outp, |
| buf_len, NULL)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
| if (new_buffer) { |
| OPENSSL_free(*outp); |
| *outp = NULL; |
| } |
| return 0; |
| } |
| |
| if (!new_buffer) { |
| *outp += buf_len; |
| } |
| return buf_len; |
| } |