| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| #include <openssl/type_check.h> |
| |
| #include "../fipsmodule/cipher/internal.h" |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| typedef struct { |
| EVP_CIPHER_CTX cipher_ctx; |
| HMAC_CTX hmac_ctx; |
| // mac_key is the portion of the key used for the MAC. It is retained |
| // separately for the constant-time CBC code. |
| uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| uint8_t mac_key_len; |
| // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit |
| // IV. |
| char implicit_iv; |
| } AEAD_TLS_CTX; |
| |
| OPENSSL_STATIC_ASSERT(EVP_MAX_MD_SIZE < 256, |
| "mac_key_len does not fit in uint8_t"); |
| |
| OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(AEAD_TLS_CTX), |
| "AEAD state is too small"); |
| #if defined(__GNUC__) || defined(__clang__) |
| OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
| alignof(AEAD_TLS_CTX), |
| "AEAD state has insufficient alignment"); |
| #endif |
| |
| static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); |
| HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); |
| } |
| |
| static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, |
| size_t tag_len, enum evp_aead_direction_t dir, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| char implicit_iv) { |
| if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && |
| tag_len != EVP_MD_size(md)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); |
| return 0; |
| } |
| |
| if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; |
| } |
| |
| size_t mac_key_len = EVP_MD_size(md); |
| size_t enc_key_len = EVP_CIPHER_key_length(cipher); |
| assert(mac_key_len + enc_key_len + |
| (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len); |
| |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); |
| HMAC_CTX_init(&tls_ctx->hmac_ctx); |
| assert(mac_key_len <= EVP_MAX_MD_SIZE); |
| OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); |
| tls_ctx->mac_key_len = (uint8_t)mac_key_len; |
| tls_ctx->implicit_iv = implicit_iv; |
| |
| if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], |
| implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, |
| dir == evp_aead_seal) || |
| !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { |
| aead_tls_cleanup(ctx); |
| return 0; |
| } |
| EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); |
| |
| return 1; |
| } |
| |
| static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len, |
| const size_t extra_in_len) { |
| assert(extra_in_len == 0); |
| const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| |
| const size_t hmac_len = HMAC_size(&tls_ctx->hmac_ctx); |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) { |
| // The NULL cipher. |
| return hmac_len; |
| } |
| |
| const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| // An overflow of |in_len + hmac_len| doesn't affect the result mod |
| // |block_size|, provided that |block_size| is a smaller power of two. |
| assert(block_size != 0 && (block_size & (block_size - 1)) == 0); |
| const size_t pad_len = block_size - (in_len + hmac_len) % block_size; |
| return hmac_len + pad_len; |
| } |
| |
| static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| uint8_t *out_tag, size_t *out_tag_len, |
| const size_t max_out_tag_len, |
| const uint8_t *nonce, const size_t nonce_len, |
| const uint8_t *in, const size_t in_len, |
| const uint8_t *extra_in, |
| const size_t extra_in_len, const uint8_t *ad, |
| const size_t ad_len) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| |
| if (!tls_ctx->cipher_ctx.encrypt) { |
| // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
| return 0; |
| } |
| |
| if (in_len > INT_MAX) { |
| // EVP_CIPHER takes int as input. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (ad_len != 13 - 2 /* length bytes */) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| // To allow for CBC mode which changes cipher length, |ad| doesn't include the |
| // length for legacy ciphers. |
| uint8_t ad_extra[2]; |
| ad_extra[0] = (uint8_t)(in_len >> 8); |
| ad_extra[1] = (uint8_t)(in_len & 0xff); |
| |
| // Compute the MAC. This must be first in case the operation is being done |
| // in-place. |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| unsigned mac_len; |
| if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || |
| !HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) || |
| !HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) || |
| !HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) || |
| !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) { |
| return 0; |
| } |
| |
| // Configure the explicit IV. |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| !tls_ctx->implicit_iv && |
| !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
| return 0; |
| } |
| |
| // Encrypt the input. |
| int len; |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { |
| return 0; |
| } |
| |
| unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| |
| // Feed the MAC into the cipher in two steps. First complete the final partial |
| // block from encrypting the input and split the result between |out| and |
| // |out_tag|. Then feed the rest. |
| |
| const size_t early_mac_len = (block_size - (in_len % block_size)) % block_size; |
| if (early_mac_len != 0) { |
| assert(len + block_size - early_mac_len == in_len); |
| uint8_t buf[EVP_MAX_BLOCK_LENGTH]; |
| int buf_len; |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac, |
| (int)early_mac_len)) { |
| return 0; |
| } |
| assert(buf_len == (int)block_size); |
| OPENSSL_memcpy(out + len, buf, block_size - early_mac_len); |
| OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len); |
| } |
| size_t tag_len = early_mac_len; |
| |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, |
| mac + tag_len, mac_len - tag_len)) { |
| return 0; |
| } |
| tag_len += len; |
| |
| if (block_size > 1) { |
| assert(block_size <= 256); |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
| |
| // Compute padding and feed that into the cipher. |
| uint8_t padding[256]; |
| unsigned padding_len = block_size - ((in_len + mac_len) % block_size); |
| OPENSSL_memset(padding, padding_len - 1, padding_len); |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, |
| padding, (int)padding_len)) { |
| return 0; |
| } |
| tag_len += len; |
| } |
| |
| if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) { |
| return 0; |
| } |
| assert(len == 0); // Padding is explicit. |
| assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len)); |
| |
| *out_tag_len = tag_len; |
| return 1; |
| } |
| |
| static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| |
| if (tls_ctx->cipher_ctx.encrypt) { |
| // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
| return 0; |
| } |
| |
| if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| if (max_out_len < in_len) { |
| // This requires that the caller provide space for the MAC, even though it |
| // will always be removed on return. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (ad_len != 13 - 2 /* length bytes */) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| if (in_len > INT_MAX) { |
| // EVP_CIPHER takes int as input. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| // Configure the explicit IV. |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| !tls_ctx->implicit_iv && |
| !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
| return 0; |
| } |
| |
| // Decrypt to get the plaintext + MAC + padding. |
| size_t total = 0; |
| int len; |
| if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { |
| return 0; |
| } |
| total += len; |
| if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { |
| return 0; |
| } |
| total += len; |
| assert(total == in_len); |
| |
| CONSTTIME_SECRET(out, total); |
| |
| // Remove CBC padding. Code from here on is timing-sensitive with respect to |
| // |padding_ok| and |data_plus_mac_len| for CBC ciphers. |
| size_t data_plus_mac_len; |
| crypto_word_t padding_ok; |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { |
| if (!EVP_tls_cbc_remove_padding( |
| &padding_ok, &data_plus_mac_len, out, total, |
| EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), |
| HMAC_size(&tls_ctx->hmac_ctx))) { |
| // Publicly invalid. This can be rejected in non-constant time. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| } else { |
| padding_ok = CONSTTIME_TRUE_W; |
| data_plus_mac_len = total; |
| // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has |
| // already been checked against the MAC size at the top of the function. |
| assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); |
| } |
| size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); |
| |
| // At this point, if the padding is valid, the first |data_plus_mac_len| bytes |
| // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is |
| // still large enough to extract a MAC, but it will be irrelevant. |
| |
| // To allow for CBC mode which changes cipher length, |ad| doesn't include the |
| // length for legacy ciphers. |
| uint8_t ad_fixed[13]; |
| OPENSSL_memcpy(ad_fixed, ad, 11); |
| ad_fixed[11] = (uint8_t)(data_len >> 8); |
| ad_fixed[12] = (uint8_t)(data_len & 0xff); |
| ad_len += 2; |
| |
| // Compute the MAC and extract the one in the record. |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| size_t mac_len; |
| uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; |
| uint8_t *record_mac; |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { |
| if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, |
| ad_fixed, out, data_len, total, |
| tls_ctx->mac_key, tls_ctx->mac_key_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
| |
| record_mac = record_mac_tmp; |
| EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); |
| } else { |
| // We should support the constant-time path for all CBC-mode ciphers |
| // implemented. |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); |
| |
| unsigned mac_len_u; |
| if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || |
| !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) || |
| !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) || |
| !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) { |
| return 0; |
| } |
| mac_len = mac_len_u; |
| |
| assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
| record_mac = &out[data_len]; |
| } |
| |
| // Perform the MAC check and the padding check in constant-time. It should be |
| // safe to simply perform the padding check first, but it would not be under a |
| // different choice of MAC location on padding failure. See |
| // EVP_tls_cbc_remove_padding. |
| crypto_word_t good = |
| constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); |
| good &= padding_ok; |
| CONSTTIME_DECLASSIFY(&good, sizeof(good)); |
| if (!good) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len)); |
| CONSTTIME_DECLASSIFY(out, data_len); |
| |
| // End of timing-sensitive code. |
| |
| *out_len = data_len; |
| return 1; |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, |
| size_t *out_iv_len) { |
| const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); |
| if (iv_len <= 1) { |
| return 0; |
| } |
| |
| *out_iv = tls_ctx->cipher_ctx.iv; |
| *out_iv_len = iv_len; |
| return 1; |
| } |
| |
| static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(), |
| EVP_sha1(), 1 /* implicit iv */); |
| } |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128) |
| 16, // nonce len (IV) |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_aes_128_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| NULL, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV) |
| 0, // nonce len |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_aes_128_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256) |
| 16, // nonce len (IV) |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_aes_256_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| NULL, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV) |
| 0, // nonce len |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_aes_256_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES) |
| 8, // nonce len (IV) |
| 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_des_ede3_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| NULL, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV) |
| 0, // nonce len |
| 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_des_ede3_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_null_sha1_tls = { |
| SHA_DIGEST_LENGTH, // key len |
| 0, // nonce len |
| SHA_DIGEST_LENGTH, // overhead (SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| 0, // seal_scatter_supports_extra_in |
| |
| NULL, // init |
| aead_null_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_open, |
| aead_tls_seal_scatter, |
| NULL, // open_gather |
| NULL, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { |
| return &aead_aes_128_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_128_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { |
| return &aead_aes_256_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_256_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { |
| return &aead_des_ede3_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_des_ede3_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; } |