| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/stack.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| |
| |
| struct stack_st { |
| // num contains the number of valid pointers in |data|. |
| size_t num; |
| void **data; |
| // sorted is non-zero if the values pointed to by |data| are in ascending |
| // order, based on |comp|. |
| int sorted; |
| // num_alloc contains the number of pointers allocated in the buffer pointed |
| // to by |data|, which may be larger than |num|. |
| size_t num_alloc; |
| // comp is an optional comparison function. |
| OPENSSL_sk_cmp_func comp; |
| }; |
| |
| // kMinSize is the number of pointers that will be initially allocated in a new |
| // stack. |
| static const size_t kMinSize = 4; |
| |
| OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) { |
| OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| ret->data = OPENSSL_calloc(kMinSize, sizeof(void *)); |
| if (ret->data == NULL) { |
| goto err; |
| } |
| |
| ret->comp = comp; |
| ret->num_alloc = kMinSize; |
| |
| return ret; |
| |
| err: |
| OPENSSL_free(ret); |
| return NULL; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); } |
| |
| size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) { |
| if (sk == NULL) { |
| return 0; |
| } |
| return sk->num; |
| } |
| |
| void OPENSSL_sk_zero(OPENSSL_STACK *sk) { |
| if (sk == NULL || sk->num == 0) { |
| return; |
| } |
| OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num); |
| sk->num = 0; |
| sk->sorted = 0; |
| } |
| |
| void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) { |
| if (!sk || i >= sk->num) { |
| return NULL; |
| } |
| return sk->data[i]; |
| } |
| |
| void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) { |
| if (!sk || i >= sk->num) { |
| return NULL; |
| } |
| return sk->data[i] = value; |
| } |
| |
| void OPENSSL_sk_free(OPENSSL_STACK *sk) { |
| if (sk == NULL) { |
| return; |
| } |
| OPENSSL_free(sk->data); |
| OPENSSL_free(sk); |
| } |
| |
| void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk, |
| OPENSSL_sk_call_free_func call_free_func, |
| OPENSSL_sk_free_func free_func) { |
| if (sk == NULL) { |
| return; |
| } |
| |
| for (size_t i = 0; i < sk->num; i++) { |
| if (sk->data[i] != NULL) { |
| call_free_func(free_func, sk->data[i]); |
| } |
| } |
| OPENSSL_sk_free(sk); |
| } |
| |
| // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func| |
| // directly. This is undefined in C. Some callers called |sk_pop_free| directly, |
| // so we must maintain a compatibility version for now. |
| static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) { |
| func(ptr); |
| } |
| |
| void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) { |
| OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func); |
| } |
| |
| size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) { |
| if (sk == NULL) { |
| return 0; |
| } |
| |
| if (sk->num >= INT_MAX) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| if (sk->num_alloc <= sk->num + 1) { |
| // Attempt to double the size of the array. |
| size_t new_alloc = sk->num_alloc << 1; |
| size_t alloc_size = new_alloc * sizeof(void *); |
| void **data; |
| |
| // If the doubling overflowed, try to increment. |
| if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { |
| new_alloc = sk->num_alloc + 1; |
| alloc_size = new_alloc * sizeof(void *); |
| } |
| |
| // If the increment also overflowed, fail. |
| if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { |
| return 0; |
| } |
| |
| data = OPENSSL_realloc(sk->data, alloc_size); |
| if (data == NULL) { |
| return 0; |
| } |
| |
| sk->data = data; |
| sk->num_alloc = new_alloc; |
| } |
| |
| if (where >= sk->num) { |
| sk->data[sk->num] = p; |
| } else { |
| OPENSSL_memmove(&sk->data[where + 1], &sk->data[where], |
| sizeof(void *) * (sk->num - where)); |
| sk->data[where] = p; |
| } |
| |
| sk->num++; |
| sk->sorted = 0; |
| |
| return sk->num; |
| } |
| |
| void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) { |
| void *ret; |
| |
| if (!sk || where >= sk->num) { |
| return NULL; |
| } |
| |
| ret = sk->data[where]; |
| |
| if (where != sk->num - 1) { |
| OPENSSL_memmove(&sk->data[where], &sk->data[where + 1], |
| sizeof(void *) * (sk->num - where - 1)); |
| } |
| |
| sk->num--; |
| return ret; |
| } |
| |
| void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) { |
| if (sk == NULL) { |
| return NULL; |
| } |
| |
| for (size_t i = 0; i < sk->num; i++) { |
| if (sk->data[i] == p) { |
| return OPENSSL_sk_delete(sk, i); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void OPENSSL_sk_delete_if(OPENSSL_STACK *sk, |
| OPENSSL_sk_call_delete_if_func call_func, |
| OPENSSL_sk_delete_if_func func, void *data) { |
| if (sk == NULL) { |
| return; |
| } |
| |
| size_t new_num = 0; |
| for (size_t i = 0; i < sk->num; i++) { |
| if (!call_func(func, sk->data[i], data)) { |
| sk->data[new_num] = sk->data[i]; |
| new_num++; |
| } |
| } |
| sk->num = new_num; |
| } |
| |
| int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p, |
| OPENSSL_sk_call_cmp_func call_cmp_func) { |
| if (sk == NULL) { |
| return 0; |
| } |
| |
| if (sk->comp == NULL) { |
| // Use pointer equality when no comparison function has been set. |
| for (size_t i = 0; i < sk->num; i++) { |
| if (sk->data[i] == p) { |
| if (out_index) { |
| *out_index = i; |
| } |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| if (p == NULL) { |
| return 0; |
| } |
| |
| if (!OPENSSL_sk_is_sorted(sk)) { |
| for (size_t i = 0; i < sk->num; i++) { |
| if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) { |
| if (out_index) { |
| *out_index = i; |
| } |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| // The stack is sorted, so binary search to find the element. |
| // |
| // |lo| and |hi| maintain a half-open interval of where the answer may be. All |
| // indices such that |lo <= idx < hi| are candidates. |
| size_t lo = 0, hi = sk->num; |
| while (lo < hi) { |
| // Bias |mid| towards |lo|. See the |r == 0| case below. |
| size_t mid = lo + (hi - lo - 1) / 2; |
| assert(lo <= mid && mid < hi); |
| int r = call_cmp_func(sk->comp, p, sk->data[mid]); |
| if (r > 0) { |
| lo = mid + 1; // |mid| is too low. |
| } else if (r < 0) { |
| hi = mid; // |mid| is too high. |
| } else { |
| // |mid| matches. However, this function returns the earliest match, so we |
| // can only return if the range has size one. |
| if (hi - lo == 1) { |
| if (out_index != NULL) { |
| *out_index = mid; |
| } |
| return 1; |
| } |
| // The sample is biased towards |lo|. |mid| can only be |hi - 1| if |
| // |hi - lo| was one, so this makes forward progress. |
| assert(mid + 1 < hi); |
| hi = mid + 1; |
| } |
| } |
| |
| assert(lo == hi); |
| return 0; // Not found. |
| } |
| |
| void *OPENSSL_sk_shift(OPENSSL_STACK *sk) { |
| if (sk == NULL) { |
| return NULL; |
| } |
| if (sk->num == 0) { |
| return NULL; |
| } |
| return OPENSSL_sk_delete(sk, 0); |
| } |
| |
| size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) { |
| return OPENSSL_sk_insert(sk, p, sk->num); |
| } |
| |
| void *OPENSSL_sk_pop(OPENSSL_STACK *sk) { |
| if (sk == NULL) { |
| return NULL; |
| } |
| if (sk->num == 0) { |
| return NULL; |
| } |
| return OPENSSL_sk_delete(sk, sk->num - 1); |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) { |
| if (sk == NULL) { |
| return NULL; |
| } |
| |
| OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| ret->data = OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc); |
| if (ret->data == NULL) { |
| goto err; |
| } |
| |
| ret->num = sk->num; |
| ret->sorted = sk->sorted; |
| ret->num_alloc = sk->num_alloc; |
| ret->comp = sk->comp; |
| return ret; |
| |
| err: |
| OPENSSL_sk_free(ret); |
| return NULL; |
| } |
| |
| static size_t parent_idx(size_t idx) { |
| assert(idx > 0); |
| return (idx - 1) / 2; |
| } |
| |
| static size_t left_idx(size_t idx) { |
| // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If |
| // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot |
| // overflow. |
| assert(idx <= PTRDIFF_MAX); |
| static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow"); |
| return 2 * idx + 1; |
| } |
| |
| // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy |
| // the heap property. Only the first |num| elements of |sk| are considered. |
| static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func, |
| size_t i, size_t num) { |
| assert(i < num && num <= sk->num); |
| for (;;) { |
| size_t left = left_idx(i); |
| if (left >= num) { |
| break; // No left child. |
| } |
| |
| // Swap |i| with the largest of its children. |
| size_t next = i; |
| if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) { |
| next = left; |
| } |
| size_t right = left + 1; // Cannot overflow because |left < num|. |
| if (right < num && |
| call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) { |
| next = right; |
| } |
| |
| if (i == next) { |
| break; // |i| is already larger than its children. |
| } |
| |
| void *tmp = sk->data[i]; |
| sk->data[i] = sk->data[next]; |
| sk->data[next] = tmp; |
| i = next; |
| } |
| } |
| |
| void OPENSSL_sk_sort(OPENSSL_STACK *sk, |
| OPENSSL_sk_call_cmp_func call_cmp_func) { |
| if (sk == NULL || sk->comp == NULL || sk->sorted) { |
| return; |
| } |
| |
| if (sk->num >= 2) { |
| // |qsort| lacks a context parameter in the comparison function for us to |
| // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to |
| // the expected type, it is undefined behavior in C can trip sanitizers. |
| // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See |
| // https://stackoverflow.com/a/39561369 |
| // |
| // Use our own heap sort instead. This is not performance-sensitive, so we |
| // optimize for simplicity and size. First, build a max-heap in place. |
| for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) { |
| down_heap(sk, call_cmp_func, i, sk->num); |
| } |
| |
| // Iteratively remove the maximum element to populate the result in reverse. |
| for (size_t i = sk->num - 1; i > 0; i--) { |
| void *tmp = sk->data[0]; |
| sk->data[0] = sk->data[i]; |
| sk->data[i] = tmp; |
| down_heap(sk, call_cmp_func, 0, i); |
| } |
| } |
| sk->sorted = 1; |
| } |
| |
| int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) { |
| if (!sk) { |
| return 1; |
| } |
| // Zero- and one-element lists are always sorted. |
| return sk->sorted || (sk->comp != NULL && sk->num < 2); |
| } |
| |
| OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
| OPENSSL_sk_cmp_func comp) { |
| OPENSSL_sk_cmp_func old = sk->comp; |
| |
| if (sk->comp != comp) { |
| sk->sorted = 0; |
| } |
| sk->comp = comp; |
| |
| return old; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
| OPENSSL_sk_call_copy_func call_copy_func, |
| OPENSSL_sk_copy_func copy_func, |
| OPENSSL_sk_call_free_func call_free_func, |
| OPENSSL_sk_free_func free_func) { |
| OPENSSL_STACK *ret = OPENSSL_sk_dup(sk); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| for (size_t i = 0; i < ret->num; i++) { |
| if (ret->data[i] == NULL) { |
| continue; |
| } |
| ret->data[i] = call_copy_func(copy_func, ret->data[i]); |
| if (ret->data[i] == NULL) { |
| for (size_t j = 0; j < i; j++) { |
| if (ret->data[j] != NULL) { |
| call_free_func(free_func, ret->data[j]); |
| } |
| } |
| OPENSSL_sk_free(ret); |
| return NULL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); } |
| |
| size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); } |
| |
| void *sk_value(const OPENSSL_STACK *sk, size_t i) { |
| return OPENSSL_sk_value(sk, i); |
| } |
| |
| void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); } |
| |
| size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); } |
| |
| void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); } |
| |
| void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func, |
| OPENSSL_sk_free_func free_func) { |
| OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func); |
| } |