blob: 95dc4c888147cdaf5324a9fbddba4c382df1bee2 [file] [log] [blame]
#! /usr/bin/env perl
# Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for ARMv8.
#
# February 2015.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816.
#
# with/without -DECP_NISTZ256_ASM
# Apple A7 +190-360%
# Cortex-A53 +190-400%
# Cortex-A57 +190-350%
# Denver +230-400%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +400% means 5x improvement.
# The first two arguments should always be the flavour and output file path.
if ($#ARGV < 1) { die "Not enough arguments provided.
Two arguments are necessary: the flavour and the output file path."; }
$flavour = shift;
$output = shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
{
my ($rp,$ap,$bp,$bi,$a0,$a1,$a2,$a3,$t0,$t1,$t2,$t3,$poly1,$poly3,
$acc0,$acc1,$acc2,$acc3,$acc4,$acc5) =
map("x$_",(0..17,19,20));
my ($acc6,$acc7)=($ap,$bp); # used in __ecp_nistz256_sqr_mont
$code.=<<___;
#include "openssl/arm_arch.h"
.section .rodata
.align 5
.Lpoly:
.quad 0xffffffffffffffff,0x00000000ffffffff,0x0000000000000000,0xffffffff00000001
.LRR: // 2^512 mod P precomputed for NIST P256 polynomial
.quad 0x0000000000000003,0xfffffffbffffffff,0xfffffffffffffffe,0x00000004fffffffd
.Lone_mont:
.quad 0x0000000000000001,0xffffffff00000000,0xffffffffffffffff,0x00000000fffffffe
.Lone:
.quad 1,0,0,0
.Lord:
.quad 0xf3b9cac2fc632551,0xbce6faada7179e84,0xffffffffffffffff,0xffffffff00000000
.LordK:
.quad 0xccd1c8aaee00bc4f
.asciz "ECP_NISTZ256 for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.text
// void ecp_nistz256_mul_mont(BN_ULONG x0[4],const BN_ULONG x1[4],
// const BN_ULONG x2[4]);
.globl ecp_nistz256_mul_mont
.type ecp_nistz256_mul_mont,%function
.align 4
ecp_nistz256_mul_mont:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
ldr $bi,[$bp] // bp[0]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
bl __ecp_nistz256_mul_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont
// void ecp_nistz256_sqr_mont(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_sqr_mont
.type ecp_nistz256_sqr_mont,%function
.align 4
ecp_nistz256_sqr_mont:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
bl __ecp_nistz256_sqr_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont
// void ecp_nistz256_div_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_div_by_2
.type ecp_nistz256_div_by_2,%function
.align 4
ecp_nistz256_div_by_2:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
bl __ecp_nistz256_div_by_2
ldp x29,x30,[sp],#16
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2
// void ecp_nistz256_mul_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_mul_by_2
.type ecp_nistz256_mul_by_2,%function
.align 4
ecp_nistz256_mul_by_2:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
bl __ecp_nistz256_add_to // ret = a+a // 2*a
ldp x29,x30,[sp],#16
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2
// void ecp_nistz256_mul_by_3(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_mul_by_3
.type ecp_nistz256_mul_by_3,%function
.align 4
ecp_nistz256_mul_by_3:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
mov $a0,$acc0
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
bl __ecp_nistz256_add_to // ret = a+a // 2*a
mov $t0,$a0
mov $t1,$a1
mov $t2,$a2
mov $t3,$a3
bl __ecp_nistz256_add_to // ret += a // 2*a+a=3*a
ldp x29,x30,[sp],#16
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3
// void ecp_nistz256_sub(BN_ULONG x0[4],const BN_ULONG x1[4],
// const BN_ULONG x2[4]);
.globl ecp_nistz256_sub
.type ecp_nistz256_sub,%function
.align 4
ecp_nistz256_sub:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
bl __ecp_nistz256_sub_from
ldp x29,x30,[sp],#16
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_sub,.-ecp_nistz256_sub
// void ecp_nistz256_neg(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_neg
.type ecp_nistz256_neg,%function
.align 4
ecp_nistz256_neg:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-16]!
add x29,sp,#0
mov $bp,$ap
mov $acc0,xzr // a = 0
mov $acc1,xzr
mov $acc2,xzr
mov $acc3,xzr
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
bl __ecp_nistz256_sub_from
ldp x29,x30,[sp],#16
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_neg,.-ecp_nistz256_neg
// note that __ecp_nistz256_mul_mont expects a[0-3] input pre-loaded
// to $a0-$a3 and b[0] - to $bi
.type __ecp_nistz256_mul_mont,%function
.align 4
__ecp_nistz256_mul_mont:
mul $acc0,$a0,$bi // a[0]*b[0]
umulh $t0,$a0,$bi
mul $acc1,$a1,$bi // a[1]*b[0]
umulh $t1,$a1,$bi
mul $acc2,$a2,$bi // a[2]*b[0]
umulh $t2,$a2,$bi
mul $acc3,$a3,$bi // a[3]*b[0]
umulh $t3,$a3,$bi
ldr $bi,[$bp,#8] // b[1]
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
lsl $t0,$acc0,#32
adcs $acc2,$acc2,$t1
lsr $t1,$acc0,#32
adcs $acc3,$acc3,$t2
adc $acc4,xzr,$t3
mov $acc5,xzr
___
for($i=1;$i<4;$i++) {
# Reduction iteration is normally performed by accumulating
# result of multiplication of modulus by "magic" digit [and
# omitting least significant word, which is guaranteed to
# be 0], but thanks to special form of modulus and "magic"
# digit being equal to least significant word, it can be
# performed with additions and subtractions alone. Indeed:
#
# ffff0001.00000000.0000ffff.ffffffff
# * abcdefgh
# + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
# + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000
# - 0000abcd.efgh0000.00000000.00000000.abcdefgh
#
# or marking redundant operations:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.--------
# + abcdefgh.abcdefgh.0000abcd.efgh0000.--------
# - 0000abcd.efgh0000.--------.--------.--------
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
mul $t0,$a0,$bi // lo(a[0]*b[i])
adcs $acc1,$acc2,$t1
mul $t1,$a1,$bi // lo(a[1]*b[i])
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
mul $t2,$a2,$bi // lo(a[2]*b[i])
adcs $acc3,$acc4,$t3
mul $t3,$a3,$bi // lo(a[3]*b[i])
adc $acc4,$acc5,xzr
adds $acc0,$acc0,$t0 // accumulate low parts of multiplication
umulh $t0,$a0,$bi // hi(a[0]*b[i])
adcs $acc1,$acc1,$t1
umulh $t1,$a1,$bi // hi(a[1]*b[i])
adcs $acc2,$acc2,$t2
umulh $t2,$a2,$bi // hi(a[2]*b[i])
adcs $acc3,$acc3,$t3
umulh $t3,$a3,$bi // hi(a[3]*b[i])
adc $acc4,$acc4,xzr
___
$code.=<<___ if ($i<3);
ldr $bi,[$bp,#8*($i+1)] // b[$i+1]
___
$code.=<<___;
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
lsl $t0,$acc0,#32
adcs $acc2,$acc2,$t1
lsr $t1,$acc0,#32
adcs $acc3,$acc3,$t2
adcs $acc4,$acc4,$t3
adc $acc5,xzr,xzr
___
}
$code.=<<___;
// last reduction
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
adcs $acc3,$acc4,$t3
adc $acc4,$acc5,xzr
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbcs $t3,$acc3,$poly3
sbcs xzr,$acc4,xzr // did it borrow?
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
// note that __ecp_nistz256_sqr_mont expects a[0-3] input pre-loaded
// to $a0-$a3
.type __ecp_nistz256_sqr_mont,%function
.align 4
__ecp_nistz256_sqr_mont:
// | | | | | |a1*a0| |
// | | | | |a2*a0| | |
// | |a3*a2|a3*a0| | | |
// | | | |a2*a1| | | |
// | | |a3*a1| | | | |
// *| | | | | | | | 2|
// +|a3*a3|a2*a2|a1*a1|a0*a0|
// |--+--+--+--+--+--+--+--|
// |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx
//
// "can't overflow" below mark carrying into high part of
// multiplication result, which can't overflow, because it
// can never be all ones.
mul $acc1,$a1,$a0 // a[1]*a[0]
umulh $t1,$a1,$a0
mul $acc2,$a2,$a0 // a[2]*a[0]
umulh $t2,$a2,$a0
mul $acc3,$a3,$a0 // a[3]*a[0]
umulh $acc4,$a3,$a0
adds $acc2,$acc2,$t1 // accumulate high parts of multiplication
mul $t0,$a2,$a1 // a[2]*a[1]
umulh $t1,$a2,$a1
adcs $acc3,$acc3,$t2
mul $t2,$a3,$a1 // a[3]*a[1]
umulh $t3,$a3,$a1
adc $acc4,$acc4,xzr // can't overflow
mul $acc5,$a3,$a2 // a[3]*a[2]
umulh $acc6,$a3,$a2
adds $t1,$t1,$t2 // accumulate high parts of multiplication
mul $acc0,$a0,$a0 // a[0]*a[0]
adc $t2,$t3,xzr // can't overflow
adds $acc3,$acc3,$t0 // accumulate low parts of multiplication
umulh $a0,$a0,$a0
adcs $acc4,$acc4,$t1
mul $t1,$a1,$a1 // a[1]*a[1]
adcs $acc5,$acc5,$t2
umulh $a1,$a1,$a1
adc $acc6,$acc6,xzr // can't overflow
adds $acc1,$acc1,$acc1 // acc[1-6]*=2
mul $t2,$a2,$a2 // a[2]*a[2]
adcs $acc2,$acc2,$acc2
umulh $a2,$a2,$a2
adcs $acc3,$acc3,$acc3
mul $t3,$a3,$a3 // a[3]*a[3]
adcs $acc4,$acc4,$acc4
umulh $a3,$a3,$a3
adcs $acc5,$acc5,$acc5
adcs $acc6,$acc6,$acc6
adc $acc7,xzr,xzr
adds $acc1,$acc1,$a0 // +a[i]*a[i]
adcs $acc2,$acc2,$t1
adcs $acc3,$acc3,$a1
adcs $acc4,$acc4,$t2
adcs $acc5,$acc5,$a2
lsl $t0,$acc0,#32
adcs $acc6,$acc6,$t3
lsr $t1,$acc0,#32
adc $acc7,$acc7,$a3
___
for($i=0;$i<3;$i++) { # reductions, see commentary in
# multiplication for details
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
lsl $t0,$acc0,#32
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
lsr $t1,$acc0,#32
adc $acc3,$t3,xzr // can't overflow
___
}
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
adc $acc3,$t3,xzr // can't overflow
adds $acc0,$acc0,$acc4 // accumulate upper half
adcs $acc1,$acc1,$acc5
adcs $acc2,$acc2,$acc6
adcs $acc3,$acc3,$acc7
adc $acc4,xzr,xzr
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbcs $t3,$acc3,$poly3
sbcs xzr,$acc4,xzr // did it borrow?
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sqr_mont,.-__ecp_nistz256_sqr_mont
// Note that __ecp_nistz256_add_to expects both input vectors pre-loaded to
// $a0-$a3 and $t0-$t3. This is done because it's used in multiple
// contexts, e.g. in multiplication by 2 and 3...
.type __ecp_nistz256_add_to,%function
.align 4
__ecp_nistz256_add_to:
adds $acc0,$acc0,$t0 // ret = a+b
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
adc $ap,xzr,xzr // zap $ap
adds $t0,$acc0,#1 // subs $t0,$a0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbcs $t3,$acc3,$poly3
sbcs xzr,$ap,xzr // did subtraction borrow?
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_add_to,.-__ecp_nistz256_add_to
.type __ecp_nistz256_sub_from,%function
.align 4
__ecp_nistz256_sub_from:
ldp $t0,$t1,[$bp]
ldp $t2,$t3,[$bp,#16]
subs $acc0,$acc0,$t0 // ret = a-b
sbcs $acc1,$acc1,$t1
sbcs $acc2,$acc2,$t2
sbcs $acc3,$acc3,$t3
sbc $ap,xzr,xzr // zap $ap
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adc $t3,$acc3,$poly3
cmp $ap,xzr // did subtraction borrow?
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,eq
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from
.type __ecp_nistz256_sub_morf,%function
.align 4
__ecp_nistz256_sub_morf:
ldp $t0,$t1,[$bp]
ldp $t2,$t3,[$bp,#16]
subs $acc0,$t0,$acc0 // ret = b-a
sbcs $acc1,$t1,$acc1
sbcs $acc2,$t2,$acc2
sbcs $acc3,$t3,$acc3
sbc $ap,xzr,xzr // zap $ap
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adc $t3,$acc3,$poly3
cmp $ap,xzr // did subtraction borrow?
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,eq
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf
.type __ecp_nistz256_div_by_2,%function
.align 4
__ecp_nistz256_div_by_2:
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = a+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adcs $t3,$acc3,$poly3
adc $ap,xzr,xzr // zap $ap
tst $acc0,#1 // is a even?
csel $acc0,$acc0,$t0,eq // ret = even ? a : a+modulus
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
csel $acc3,$acc3,$t3,eq
csel $ap,xzr,$ap,eq
lsr $acc0,$acc0,#1 // ret >>= 1
orr $acc0,$acc0,$acc1,lsl#63
lsr $acc1,$acc1,#1
orr $acc1,$acc1,$acc2,lsl#63
lsr $acc2,$acc2,#1
orr $acc2,$acc2,$acc3,lsl#63
lsr $acc3,$acc3,#1
stp $acc0,$acc1,[$rp]
orr $acc3,$acc3,$ap,lsl#63
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
___
########################################################################
# following subroutines are "literal" implementation of those found in
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
{
my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3));
# above map() describes stack layout with 4 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real) = map("x$_",(21,22));
$code.=<<___;
.globl ecp_nistz256_point_double
.type ecp_nistz256_point_double,%function
.align 5
ecp_nistz256_point_double:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-96]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
sub sp,sp,#32*4
.Ldouble_shortcut:
ldp $acc0,$acc1,[$ap,#32]
mov $rp_real,$rp
ldp $acc2,$acc3,[$ap,#48]
mov $ap_real,$ap
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
mov $t0,$acc0
ldr $poly3,[$poly3,#24]
mov $t1,$acc1
ldp $a0,$a1,[$ap_real,#64] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[$ap_real,#64+16]
add $rp,sp,#$S
bl __ecp_nistz256_add_to // p256_mul_by_2(S, in_y);
add $rp,sp,#$Zsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Zsqr, in_z);
ldp $t0,$t1,[$ap_real]
ldp $t2,$t3,[$ap_real,#16]
mov $a0,$acc0 // put Zsqr aside for p256_sub
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $rp,sp,#$M
bl __ecp_nistz256_add_to // p256_add(M, Zsqr, in_x);
add $bp,$ap_real,#0
mov $acc0,$a0 // restore Zsqr
mov $acc1,$a1
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
mov $acc2,$a2
mov $acc3,$a3
ldp $a2,$a3,[sp,#$S+16]
add $rp,sp,#$Zsqr
bl __ecp_nistz256_sub_morf // p256_sub(Zsqr, in_x, Zsqr);
add $rp,sp,#$S
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(S, S);
ldr $bi,[$ap_real,#32]
ldp $a0,$a1,[$ap_real,#64]
ldp $a2,$a3,[$ap_real,#64+16]
add $bp,$ap_real,#32
add $rp,sp,#$tmp0
bl __ecp_nistz256_mul_mont // p256_mul_mont(tmp0, in_z, in_y);
mov $t0,$acc0
mov $t1,$acc1
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[sp,#$S+16]
add $rp,$rp_real,#64
bl __ecp_nistz256_add_to // p256_mul_by_2(res_z, tmp0);
add $rp,sp,#$tmp0
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(tmp0, S);
ldr $bi,[sp,#$Zsqr] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$M]
ldp $a2,$a3,[sp,#$M+16]
add $rp,$rp_real,#32
bl __ecp_nistz256_div_by_2 // p256_div_by_2(res_y, tmp0);
add $bp,sp,#$Zsqr
add $rp,sp,#$M
bl __ecp_nistz256_mul_mont // p256_mul_mont(M, M, Zsqr);
mov $t0,$acc0 // duplicate M
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
mov $a0,$acc0 // put M aside
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $rp,sp,#$M
bl __ecp_nistz256_add_to
mov $t0,$a0 // restore M
mov $t1,$a1
ldr $bi,[$ap_real] // forward load for p256_mul_mont
mov $t2,$a2
ldp $a0,$a1,[sp,#$S]
mov $t3,$a3
ldp $a2,$a3,[sp,#$S+16]
bl __ecp_nistz256_add_to // p256_mul_by_3(M, M);
add $bp,$ap_real,#0
add $rp,sp,#$S
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, in_x);
mov $t0,$acc0
mov $t1,$acc1
ldp $a0,$a1,[sp,#$M] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[sp,#$M+16]
add $rp,sp,#$tmp0
bl __ecp_nistz256_add_to // p256_mul_by_2(tmp0, S);
add $rp,$rp_real,#0
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(res_x, M);
add $bp,sp,#$tmp0
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, tmp0);
add $bp,sp,#$S
add $rp,sp,#$S
bl __ecp_nistz256_sub_morf // p256_sub(S, S, res_x);
ldr $bi,[sp,#$M]
mov $a0,$acc0 // copy S
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $bp,sp,#$M
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, M);
add $bp,$rp_real,#32
add $rp,$rp_real,#32
bl __ecp_nistz256_sub_from // p256_sub(res_y, S, res_y);
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x29,x30,[sp],#96
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_point_double,.-ecp_nistz256_point_double
___
}
########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT *in2);
{
my ($res_x,$res_y,$res_z,
$H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2)=map(32*$_,(0..11));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
# above map() describes stack layout with 12 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp0,$temp1,$temp2)=map("x$_",(21..28));
$code.=<<___;
.globl ecp_nistz256_point_add
.type ecp_nistz256_point_add,%function
.align 5
ecp_nistz256_point_add:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-96]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
sub sp,sp,#32*12
ldp $a0,$a1,[$bp,#64] // in2_z
ldp $a2,$a3,[$bp,#64+16]
mov $rp_real,$rp
mov $ap_real,$ap
mov $bp_real,$bp
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
orr $t0,$a0,$a1
orr $t2,$a2,$a3
orr $in2infty,$t0,$t2
cmp $in2infty,#0
csetm $in2infty,ne // ~in2infty
add $rp,sp,#$Z2sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z2sqr, in2_z);
ldp $a0,$a1,[$ap_real,#64] // in1_z
ldp $a2,$a3,[$ap_real,#64+16]
orr $t0,$a0,$a1
orr $t2,$a2,$a3
orr $in1infty,$t0,$t2
cmp $in1infty,#0
csetm $in1infty,ne // ~in1infty
add $rp,sp,#$Z1sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z);
ldr $bi,[$bp_real,#64]
ldp $a0,$a1,[sp,#$Z2sqr]
ldp $a2,$a3,[sp,#$Z2sqr+16]
add $bp,$bp_real,#64
add $rp,sp,#$S1
bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, Z2sqr, in2_z);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$Z1sqr]
ldp $a2,$a3,[sp,#$Z1sqr+16]
add $bp,$ap_real,#64
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z);
ldr $bi,[$ap_real,#32]
ldp $a0,$a1,[sp,#$S1]
ldp $a2,$a3,[sp,#$S1+16]
add $bp,$ap_real,#32
add $rp,sp,#$S1
bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, S1, in1_y);
ldr $bi,[$bp_real,#32]
ldp $a0,$a1,[sp,#$S2]
ldp $a2,$a3,[sp,#$S2+16]
add $bp,$bp_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y);
add $bp,sp,#$S1
ldr $bi,[sp,#$Z2sqr] // forward load for p256_mul_mont
ldp $a0,$a1,[$ap_real]
ldp $a2,$a3,[$ap_real,#16]
add $rp,sp,#$R
bl __ecp_nistz256_sub_from // p256_sub(R, S2, S1);
orr $acc0,$acc0,$acc1 // see if result is zero
orr $acc2,$acc2,$acc3
orr $temp0,$acc0,$acc2 // ~is_equal(S1,S2)
add $bp,sp,#$Z2sqr
add $rp,sp,#$U1
bl __ecp_nistz256_mul_mont // p256_mul_mont(U1, in1_x, Z2sqr);
ldr $bi,[sp,#$Z1sqr]
ldp $a0,$a1,[$bp_real]
ldp $a2,$a3,[$bp_real,#16]
add $bp,sp,#$Z1sqr
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in2_x, Z1sqr);
add $bp,sp,#$U1
ldp $a0,$a1,[sp,#$R] // forward load for p256_sqr_mont
ldp $a2,$a3,[sp,#$R+16]
add $rp,sp,#$H
bl __ecp_nistz256_sub_from // p256_sub(H, U2, U1);
orr $acc0,$acc0,$acc1 // see if result is zero
orr $acc2,$acc2,$acc3
orr $acc0,$acc0,$acc2 // ~is_equal(U1,U2)
mvn $temp1,$in1infty // -1/0 -> 0/-1
mvn $temp2,$in2infty // -1/0 -> 0/-1
orr $acc0,$acc0,$temp1
orr $acc0,$acc0,$temp2
orr $acc0,$acc0,$temp0
cbnz $acc0,.Ladd_proceed // if(~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2))
.Ladd_double:
mov $ap,$ap_real
mov $rp,$rp_real
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
add sp,sp,#256 // #256 is from #32*(12-4). difference in stack frames
b .Ldouble_shortcut
.align 4
.Ladd_proceed:
add $rp,sp,#$Rsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $bp,$ap_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z);
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $rp,sp,#$Hsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H);
ldr $bi,[$bp_real,#64]
ldp $a0,$a1,[sp,#$res_z]
ldp $a2,$a3,[sp,#$res_z+16]
add $bp,$bp_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, res_z, in2_z);
ldr $bi,[sp,#$H]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,sp,#$H
add $rp,sp,#$Hcub
bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H);
ldr $bi,[sp,#$Hsqr]
ldp $a0,$a1,[sp,#$U1]
ldp $a2,$a3,[sp,#$U1+16]
add $bp,sp,#$Hsqr
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, U1, Hsqr);
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
add $rp,sp,#$Hsqr
bl __ecp_nistz256_add_to // p256_mul_by_2(Hsqr, U2);
add $bp,sp,#$Rsqr
add $rp,sp,#$res_x
bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr);
add $bp,sp,#$Hcub
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub);
add $bp,sp,#$U2
ldr $bi,[sp,#$Hcub] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$S1]
ldp $a2,$a3,[sp,#$S1+16]
add $rp,sp,#$res_y
bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x);
add $bp,sp,#$Hcub
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S1, Hcub);
ldr $bi,[sp,#$R]
ldp $a0,$a1,[sp,#$res_y]
ldp $a2,$a3,[sp,#$res_y+16]
add $bp,sp,#$R
add $rp,sp,#$res_y
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R);
add $bp,sp,#$S2
bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2);
ldp $a0,$a1,[sp,#$res_x] // res
ldp $a2,$a3,[sp,#$res_x+16]
ldp $t0,$t1,[$bp_real] // in2
ldp $t2,$t3,[$bp_real,#16]
___
for($i=0;$i<64;$i+=32) { # conditional moves
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // ~$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
ldp $a0,$a1,[sp,#$res_x+$i+32] // res
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // ~$in2intfy, remember?
ldp $a2,$a3,[sp,#$res_x+$i+48]
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
ldp $t0,$t1,[$bp_real,#$i+32] // in2
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
ldp $t2,$t3,[$bp_real,#$i+48]
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
___
}
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // ~$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // ~$in2intfy, remember?
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
.Ladd_done:
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldp x29,x30,[sp],#96
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_point_add,.-ecp_nistz256_point_add
___
}
########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT_AFFINE *in2);
{
my ($res_x,$res_y,$res_z,
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9));
my $Z1sqr = $S2;
# above map() describes stack layout with 10 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("x$_",(21..26));
$code.=<<___;
.globl ecp_nistz256_point_add_affine
.type ecp_nistz256_point_add_affine,%function
.align 5
ecp_nistz256_point_add_affine:
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-80]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
sub sp,sp,#32*10
mov $rp_real,$rp
mov $ap_real,$ap
mov $bp_real,$bp
adrp $poly3,:pg_hi21:.Lpoly
add $poly3,$poly3,:lo12:.Lpoly
ldr $poly1,[$poly3,#8]
ldr $poly3,[$poly3,#24]
ldp $a0,$a1,[$ap,#64] // in1_z
ldp $a2,$a3,[$ap,#64+16]
orr $t0,$a0,$a1
orr $t2,$a2,$a3
orr $in1infty,$t0,$t2
cmp $in1infty,#0
csetm $in1infty,ne // ~in1infty
ldp $acc0,$acc1,[$bp] // in2_x
ldp $acc2,$acc3,[$bp,#16]
ldp $t0,$t1,[$bp,#32] // in2_y
ldp $t2,$t3,[$bp,#48]
orr $acc0,$acc0,$acc1
orr $acc2,$acc2,$acc3
orr $t0,$t0,$t1
orr $t2,$t2,$t3
orr $acc0,$acc0,$acc2
orr $t0,$t0,$t2
orr $in2infty,$acc0,$t0
cmp $in2infty,#0
csetm $in2infty,ne // ~in2infty
add $rp,sp,#$Z1sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z);
mov $a0,$acc0
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
ldr $bi,[$bp_real]
add $bp,$bp_real,#0
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, Z1sqr, in2_x);
add $bp,$ap_real,#0
ldr $bi,[$ap_real,#64] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$Z1sqr]
ldp $a2,$a3,[sp,#$Z1sqr+16]
add $rp,sp,#$H
bl __ecp_nistz256_sub_from // p256_sub(H, U2, in1_x);
add $bp,$ap_real,#64
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $bp,$ap_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z);
ldr $bi,[$bp_real,#32]
ldp $a0,$a1,[sp,#$S2]
ldp $a2,$a3,[sp,#$S2+16]
add $bp,$bp_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y);
add $bp,$ap_real,#32
ldp $a0,$a1,[sp,#$H] // forward load for p256_sqr_mont
ldp $a2,$a3,[sp,#$H+16]
add $rp,sp,#$R
bl __ecp_nistz256_sub_from // p256_sub(R, S2, in1_y);
add $rp,sp,#$Hsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H);
ldp $a0,$a1,[sp,#$R]
ldp $a2,$a3,[sp,#$R+16]
add $rp,sp,#$Rsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R);
ldr $bi,[sp,#$H]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,sp,#$H
add $rp,sp,#$Hcub
bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H);
ldr $bi,[$ap_real]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,$ap_real,#0
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in1_x, Hsqr);
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
add $rp,sp,#$Hsqr
bl __ecp_nistz256_add_to // p256_mul_by_2(Hsqr, U2);
add $bp,sp,#$Rsqr
add $rp,sp,#$res_x
bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr);
add $bp,sp,#$Hcub
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub);
add $bp,sp,#$U2
ldr $bi,[$ap_real,#32] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$Hcub]
ldp $a2,$a3,[sp,#$Hcub+16]
add $rp,sp,#$res_y
bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x);
add $bp,$ap_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, in1_y, Hcub);
ldr $bi,[sp,#$R]
ldp $a0,$a1,[sp,#$res_y]
ldp $a2,$a3,[sp,#$res_y+16]
add $bp,sp,#$R
add $rp,sp,#$res_y
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R);
add $bp,sp,#$S2
bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2);
ldp $a0,$a1,[sp,#$res_x] // res
ldp $a2,$a3,[sp,#$res_x+16]
ldp $t0,$t1,[$bp_real] // in2
ldp $t2,$t3,[$bp_real,#16]
___
for($i=0;$i<64;$i+=32) { # conditional moves
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // ~$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
ldp $a0,$a1,[sp,#$res_x+$i+32] // res
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // ~$in2intfy, remember?
ldp $a2,$a3,[sp,#$res_x+$i+48]
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
ldp $t0,$t1,[$bp_real,#$i+32] // in2
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
ldp $t2,$t3,[$bp_real,#$i+48]
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
___
$code.=<<___ if ($i == 0);
adrp $bp_real,:pg_hi21:.Lone_mont-64
add $bp_real,$bp_real,:lo12:.Lone_mont-64
___
}
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // ~$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // ~$in2intfy, remember?
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x29,x30,[sp],#80
AARCH64_VALIDATE_LINK_REGISTER
ret
.size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine
___
}
if (1) {
my ($ord0,$ord1) = ($poly1,$poly3);
my ($ord2,$ord3,$ordk,$t4) = map("x$_",(21..24));
my $acc7 = $bi;
$code.=<<___;
////////////////////////////////////////////////////////////////////////
// void ecp_nistz256_ord_mul_mont(uint64_t res[4], uint64_t a[4],
// uint64_t b[4]);
.globl ecp_nistz256_ord_mul_mont
.type ecp_nistz256_ord_mul_mont,%function
.align 4
ecp_nistz256_ord_mul_mont:
AARCH64_VALID_CALL_TARGET
// Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later.
stp x29,x30,[sp,#-64]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
adrp $ordk,:pg_hi21:.Lord
add $ordk,$ordk,:lo12:.Lord
ldr $bi,[$bp] // bp[0]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldp $ord0,$ord1,[$ordk,#0]
ldp $ord2,$ord3,[$ordk,#16]
ldr $ordk,[$ordk,#32]
mul $acc0,$a0,$bi // a[0]*b[0]
umulh $t0,$a0,$bi
mul $acc1,$a1,$bi // a[1]*b[0]
umulh $t1,$a1,$bi
mul $acc2,$a2,$bi // a[2]*b[0]
umulh $t2,$a2,$bi
mul $acc3,$a3,$bi // a[3]*b[0]
umulh $acc4,$a3,$bi
mul $t4,$acc0,$ordk
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
adcs $acc2,$acc2,$t1
adcs $acc3,$acc3,$t2
adc $acc4,$acc4,xzr
mov $acc5,xzr
___
for ($i=1;$i<4;$i++) {
################################################################
# ffff0000.ffffffff.yyyyyyyy.zzzzzzzz
# * abcdefgh
# + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx
# - 0000abcd.efgh0000.abcdefgh.00000000.00000000
# + abcdefgh.abcdefgh.yzayzbyz.cyzdyzey.zfyzgyzh
$code.=<<___;
ldr $bi,[$bp,#8*$i] // b[i]
lsl $t0,$t4,#32
subs $acc2,$acc2,$t4
lsr $t1,$t4,#32
sbcs $acc3,$acc3,$t0
sbcs $acc4,$acc4,$t1
sbc $acc5,$acc5,xzr
subs xzr,$acc0,#1
umulh $t1,$ord0,$t4
mul $t2,$ord1,$t4
umulh $t3,$ord1,$t4
adcs $t2,$t2,$t1
mul $t0,$a0,$bi
adc $t3,$t3,xzr
mul $t1,$a1,$bi
adds $acc0,$acc1,$t2
mul $t2,$a2,$bi
adcs $acc1,$acc2,$t3
mul $t3,$a3,$bi
adcs $acc2,$acc3,$t4
adcs $acc3,$acc4,$t4
adc $acc4,$acc5,xzr
adds $acc0,$acc0,$t0 // accumulate low parts
umulh $t0,$a0,$bi
adcs $acc1,$acc1,$t1
umulh $t1,$a1,$bi
adcs $acc2,$acc2,$t2
umulh $t2,$a2,$bi
adcs $acc3,$acc3,$t3
umulh $t3,$a3,$bi
adc $acc4,$acc4,xzr
mul $t4,$acc0,$ordk
adds $acc1,$acc1,$t0 // accumulate high parts
adcs $acc2,$acc2,$t1
adcs $acc3,$acc3,$t2
adcs $acc4,$acc4,$t3
adc $acc5,xzr,xzr
___
}
$code.=<<___;
lsl $t0,$t4,#32 // last reduction
subs $acc2,$acc2,$t4
lsr $t1,$t4,#32
sbcs $acc3,$acc3,$t0
sbcs $acc4,$acc4,$t1
sbc $acc5,$acc5,xzr
subs xzr,$acc0,#1
umulh $t1,$ord0,$t4
mul $t2,$ord1,$t4
umulh $t3,$ord1,$t4
adcs $t2,$t2,$t1
adc $t3,$t3,xzr
adds $acc0,$acc1,$t2
adcs $acc1,$acc2,$t3
adcs $acc2,$acc3,$t4
adcs $acc3,$acc4,$t4
adc $acc4,$acc5,xzr
subs $t0,$acc0,$ord0 // ret -= modulus
sbcs $t1,$acc1,$ord1
sbcs $t2,$acc2,$ord2
sbcs $t3,$acc3,$ord3
sbcs xzr,$acc4,xzr
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ldp x19,x20,[sp,#16]
ldp x21,x22,[sp,#32]
ldp x23,x24,[sp,#48]
ldr x29,[sp],#64
ret
.size ecp_nistz256_ord_mul_mont,.-ecp_nistz256_ord_mul_mont
////////////////////////////////////////////////////////////////////////
// void ecp_nistz256_ord_sqr_mont(uint64_t res[4], uint64_t a[4],
// uint64_t rep);
.globl ecp_nistz256_ord_sqr_mont
.type ecp_nistz256_ord_sqr_mont,%function
.align 4
ecp_nistz256_ord_sqr_mont:
AARCH64_VALID_CALL_TARGET
// Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later.
stp x29,x30,[sp,#-64]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
adrp $ordk,:pg_hi21:.Lord
add $ordk,$ordk,:lo12:.Lord
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldp $ord0,$ord1,[$ordk,#0]
ldp $ord2,$ord3,[$ordk,#16]
ldr $ordk,[$ordk,#32]
b .Loop_ord_sqr
.align 4
.Loop_ord_sqr:
sub $bp,$bp,#1
////////////////////////////////////////////////////////////////
// | | | | | |a1*a0| |
// | | | | |a2*a0| | |
// | |a3*a2|a3*a0| | | |
// | | | |a2*a1| | | |
// | | |a3*a1| | | | |
// *| | | | | | | | 2|
// +|a3*a3|a2*a2|a1*a1|a0*a0|
// |--+--+--+--+--+--+--+--|
// |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx
//
// "can't overflow" below mark carrying into high part of
// multiplication result, which can't overflow, because it
// can never be all ones.
mul $acc1,$a1,$a0 // a[1]*a[0]
umulh $t1,$a1,$a0
mul $acc2,$a2,$a0 // a[2]*a[0]
umulh $t2,$a2,$a0
mul $acc3,$a3,$a0 // a[3]*a[0]
umulh $acc4,$a3,$a0
adds $acc2,$acc2,$t1 // accumulate high parts of multiplication
mul $t0,$a2,$a1 // a[2]*a[1]
umulh $t1,$a2,$a1
adcs $acc3,$acc3,$t2
mul $t2,$a3,$a1 // a[3]*a[1]
umulh $t3,$a3,$a1
adc $acc4,$acc4,xzr // can't overflow
mul $acc5,$a3,$a2 // a[3]*a[2]
umulh $acc6,$a3,$a2
adds $t1,$t1,$t2 // accumulate high parts of multiplication
mul $acc0,$a0,$a0 // a[0]*a[0]
adc $t2,$t3,xzr // can't overflow
adds $acc3,$acc3,$t0 // accumulate low parts of multiplication
umulh $a0,$a0,$a0
adcs $acc4,$acc4,$t1
mul $t1,$a1,$a1 // a[1]*a[1]
adcs $acc5,$acc5,$t2
umulh $a1,$a1,$a1
adc $acc6,$acc6,xzr // can't overflow
adds $acc1,$acc1,$acc1 // acc[1-6]*=2
mul $t2,$a2,$a2 // a[2]*a[2]
adcs $acc2,$acc2,$acc2
umulh $a2,$a2,$a2
adcs $acc3,$acc3,$acc3
mul $t3,$a3,$a3 // a[3]*a[3]
adcs $acc4,$acc4,$acc4
umulh $a3,$a3,$a3
adcs $acc5,$acc5,$acc5
adcs $acc6,$acc6,$acc6
adc $acc7,xzr,xzr
adds $acc1,$acc1,$a0 // +a[i]*a[i]
mul $t4,$acc0,$ordk
adcs $acc2,$acc2,$t1
adcs $acc3,$acc3,$a1
adcs $acc4,$acc4,$t2
adcs $acc5,$acc5,$a2
adcs $acc6,$acc6,$t3
adc $acc7,$acc7,$a3
___
for($i=0; $i<4; $i++) { # reductions
$code.=<<___;
subs xzr,$acc0,#1
umulh $t1,$ord0,$t4
mul $t2,$ord1,$t4
umulh $t3,$ord1,$t4
adcs $t2,$t2,$t1
adc $t3,$t3,xzr
adds $acc0,$acc1,$t2
adcs $acc1,$acc2,$t3
adcs $acc2,$acc3,$t4
adc $acc3,xzr,$t4 // can't overflow
___
$code.=<<___ if ($i<3);
mul $t3,$acc0,$ordk
___
$code.=<<___;
lsl $t0,$t4,#32
subs $acc1,$acc1,$t4
lsr $t1,$t4,#32
sbcs $acc2,$acc2,$t0
sbc $acc3,$acc3,$t1 // can't borrow
___
($t3,$t4) = ($t4,$t3);
}
$code.=<<___;
adds $acc0,$acc0,$acc4 // accumulate upper half
adcs $acc1,$acc1,$acc5
adcs $acc2,$acc2,$acc6
adcs $acc3,$acc3,$acc7
adc $acc4,xzr,xzr
subs $t0,$acc0,$ord0 // ret -= modulus
sbcs $t1,$acc1,$ord1
sbcs $t2,$acc2,$ord2
sbcs $t3,$acc3,$ord3
sbcs xzr,$acc4,xzr
csel $a0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $a1,$acc1,$t1,lo
csel $a2,$acc2,$t2,lo
csel $a3,$acc3,$t3,lo
cbnz $bp,.Loop_ord_sqr
stp $a0,$a1,[$rp]
stp $a2,$a3,[$rp,#16]
ldp x19,x20,[sp,#16]
ldp x21,x22,[sp,#32]
ldp x23,x24,[sp,#48]
ldr x29,[sp],#64
ret
.size ecp_nistz256_ord_sqr_mont,.-ecp_nistz256_ord_sqr_mont
___
} }
########################################################################
# select subroutines
# These select functions are similar to those in p256-x86_64-asm.pl
# They load all points in the lookup table
# keeping in the output only the one corresponding to the input index.
{
my ($val,$in_t)=map("x$_",(0..1));
my ($index)=("w2");
my ($Idx_ctr,$Val_in, $Mask_64)=("w9", "x10", "x11");
my ($Mask)=("v3");
my ($Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("v$_",(16..21));
my ($T0a,$T0b,$T0c,$T0d,$T0e,$T0f)=map("v$_",(22..27));
$code.=<<___;
////////////////////////////////////////////////////////////////////////
// void ecp_nistz256_select_w5(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w5
.type ecp_nistz256_select_w5,%function
.align 4
ecp_nistz256_select_w5:
AARCH64_VALID_CALL_TARGET
// $Val_in := $val
// $Idx_ctr := 0; loop counter and incremented internal index
mov $Val_in, $val
mov $Idx_ctr, #0
// [$Ra-$Rf] := 0
movi $Ra.16b, #0
movi $Rb.16b, #0
movi $Rc.16b, #0
movi $Rd.16b, #0
movi $Re.16b, #0
movi $Rf.16b, #0
.Lselect_w5_loop:
// Loop 16 times.
// Increment index (loop counter); tested at the end of the loop
add $Idx_ctr, $Idx_ctr, #1
// [$T0a-$T0f] := Load a (3*256-bit = 6*128-bit) table entry starting at $in_t
// and advance $in_t to point to the next entry
ld1 {$T0a.2d, $T0b.2d, $T0c.2d, $T0d.2d}, [$in_t],#64
// $Mask_64 := ($Idx_ctr == $index)? All 1s : All 0s
cmp $Idx_ctr, $index
csetm $Mask_64, eq
// continue loading ...
ld1 {$T0e.2d, $T0f.2d}, [$in_t],#32
// duplicate mask_64 into Mask (all 0s or all 1s)
dup $Mask.2d, $Mask_64
// [$Ra-$Rd] := (Mask == all 1s)? [$T0a-$T0d] : [$Ra-$Rd]
// i.e., values in output registers will remain the same if $Idx_ctr != $index
bit $Ra.16b, $T0a.16b, $Mask.16b
bit $Rb.16b, $T0b.16b, $Mask.16b
bit $Rc.16b, $T0c.16b, $Mask.16b
bit $Rd.16b, $T0d.16b, $Mask.16b
bit $Re.16b, $T0e.16b, $Mask.16b
bit $Rf.16b, $T0f.16b, $Mask.16b
// If bit #4 is not 0 (i.e. idx_ctr < 16) loop back
tbz $Idx_ctr, #4, .Lselect_w5_loop
// Write [$Ra-$Rf] to memory at the output pointer
st1 {$Ra.2d, $Rb.2d, $Rc.2d, $Rd.2d}, [$Val_in],#64
st1 {$Re.2d, $Rf.2d}, [$Val_in]
ret
.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5
////////////////////////////////////////////////////////////////////////
// void ecp_nistz256_select_w7(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w7
.type ecp_nistz256_select_w7,%function
.align 4
ecp_nistz256_select_w7:
AARCH64_VALID_CALL_TARGET
// $Idx_ctr := 0; loop counter and incremented internal index
mov $Idx_ctr, #0
// [$Ra-$Rf] := 0
movi $Ra.16b, #0
movi $Rb.16b, #0
movi $Rc.16b, #0
movi $Rd.16b, #0
.Lselect_w7_loop:
// Loop 64 times.
// Increment index (loop counter); tested at the end of the loop
add $Idx_ctr, $Idx_ctr, #1
// [$T0a-$T0d] := Load a (2*256-bit = 4*128-bit) table entry starting at $in_t
// and advance $in_t to point to the next entry
ld1 {$T0a.2d, $T0b.2d, $T0c.2d, $T0d.2d}, [$in_t],#64
// $Mask_64 := ($Idx_ctr == $index)? All 1s : All 0s
cmp $Idx_ctr, $index
csetm $Mask_64, eq
// duplicate mask_64 into Mask (all 0s or all 1s)
dup $Mask.2d, $Mask_64
// [$Ra-$Rd] := (Mask == all 1s)? [$T0a-$T0d] : [$Ra-$Rd]
// i.e., values in output registers will remain the same if $Idx_ctr != $index
bit $Ra.16b, $T0a.16b, $Mask.16b
bit $Rb.16b, $T0b.16b, $Mask.16b
bit $Rc.16b, $T0c.16b, $Mask.16b
bit $Rd.16b, $T0d.16b, $Mask.16b
// If bit #6 is not 0 (i.e. idx_ctr < 64) loop back
tbz $Idx_ctr, #6, .Lselect_w7_loop
// Write [$Ra-$Rd] to memory at the output pointer
st1 {$Ra.2d, $Rb.2d, $Rc.2d, $Rd.2d}, [$val]
ret
.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7
___
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
print $_,"\n";
}
close STDOUT or die "error closing STDOUT: $!"; # enforce flush