blob: ad1d50c11b85c696d0daad6d75530742b51950cf [file] [log] [blame]
/* Copyright (c) 2017, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// cavp_aes_test processes a NIST CAVP AES test vector request file and emits
// the corresponding response.
#include <stdlib.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "../crypto/test/file_test.h"
#include "cavp_test_util.h"
namespace {
struct TestCtx {
const EVP_CIPHER *cipher;
bool has_iv;
enum Mode {
kKAT, // Known Answer Test
kMCT, // Monte Carlo Test
};
Mode mode;
};
}
static bool MonteCarlo(const TestCtx *ctx, FileTest *t,
const EVP_CIPHER *cipher, std::vector<uint8_t> *out,
bool encrypt, std::vector<uint8_t> key,
std::vector<uint8_t> iv, std::vector<uint8_t> in) {
const std::string in_label = encrypt ? "PLAINTEXT" : "CIPHERTEXT",
result_label = encrypt ? "CIPHERTEXT" : "PLAINTEXT";
std::vector<uint8_t> prev_result, result, prev_in;
for (int i = 0; i < 100; i++) {
printf("COUNT = %d\r\nKEY = %s\r\n", i,
EncodeHex(key.data(), key.size()).c_str());
if (ctx->has_iv) {
printf("IV = %s\r\n", EncodeHex(iv.data(), iv.size()).c_str());
}
printf("%s = %s\r\n", in_label.c_str(),
EncodeHex(in.data(), in.size()).c_str());
if (!ctx->has_iv) { // ECB mode
for (int j = 0; j < 1000; j++) {
prev_result = result;
if (!CipherOperation(cipher, &result, encrypt, key, iv, in)) {
return false;
}
in = result;
}
} else {
for (int j = 0; j < 1000; j++) {
prev_result = result;
if (j > 0) {
if (encrypt) {
iv = result;
} else {
iv = prev_in;
}
}
if (!CipherOperation(cipher, &result, encrypt, key, iv, in)) {
return false;
}
prev_in = in;
if (j == 0) {
in = iv;
} else {
in = prev_result;
}
}
}
printf("%s = %s\r\n\r\n", result_label.c_str(),
EncodeHex(result.data(), result.size()).c_str());
const size_t key_len = key.size() * 8;
if (key_len == 128) {
for (size_t k = 0; k < key.size(); k++) {
key[k] ^= result[k];
}
} else if (key_len == 192) {
for (size_t k = 0; k < key.size(); k++) {
// Key[i+1] = Key[i] xor (last 64-bits of CT[j-1] || CT[j])
if (k < 8) {
key[k] ^= prev_result[prev_result.size() - 8 + k];
} else {
key[k] ^= result[k - 8];
}
}
} else { // key_len == 256
for (size_t k = 0; k < key.size(); k++) {
// Key[i+1] = Key[i] xor (CT[j-1] || CT[j])
if (k < 16) {
key[k] ^= prev_result[k];
} else {
key[k] ^= result[k - 16];
}
}
}
if (ctx->has_iv) {
iv = result;
in = prev_result;
} else {
in = result;
}
}
return true;
}
static bool TestCipher(FileTest *t, void *arg) {
TestCtx *ctx = reinterpret_cast<TestCtx *>(arg);
if (t->HasInstruction("ENCRYPT") == t->HasInstruction("DECRYPT")) {
t->PrintLine("Want either ENCRYPT or DECRYPT");
return false;
}
enum {
kEncrypt,
kDecrypt,
} operation = t->HasInstruction("ENCRYPT") ? kEncrypt : kDecrypt;
std::string count;
std::vector<uint8_t> key, iv, in, result;
if (!t->GetAttribute(&count, "COUNT") ||
!t->GetBytes(&key, "KEY") ||
(ctx->has_iv && !t->GetBytes(&iv, "IV"))) {
return false;
}
const EVP_CIPHER *cipher = ctx->cipher;
if (operation == kEncrypt) {
if (!t->GetBytes(&in, "PLAINTEXT")) {
return false;
}
} else { // operation == kDecrypt
if (!t->GetBytes(&in, "CIPHERTEXT")) {
return false;
}
}
if (ctx->mode == TestCtx::kKAT) {
if (!CipherOperation(cipher, &result, operation == kEncrypt, key, iv, in)) {
return false;
}
const std::string label =
operation == kEncrypt ? "CIPHERTEXT" : "PLAINTEXT";
printf("%s%s = %s\r\n\r\n", t->CurrentTestToString().c_str(), label.c_str(),
EncodeHex(result.data(), result.size()).c_str());
} else { // ctx->mode == kMCT
const std::string op_label =
operation == kEncrypt ? "[ENCRYPT]" : "[DECRYPT]";
printf("%s\r\n\r\n", op_label.c_str());
if (!MonteCarlo(ctx, t, cipher, &result, operation == kEncrypt, key, iv,
in)) {
return false;
}
if (operation == kEncrypt) {
// MCT tests contain a stray blank line after the ENCRYPT section.
printf("\r\n");
}
}
return true;
}
static int usage(char *arg) {
fprintf(stderr, "usage: %s (kat|mct) <cipher> <test file>\n", arg);
return 1;
}
int cavp_aes_test_main(int argc, char **argv) {
if (argc != 4) {
return usage(argv[0]);
}
const std::string tm(argv[1]);
enum TestCtx::Mode test_mode;
if (tm == "kat") {
test_mode = TestCtx::kKAT;
} else if (tm == "mct") {
test_mode = TestCtx::kMCT;
} else {
fprintf(stderr, "invalid test_mode: %s\n", tm.c_str());
return usage(argv[0]);
}
const std::string cipher_name(argv[2]);
const EVP_CIPHER *cipher = GetCipher(argv[2]);
if (cipher == nullptr) {
fprintf(stderr, "invalid cipher: %s\n", argv[2]);
return 1;
}
const bool has_iv =
(cipher_name != "aes-128-ecb" &&
cipher_name != "aes-192-ecb" &&
cipher_name != "aes-256-ecb");
TestCtx ctx = {cipher, has_iv, test_mode};
printf("# Generated by");
for (int i = 0; i < argc; i++) {
printf(" %s", argv[i]);
}
printf("\r\n\r\n");
return FileTestMainSilent(TestCipher, &ctx, argv[3]);
}