blob: 5f56ff960a2e2af817c4edf5bae59bbbf8a8f6b1 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runner
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/asn1"
"errors"
"fmt"
"math/big"
)
type signer interface {
supportsKey(key crypto.PrivateKey) bool
signMessage(key crypto.PrivateKey, config *Config, msg []byte) ([]byte, error)
verifyMessage(key crypto.PublicKey, msg, sig []byte) error
}
func selectSignatureAlgorithm(version uint16, key crypto.PrivateKey, config *Config, peerSigAlgs []signatureAlgorithm) (signatureAlgorithm, error) {
// If the client didn't specify any signature_algorithms extension then
// we can assume that it supports SHA1. See
// http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
if len(peerSigAlgs) == 0 {
peerSigAlgs = []signatureAlgorithm{signatureRSAPKCS1WithSHA1, signatureECDSAWithSHA1}
}
for _, sigAlg := range config.signSignatureAlgorithms() {
if !isSupportedSignatureAlgorithm(sigAlg, peerSigAlgs) {
continue
}
signer, err := getSigner(version, key, config, sigAlg)
if err != nil {
continue
}
if signer.supportsKey(key) {
return sigAlg, nil
}
}
return 0, errors.New("tls: no common signature algorithms")
}
func signMessage(version uint16, key crypto.PrivateKey, config *Config, sigAlg signatureAlgorithm, msg []byte) ([]byte, error) {
if config.Bugs.InvalidSignature {
newMsg := make([]byte, len(msg))
copy(newMsg, msg)
newMsg[0] ^= 0x80
msg = newMsg
}
signer, err := getSigner(version, key, config, sigAlg)
if err != nil {
return nil, err
}
return signer.signMessage(key, config, msg)
}
func verifyMessage(version uint16, key crypto.PublicKey, config *Config, sigAlg signatureAlgorithm, msg, sig []byte) error {
if version >= VersionTLS12 && !isSupportedSignatureAlgorithm(sigAlg, config.verifySignatureAlgorithms()) {
return errors.New("tls: unsupported signature algorithm")
}
signer, err := getSigner(version, key, config, sigAlg)
if err != nil {
return err
}
return signer.verifyMessage(key, msg, sig)
}
type rsaPKCS1Signer struct {
hash crypto.Hash
}
func (r *rsaPKCS1Signer) computeHash(msg []byte) []byte {
if r.hash == crypto.MD5SHA1 {
// crypto.MD5SHA1 is not a real hash function.
hashMD5 := md5.New()
hashMD5.Write(msg)
hashSHA1 := sha1.New()
hashSHA1.Write(msg)
return hashSHA1.Sum(hashMD5.Sum(nil))
}
h := r.hash.New()
h.Write(msg)
return h.Sum(nil)
}
func (r *rsaPKCS1Signer) supportsKey(key crypto.PrivateKey) bool {
_, ok := key.(*rsa.PrivateKey)
return ok
}
func (r *rsaPKCS1Signer) signMessage(key crypto.PrivateKey, config *Config, msg []byte) ([]byte, error) {
rsaKey, ok := key.(*rsa.PrivateKey)
if !ok {
return nil, errors.New("invalid key type for RSA-PKCS1")
}
return rsa.SignPKCS1v15(config.rand(), rsaKey, r.hash, r.computeHash(msg))
}
func (r *rsaPKCS1Signer) verifyMessage(key crypto.PublicKey, msg, sig []byte) error {
rsaKey, ok := key.(*rsa.PublicKey)
if !ok {
return errors.New("invalid key type for RSA-PKCS1")
}
return rsa.VerifyPKCS1v15(rsaKey, r.hash, r.computeHash(msg), sig)
}
type ecdsaSigner struct {
version uint16
config *Config
curve elliptic.Curve
hash crypto.Hash
}
func (e *ecdsaSigner) isCurveValid(curve elliptic.Curve) bool {
if e.config.Bugs.SkipECDSACurveCheck {
return true
}
if e.version <= VersionTLS12 {
return true
}
return e.curve != nil && curve == e.curve
}
func (e *ecdsaSigner) supportsKey(key crypto.PrivateKey) bool {
ecdsaKey, ok := key.(*ecdsa.PrivateKey)
return ok && e.isCurveValid(ecdsaKey.Curve)
}
func maybeCorruptECDSAValue(n *big.Int, typeOfCorruption BadValue, limit *big.Int) *big.Int {
switch typeOfCorruption {
case BadValueNone:
return n
case BadValueNegative:
return new(big.Int).Neg(n)
case BadValueZero:
return big.NewInt(0)
case BadValueLimit:
return limit
case BadValueLarge:
bad := new(big.Int).Set(limit)
return bad.Lsh(bad, 20)
default:
panic("unknown BadValue type")
}
}
func (e *ecdsaSigner) signMessage(key crypto.PrivateKey, config *Config, msg []byte) ([]byte, error) {
ecdsaKey, ok := key.(*ecdsa.PrivateKey)
if !ok {
return nil, errors.New("invalid key type for ECDSA")
}
if !e.isCurveValid(ecdsaKey.Curve) {
return nil, errors.New("invalid curve for ECDSA")
}
h := e.hash.New()
h.Write(msg)
digest := h.Sum(nil)
r, s, err := ecdsa.Sign(config.rand(), ecdsaKey, digest)
if err != nil {
return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
}
order := ecdsaKey.Curve.Params().N
r = maybeCorruptECDSAValue(r, config.Bugs.BadECDSAR, order)
s = maybeCorruptECDSAValue(s, config.Bugs.BadECDSAS, order)
return asn1.Marshal(ecdsaSignature{r, s})
}
func (e *ecdsaSigner) verifyMessage(key crypto.PublicKey, msg, sig []byte) error {
ecdsaKey, ok := key.(*ecdsa.PublicKey)
if !ok {
return errors.New("invalid key type for ECDSA")
}
if !e.isCurveValid(ecdsaKey.Curve) {
return errors.New("invalid curve for ECDSA")
}
ecdsaSig := new(ecdsaSignature)
if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errors.New("ECDSA signature contained zero or negative values")
}
h := e.hash.New()
h.Write(msg)
if !ecdsa.Verify(ecdsaKey, h.Sum(nil), ecdsaSig.R, ecdsaSig.S) {
return errors.New("ECDSA verification failure")
}
return nil
}
var pssOptions = rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
type rsaPSSSigner struct {
hash crypto.Hash
}
func (r *rsaPSSSigner) supportsKey(key crypto.PrivateKey) bool {
_, ok := key.(*rsa.PrivateKey)
return ok
}
func (r *rsaPSSSigner) signMessage(key crypto.PrivateKey, config *Config, msg []byte) ([]byte, error) {
rsaKey, ok := key.(*rsa.PrivateKey)
if !ok {
return nil, errors.New("invalid key type for RSA-PSS")
}
h := r.hash.New()
h.Write(msg)
return rsa.SignPSS(config.rand(), rsaKey, r.hash, h.Sum(nil), &pssOptions)
}
func (r *rsaPSSSigner) verifyMessage(key crypto.PublicKey, msg, sig []byte) error {
rsaKey, ok := key.(*rsa.PublicKey)
if !ok {
return errors.New("invalid key type for RSA-PSS")
}
h := r.hash.New()
h.Write(msg)
return rsa.VerifyPSS(rsaKey, r.hash, h.Sum(nil), sig, &pssOptions)
}
func getSigner(version uint16, key interface{}, config *Config, sigAlg signatureAlgorithm) (signer, error) {
// TLS 1.1 and below use legacy signature algorithms.
if version < VersionTLS12 {
switch key.(type) {
case *rsa.PrivateKey, *rsa.PublicKey:
return &rsaPKCS1Signer{crypto.MD5SHA1}, nil
case *ecdsa.PrivateKey, *ecdsa.PublicKey:
return &ecdsaSigner{version, config, nil, crypto.SHA1}, nil
default:
return nil, errors.New("unknown key type")
}
}
// TODO(davidben): Forbid RSASSA-PKCS1-v1_5 in TLS 1.3.
switch sigAlg {
case signatureRSAPKCS1WithMD5:
if version < VersionTLS13 || config.Bugs.IgnoreSignatureVersionChecks {
return &rsaPKCS1Signer{crypto.MD5}, nil
}
case signatureRSAPKCS1WithSHA1:
if version < VersionTLS13 || config.Bugs.IgnoreSignatureVersionChecks {
return &rsaPKCS1Signer{crypto.SHA1}, nil
}
case signatureRSAPKCS1WithSHA256:
if version < VersionTLS13 || config.Bugs.IgnoreSignatureVersionChecks {
return &rsaPKCS1Signer{crypto.SHA256}, nil
}
case signatureRSAPKCS1WithSHA384:
if version < VersionTLS13 || config.Bugs.IgnoreSignatureVersionChecks {
return &rsaPKCS1Signer{crypto.SHA384}, nil
}
case signatureRSAPKCS1WithSHA512:
if version < VersionTLS13 || config.Bugs.IgnoreSignatureVersionChecks {
return &rsaPKCS1Signer{crypto.SHA512}, nil
}
case signatureECDSAWithSHA1:
return &ecdsaSigner{version, config, nil, crypto.SHA1}, nil
case signatureECDSAWithP256AndSHA256:
return &ecdsaSigner{version, config, elliptic.P256(), crypto.SHA256}, nil
case signatureECDSAWithP384AndSHA384:
return &ecdsaSigner{version, config, elliptic.P384(), crypto.SHA384}, nil
case signatureECDSAWithP521AndSHA512:
return &ecdsaSigner{version, config, elliptic.P521(), crypto.SHA512}, nil
case signatureRSAPSSWithSHA256:
return &rsaPSSSigner{crypto.SHA256}, nil
case signatureRSAPSSWithSHA384:
return &rsaPSSSigner{crypto.SHA384}, nil
case signatureRSAPSSWithSHA512:
return &rsaPSSSigner{crypto.SHA512}, nil
}
return nil, fmt.Errorf("unsupported signature algorithm %04x", sigAlg)
}