blob: 38c1d3f6a3fc3f69e2abe69f62e7e0b64bcb9473 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <openssl/base64.h>
#include <openssl/buf.h>
#include <openssl/des.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/pem.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "../internal.h"
#define MIN_LENGTH 4
static int load_iv(char **fromp, unsigned char *to, size_t num);
static int check_pem(const char *nm, const char *name);
// PEM_proc_type appends a Proc-Type header to |buf|, determined by |type|.
static void PEM_proc_type(char buf[PEM_BUFSIZE], int type) {
const char *str;
if (type == PEM_TYPE_ENCRYPTED) {
str = "ENCRYPTED";
} else if (type == PEM_TYPE_MIC_CLEAR) {
str = "MIC-CLEAR";
} else if (type == PEM_TYPE_MIC_ONLY) {
str = "MIC-ONLY";
} else {
str = "BAD-TYPE";
}
OPENSSL_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE);
OPENSSL_strlcat(buf, str, PEM_BUFSIZE);
OPENSSL_strlcat(buf, "\n", PEM_BUFSIZE);
}
// PEM_dek_info appends a DEK-Info header to |buf|, with an algorithm of |type|
// and a single parameter, specified by hex-encoding |len| bytes from |str|.
static void PEM_dek_info(char buf[PEM_BUFSIZE], const char *type, size_t len,
char *str) {
static const unsigned char map[17] = "0123456789ABCDEF";
OPENSSL_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE);
OPENSSL_strlcat(buf, type, PEM_BUFSIZE);
OPENSSL_strlcat(buf, ",", PEM_BUFSIZE);
size_t buf_len = strlen(buf);
// We must write an additional |2 * len + 2| bytes after |buf_len|, including
// the trailing newline and NUL.
if (len > (PEM_BUFSIZE - buf_len - 2) / 2) {
return;
}
for (size_t i = 0; i < len; i++) {
buf[buf_len + i * 2] = map[(str[i] >> 4) & 0x0f];
buf[buf_len + i * 2 + 1] = map[(str[i]) & 0x0f];
}
buf[buf_len + len * 2] = '\n';
buf[buf_len + len * 2 + 1] = '\0';
}
void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
pem_password_cb *cb, void *u) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == NULL) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return NULL;
}
void *ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
BIO_free(b);
return ret;
}
static int check_pem(const char *nm, const char *name) {
// Normal matching nm and name
if (!strcmp(nm, name)) {
return 1;
}
// Make PEM_STRING_EVP_PKEY match any private key
if (!strcmp(name, PEM_STRING_EVP_PKEY)) {
return !strcmp(nm, PEM_STRING_PKCS8) || !strcmp(nm, PEM_STRING_PKCS8INF) ||
!strcmp(nm, PEM_STRING_RSA) || !strcmp(nm, PEM_STRING_EC) ||
!strcmp(nm, PEM_STRING_DSA);
}
// Permit older strings
if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509)) {
return 1;
}
if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) &&
!strcmp(name, PEM_STRING_X509_REQ)) {
return 1;
}
// Allow normal certs to be read as trusted certs
if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_X509_TRUSTED)) {
return 1;
}
if (!strcmp(nm, PEM_STRING_X509_OLD) &&
!strcmp(name, PEM_STRING_X509_TRUSTED)) {
return 1;
}
// Some CAs use PKCS#7 with CERTIFICATE headers
if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7)) {
return 1;
}
if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && !strcmp(name, PEM_STRING_PKCS7)) {
return 1;
}
#ifndef OPENSSL_NO_CMS
if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS)) {
return 1;
}
// Allow CMS to be read from PKCS#7 headers
if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS)) {
return 1;
}
#endif
return 0;
}
static const EVP_CIPHER *cipher_by_name(const char *name) {
// This is similar to the (deprecated) function |EVP_get_cipherbyname|. Note
// the PEM code assumes that ciphers have at least 8 bytes of IV, at most 20
// bytes of overhead and generally behave like CBC mode.
if (0 == strcmp(name, SN_des_cbc)) {
return EVP_des_cbc();
} else if (0 == strcmp(name, SN_des_ede3_cbc)) {
return EVP_des_ede3_cbc();
} else if (0 == strcmp(name, SN_aes_128_cbc)) {
return EVP_aes_128_cbc();
} else if (0 == strcmp(name, SN_aes_192_cbc)) {
return EVP_aes_192_cbc();
} else if (0 == strcmp(name, SN_aes_256_cbc)) {
return EVP_aes_256_cbc();
} else {
return NULL;
}
}
int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
const char *name, BIO *bp, pem_password_cb *cb,
void *u) {
EVP_CIPHER_INFO cipher;
char *nm = NULL, *header = NULL;
unsigned char *data = NULL;
long len;
int ret = 0;
for (;;) {
if (!PEM_read_bio(bp, &nm, &header, &data, &len)) {
uint32_t error = ERR_peek_error();
if (ERR_GET_LIB(error) == ERR_LIB_PEM &&
ERR_GET_REASON(error) == PEM_R_NO_START_LINE) {
ERR_add_error_data(2, "Expecting: ", name);
}
return 0;
}
if (check_pem(nm, name)) {
break;
}
OPENSSL_free(nm);
OPENSSL_free(header);
OPENSSL_free(data);
}
if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) {
goto err;
}
if (!PEM_do_header(&cipher, data, &len, cb, u)) {
goto err;
}
*pdata = data;
*plen = len;
if (pnm) {
*pnm = nm;
}
ret = 1;
err:
if (!ret || !pnm) {
OPENSSL_free(nm);
}
OPENSSL_free(header);
if (!ret) {
OPENSSL_free(data);
}
return ret;
}
int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x,
const EVP_CIPHER *enc, const unsigned char *pass,
int pass_len, pem_password_cb *callback, void *u) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == NULL) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret =
PEM_ASN1_write_bio(i2d, name, b, x, enc, pass, pass_len, callback, u);
BIO_free(b);
return ret;
}
int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x,
const EVP_CIPHER *enc, const unsigned char *pass,
int pass_len, pem_password_cb *callback, void *u) {
EVP_CIPHER_CTX ctx;
int dsize = 0, i, j, ret = 0;
unsigned char *p, *data = NULL;
const char *objstr = NULL;
char buf[PEM_BUFSIZE];
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
if (enc != NULL) {
objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
if (objstr == NULL || cipher_by_name(objstr) == NULL ||
EVP_CIPHER_iv_length(enc) < 8) {
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER);
goto err;
}
}
if ((dsize = i2d(x, NULL)) < 0) {
OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB);
dsize = 0;
goto err;
}
// dzise + 8 bytes are needed
// actually it needs the cipher block size extra...
data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20);
if (data == NULL) {
goto err;
}
p = data;
i = i2d(x, &p);
if (enc != NULL) {
const unsigned iv_len = EVP_CIPHER_iv_length(enc);
if (pass == NULL) {
pass_len = 0;
if (!callback) {
callback = PEM_def_callback;
}
pass_len = (*callback)(buf, PEM_BUFSIZE, 1, u);
if (pass_len <= 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_READ_KEY);
goto err;
}
pass = (const unsigned char *)buf;
}
assert(iv_len <= sizeof(iv));
if (!RAND_bytes(iv, iv_len)) { // Generate a salt
goto err;
}
// The 'iv' is used as the iv and as a salt. It is NOT taken from
// the BytesToKey function
if (!EVP_BytesToKey(enc, EVP_md5(), iv, pass, pass_len, 1, key, NULL)) {
goto err;
}
if (pass == (const unsigned char *)buf) {
OPENSSL_cleanse(buf, PEM_BUFSIZE);
}
assert(strlen(objstr) + 23 + 2 * iv_len + 13 <= sizeof(buf));
buf[0] = '\0';
PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
PEM_dek_info(buf, objstr, iv_len, (char *)iv);
// k=strlen(buf);
EVP_CIPHER_CTX_init(&ctx);
ret = 1;
if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) ||
!EVP_EncryptUpdate(&ctx, data, &j, data, i) ||
!EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) {
ret = 0;
} else {
i += j;
}
EVP_CIPHER_CTX_cleanup(&ctx);
if (ret == 0) {
goto err;
}
} else {
ret = 1;
buf[0] = '\0';
}
i = PEM_write_bio(bp, name, buf, data, i);
if (i <= 0) {
ret = 0;
}
err:
OPENSSL_cleanse(key, sizeof(key));
OPENSSL_cleanse(iv, sizeof(iv));
OPENSSL_cleanse((char *)&ctx, sizeof(ctx));
OPENSSL_cleanse(buf, PEM_BUFSIZE);
OPENSSL_free(data);
return ret;
}
int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
pem_password_cb *callback, void *u) {
int i = 0, j, o, pass_len;
long len;
EVP_CIPHER_CTX ctx;
unsigned char key[EVP_MAX_KEY_LENGTH];
char buf[PEM_BUFSIZE];
len = *plen;
if (cipher->cipher == NULL) {
return 1;
}
pass_len = 0;
if (!callback) {
callback = PEM_def_callback;
}
pass_len = callback(buf, PEM_BUFSIZE, 0, u);
if (pass_len <= 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_PASSWORD_READ);
return 0;
}
if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]),
(unsigned char *)buf, pass_len, 1, key, NULL)) {
return 0;
}
j = (int)len;
EVP_CIPHER_CTX_init(&ctx);
o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0]));
if (o) {
o = EVP_DecryptUpdate(&ctx, data, &i, data, j);
}
if (o) {
o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j);
}
EVP_CIPHER_CTX_cleanup(&ctx);
OPENSSL_cleanse((char *)buf, sizeof(buf));
OPENSSL_cleanse((char *)key, sizeof(key));
if (!o) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_DECRYPT);
return 0;
}
j += i;
*plen = j;
return 1;
}
int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) {
const EVP_CIPHER *enc = NULL;
char *p, c;
char **header_pp = &header;
cipher->cipher = NULL;
OPENSSL_memset(cipher->iv, 0, sizeof(cipher->iv));
if ((header == NULL) || (*header == '\0') || (*header == '\n')) {
return 1;
}
if (strncmp(header, "Proc-Type: ", 11) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_PROC_TYPE);
return 0;
}
header += 11;
if (*header != '4') {
return 0;
}
header++;
if (*header != ',') {
return 0;
}
header++;
if (strncmp(header, "ENCRYPTED", 9) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_ENCRYPTED);
return 0;
}
for (; (*header != '\n') && (*header != '\0'); header++) {
;
}
if (*header == '\0') {
OPENSSL_PUT_ERROR(PEM, PEM_R_SHORT_HEADER);
return 0;
}
header++;
if (strncmp(header, "DEK-Info: ", 10) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_DEK_INFO);
return 0;
}
header += 10;
p = header;
for (;;) {
c = *header;
if (!((c >= 'A' && c <= 'Z') || c == '-' ||
OPENSSL_isdigit(c))) {
break;
}
header++;
}
*header = '\0';
cipher->cipher = enc = cipher_by_name(p);
*header = c;
header++;
if (enc == NULL) {
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION);
return 0;
}
// The IV parameter must be at least 8 bytes long to be used as the salt in
// the KDF. (This should not happen given |cipher_by_name|.)
if (EVP_CIPHER_iv_length(enc) < 8) {
assert(0);
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION);
return 0;
}
if (!load_iv(header_pp, &(cipher->iv[0]), EVP_CIPHER_iv_length(enc))) {
return 0;
}
return 1;
}
static int load_iv(char **fromp, unsigned char *to, size_t num) {
uint8_t v;
char *from;
from = *fromp;
for (size_t i = 0; i < num; i++) {
to[i] = 0;
}
num *= 2;
for (size_t i = 0; i < num; i++) {
if (!OPENSSL_fromxdigit(&v, *from)) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_IV_CHARS);
return 0;
}
from++;
to[i / 2] |= v << (!(i & 1)) * 4;
}
*fromp = from;
return 1;
}
int PEM_write(FILE *fp, const char *name, const char *header,
const unsigned char *data, long len) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == NULL) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret = PEM_write_bio(b, name, header, data, len);
BIO_free(b);
return ret;
}
int PEM_write_bio(BIO *bp, const char *name, const char *header,
const unsigned char *data, long len) {
int nlen, n, i, j, outl;
unsigned char *buf = NULL;
EVP_ENCODE_CTX ctx;
int reason = ERR_R_BUF_LIB;
EVP_EncodeInit(&ctx);
nlen = strlen(name);
if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
(BIO_write(bp, name, nlen) != nlen) ||
(BIO_write(bp, "-----\n", 6) != 6)) {
goto err;
}
i = strlen(header);
if (i > 0) {
if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) {
goto err;
}
}
buf = OPENSSL_malloc(PEM_BUFSIZE * 8);
if (buf == NULL) {
goto err;
}
i = j = 0;
while (len > 0) {
n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n);
if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) {
goto err;
}
i += outl;
len -= n;
j += n;
}
EVP_EncodeFinal(&ctx, buf, &outl);
if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) {
goto err;
}
OPENSSL_free(buf);
buf = NULL;
if ((BIO_write(bp, "-----END ", 9) != 9) ||
(BIO_write(bp, name, nlen) != nlen) ||
(BIO_write(bp, "-----\n", 6) != 6)) {
goto err;
}
return i + outl;
err:
if (buf) {
OPENSSL_free(buf);
}
OPENSSL_PUT_ERROR(PEM, reason);
return 0;
}
int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
long *len) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == NULL) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret = PEM_read_bio(b, name, header, data, len);
BIO_free(b);
return ret;
}
int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
long *len) {
EVP_ENCODE_CTX ctx;
int end = 0, i, k, bl = 0, hl = 0, nohead = 0;
char buf[256];
BUF_MEM *nameB;
BUF_MEM *headerB;
BUF_MEM *dataB, *tmpB;
nameB = BUF_MEM_new();
headerB = BUF_MEM_new();
dataB = BUF_MEM_new();
if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) {
BUF_MEM_free(nameB);
BUF_MEM_free(headerB);
BUF_MEM_free(dataB);
return 0;
}
buf[254] = '\0';
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NO_START_LINE);
goto err;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (strncmp(buf, "-----BEGIN ", 11) == 0) {
i = strlen(&(buf[11]));
if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) {
continue;
}
if (!BUF_MEM_grow(nameB, i + 9)) {
goto err;
}
OPENSSL_memcpy(nameB->data, &(buf[11]), i - 6);
nameB->data[i - 6] = '\0';
break;
}
}
hl = 0;
if (!BUF_MEM_grow(headerB, 256)) {
goto err;
}
headerB->data[0] = '\0';
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (buf[0] == '\n') {
break;
}
if (!BUF_MEM_grow(headerB, hl + i + 9)) {
goto err;
}
if (strncmp(buf, "-----END ", 9) == 0) {
nohead = 1;
break;
}
OPENSSL_memcpy(&(headerB->data[hl]), buf, i);
headerB->data[hl + i] = '\0';
hl += i;
}
bl = 0;
if (!BUF_MEM_grow(dataB, 1024)) {
goto err;
}
dataB->data[0] = '\0';
if (!nohead) {
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (i != 65) {
end = 1;
}
if (strncmp(buf, "-----END ", 9) == 0) {
break;
}
if (i > 65) {
break;
}
if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) {
goto err;
}
OPENSSL_memcpy(&(dataB->data[bl]), buf, i);
dataB->data[bl + i] = '\0';
bl += i;
if (end) {
buf[0] = '\0';
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
break;
}
}
} else {
tmpB = headerB;
headerB = dataB;
dataB = tmpB;
bl = hl;
}
i = strlen(nameB->data);
if ((strncmp(buf, "-----END ", 9) != 0) ||
(strncmp(nameB->data, &(buf[9]), i) != 0) ||
(strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_END_LINE);
goto err;
}
EVP_DecodeInit(&ctx);
i = EVP_DecodeUpdate(&ctx, (unsigned char *)dataB->data, &bl,
(unsigned char *)dataB->data, bl);
if (i < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE);
goto err;
}
i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k);
if (i < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE);
goto err;
}
bl += k;
if (bl == 0) {
goto err;
}
*name = nameB->data;
*header = headerB->data;
*data = (unsigned char *)dataB->data;
*len = bl;
OPENSSL_free(nameB);
OPENSSL_free(headerB);
OPENSSL_free(dataB);
return 1;
err:
BUF_MEM_free(nameB);
BUF_MEM_free(headerB);
BUF_MEM_free(dataB);
return 0;
}
int PEM_def_callback(char *buf, int size, int rwflag, void *userdata) {
if (!buf || !userdata || size < 0) {
return 0;
}
size_t len = strlen((char *)userdata);
if (len >= (size_t)size) {
return 0;
}
OPENSSL_strlcpy(buf, userdata, (size_t)size);
return (int)len;
}