blob: aad2388112383c77cc433a35ac4a4c435a2b2de2 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <ctype.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/stack.h>
#include <openssl/x509.h>
#include "../asn1/internal.h"
#include "../internal.h"
#include "internal.h"
typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY;
DEFINE_STACK_OF(STACK_OF_X509_NAME_ENTRY)
// Maximum length of X509_NAME: much larger than anything we should
// ever see in practice.
#define X509_NAME_MAX (1024 * 1024)
static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in,
long len, const ASN1_ITEM *it, int opt,
ASN1_TLC *ctx);
static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out,
const ASN1_ITEM *it);
static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it);
static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it);
static int x509_name_encode(X509_NAME *a);
static int x509_name_canon(X509_NAME *a);
static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in);
static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname,
unsigned char **in);
ASN1_SEQUENCE(X509_NAME_ENTRY) = {
ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT),
ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE),
} ASN1_SEQUENCE_END(X509_NAME_ENTRY)
IMPLEMENT_ASN1_ALLOC_FUNCTIONS(X509_NAME_ENTRY)
IMPLEMENT_ASN1_DUP_FUNCTION_const(X509_NAME_ENTRY)
// For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY } so
// declare two template wrappers for this
ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF,
0, RDNS,
X509_NAME_ENTRY)
ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES)
ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES)
ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL)
// Normally that's where it would end: we'd have two nested STACK structures
// representing the ASN1. Unfortunately X509_NAME uses a completely different
// form and caches encodings so we have to process the internal form and
// convert to the external form.
static const ASN1_EXTERN_FUNCS x509_name_ff = {
x509_name_ex_new,
x509_name_ex_free,
x509_name_ex_d2i,
x509_name_ex_i2d,
};
IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff)
IMPLEMENT_ASN1_FUNCTIONS(X509_NAME)
IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME)
static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it) {
X509_NAME *ret = NULL;
ret = OPENSSL_malloc(sizeof(X509_NAME));
if (!ret) {
goto memerr;
}
if ((ret->entries = sk_X509_NAME_ENTRY_new_null()) == NULL) {
goto memerr;
}
if ((ret->bytes = BUF_MEM_new()) == NULL) {
goto memerr;
}
ret->canon_enc = NULL;
ret->canon_enclen = 0;
ret->modified = 1;
*val = (ASN1_VALUE *)ret;
return 1;
memerr:
if (ret) {
if (ret->entries) {
sk_X509_NAME_ENTRY_free(ret->entries);
}
OPENSSL_free(ret);
}
return 0;
}
static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) {
X509_NAME *a;
if (!pval || !*pval) {
return;
}
a = (X509_NAME *)*pval;
BUF_MEM_free(a->bytes);
sk_X509_NAME_ENTRY_pop_free(a->entries, X509_NAME_ENTRY_free);
if (a->canon_enc) {
OPENSSL_free(a->canon_enc);
}
OPENSSL_free(a);
*pval = NULL;
}
static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne) {
sk_X509_NAME_ENTRY_free(ne);
}
static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne) {
sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free);
}
static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in,
long len, const ASN1_ITEM *it, int opt,
ASN1_TLC *ctx) {
const unsigned char *p = *in, *q;
STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL;
X509_NAME *nm = NULL;
size_t i, j;
int ret;
STACK_OF(X509_NAME_ENTRY) *entries;
X509_NAME_ENTRY *entry;
// Bound the size of an X509_NAME we are willing to parse.
if (len > X509_NAME_MAX) {
len = X509_NAME_MAX;
}
q = p;
// Get internal representation of Name
ASN1_VALUE *intname_val = NULL;
ret = ASN1_item_ex_d2i(&intname_val, &p, len,
ASN1_ITEM_rptr(X509_NAME_INTERNAL), /*tag=*/-1,
/*aclass=*/0, opt, /*buf=*/NULL);
if (ret <= 0) {
return ret;
}
intname = (STACK_OF(STACK_OF_X509_NAME_ENTRY) *)intname_val;
if (*val) {
x509_name_ex_free(val, NULL);
}
ASN1_VALUE *nm_val = NULL;
if (!x509_name_ex_new(&nm_val, NULL)) {
goto err;
}
nm = (X509_NAME *)nm_val;
// We've decoded it: now cache encoding
if (!BUF_MEM_grow(nm->bytes, p - q)) {
goto err;
}
OPENSSL_memcpy(nm->bytes->data, q, p - q);
// Convert internal representation to X509_NAME structure
for (i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname); i++) {
entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname, i);
for (j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) {
entry = sk_X509_NAME_ENTRY_value(entries, j);
entry->set = (int)i;
if (!sk_X509_NAME_ENTRY_push(nm->entries, entry)) {
goto err;
}
(void)sk_X509_NAME_ENTRY_set(entries, j, NULL);
}
}
ret = x509_name_canon(nm);
if (!ret) {
goto err;
}
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free);
nm->modified = 0;
*val = (ASN1_VALUE *)nm;
*in = p;
return ret;
err:
X509_NAME_free(nm);
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname,
local_sk_X509_NAME_ENTRY_pop_free);
OPENSSL_PUT_ERROR(X509, ERR_R_ASN1_LIB);
return 0;
}
static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out,
const ASN1_ITEM *it) {
X509_NAME *a = (X509_NAME *)*val;
if (a->modified && (!x509_name_encode(a) || !x509_name_canon(a))) {
return -1;
}
int ret = a->bytes->length;
if (out != NULL) {
OPENSSL_memcpy(*out, a->bytes->data, ret);
*out += ret;
}
return ret;
}
static int x509_name_encode(X509_NAME *a) {
int len;
unsigned char *p;
STACK_OF(X509_NAME_ENTRY) *entries = NULL;
X509_NAME_ENTRY *entry;
int set = -1;
size_t i;
STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname =
sk_STACK_OF_X509_NAME_ENTRY_new_null();
if (!intname) {
goto err;
}
for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
entry = sk_X509_NAME_ENTRY_value(a->entries, i);
if (entry->set != set) {
entries = sk_X509_NAME_ENTRY_new_null();
if (!entries) {
goto err;
}
if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) {
sk_X509_NAME_ENTRY_free(entries);
goto err;
}
set = entry->set;
}
if (!sk_X509_NAME_ENTRY_push(entries, entry)) {
goto err;
}
}
ASN1_VALUE *intname_val = (ASN1_VALUE *)intname;
len = ASN1_item_ex_i2d(&intname_val, NULL, ASN1_ITEM_rptr(X509_NAME_INTERNAL),
/*tag=*/-1, /*aclass=*/0);
if (len <= 0) {
goto err;
}
if (!BUF_MEM_grow(a->bytes, len)) {
goto err;
}
p = (unsigned char *)a->bytes->data;
if (ASN1_item_ex_i2d(&intname_val, &p, ASN1_ITEM_rptr(X509_NAME_INTERNAL),
/*tag=*/-1, /*aclass=*/0) <= 0) {
goto err;
}
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free);
a->modified = 0;
return 1;
err:
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_free);
return 0;
}
// This function generates the canonical encoding of the Name structure. In
// it all strings are converted to UTF8, leading, trailing and multiple
// spaces collapsed, converted to lower case and the leading SEQUENCE header
// removed. In future we could also normalize the UTF8 too. By doing this
// comparison of Name structures can be rapidly perfomed by just using
// OPENSSL_memcmp() of the canonical encoding. By omitting the leading SEQUENCE
// name constraints of type dirName can also be checked with a simple
// OPENSSL_memcmp().
static int x509_name_canon(X509_NAME *a) {
unsigned char *p;
STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL;
STACK_OF(X509_NAME_ENTRY) *entries = NULL;
X509_NAME_ENTRY *entry, *tmpentry = NULL;
int set = -1, ret = 0, len;
size_t i;
if (a->canon_enc) {
OPENSSL_free(a->canon_enc);
a->canon_enc = NULL;
}
// Special case: empty X509_NAME => null encoding
if (sk_X509_NAME_ENTRY_num(a->entries) == 0) {
a->canon_enclen = 0;
return 1;
}
intname = sk_STACK_OF_X509_NAME_ENTRY_new_null();
if (!intname) {
goto err;
}
for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
entry = sk_X509_NAME_ENTRY_value(a->entries, i);
if (entry->set != set) {
entries = sk_X509_NAME_ENTRY_new_null();
if (!entries) {
goto err;
}
if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) {
sk_X509_NAME_ENTRY_free(entries);
goto err;
}
set = entry->set;
}
tmpentry = X509_NAME_ENTRY_new();
if (tmpentry == NULL) {
goto err;
}
tmpentry->object = OBJ_dup(entry->object);
if (!asn1_string_canon(tmpentry->value, entry->value)) {
goto err;
}
if (!sk_X509_NAME_ENTRY_push(entries, tmpentry)) {
goto err;
}
tmpentry = NULL;
}
// Finally generate encoding
len = i2d_name_canon(intname, NULL);
if (len < 0) {
goto err;
}
a->canon_enclen = len;
p = OPENSSL_malloc(a->canon_enclen);
if (!p) {
goto err;
}
a->canon_enc = p;
i2d_name_canon(intname, &p);
ret = 1;
err:
if (tmpentry) {
X509_NAME_ENTRY_free(tmpentry);
}
if (intname) {
sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname,
local_sk_X509_NAME_ENTRY_pop_free);
}
return ret;
}
// Bitmap of all the types of string that will be canonicalized.
#define ASN1_MASK_CANON \
(B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING | \
B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING | \
B_ASN1_VISIBLESTRING)
static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in) {
unsigned char *to, *from;
int len, i;
// If type not in bitmask just copy string across
if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON)) {
if (!ASN1_STRING_copy(out, in)) {
return 0;
}
return 1;
}
out->type = V_ASN1_UTF8STRING;
out->length = ASN1_STRING_to_UTF8(&out->data, in);
if (out->length == -1) {
return 0;
}
to = out->data;
from = to;
len = out->length;
// Convert string in place to canonical form.
// Ignore leading spaces
while ((len > 0) && OPENSSL_isspace(*from)) {
from++;
len--;
}
to = from + len;
// Ignore trailing spaces
while ((len > 0) && OPENSSL_isspace(to[-1])) {
to--;
len--;
}
to = out->data;
i = 0;
while (i < len) {
// Collapse multiple spaces
if (OPENSSL_isspace(*from)) {
// Copy one space across
*to++ = ' ';
// Ignore subsequent spaces. Note: don't need to check len here
// because we know the last character is a non-space so we can't
// overflow.
do {
from++;
i++;
} while (OPENSSL_isspace(*from));
} else {
*to++ = OPENSSL_tolower(*from);
from++;
i++;
}
}
out->length = to - out->data;
return 1;
}
static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *_intname,
unsigned char **in) {
int len, ltmp;
size_t i;
ASN1_VALUE *v;
STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname;
len = 0;
for (i = 0; i < sk_ASN1_VALUE_num(intname); i++) {
v = sk_ASN1_VALUE_value(intname, i);
ltmp = ASN1_item_ex_i2d(&v, in, ASN1_ITEM_rptr(X509_NAME_ENTRIES),
/*tag=*/-1, /*aclass=*/0);
if (ltmp < 0) {
return ltmp;
}
len += ltmp;
}
return len;
}
int X509_NAME_set(X509_NAME **xn, X509_NAME *name) {
if ((name = X509_NAME_dup(name)) == NULL) {
return 0;
}
X509_NAME_free(*xn);
*xn = name;
return 1;
}
int X509_NAME_ENTRY_set(const X509_NAME_ENTRY *ne) { return ne->set; }
int X509_NAME_get0_der(X509_NAME *nm, const unsigned char **out_der,
size_t *out_der_len) {
// Make sure encoding is valid
if (i2d_X509_NAME(nm, NULL) <= 0) {
return 0;
}
if (out_der != NULL) {
*out_der = (unsigned char *)nm->bytes->data;
}
if (out_der_len != NULL) {
*out_der_len = nm->bytes->length;
}
return 1;
}