blob: 5591cda420911aab3e600562fdedd76d0f34870a [file] [log] [blame]
/* Copyright (c) 2024, Google LLC
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/mldsa.h>
#include <memory>
#include <assert.h>
#include <stdlib.h>
#include <openssl/bytestring.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include "../internal.h"
#include "../keccak/internal.h"
#include "./internal.h"
namespace {
constexpr int kDegree = 256;
constexpr int kRhoBytes = 32;
constexpr int kSigmaBytes = 64;
constexpr int kKBytes = 32;
constexpr int kTrBytes = 64;
constexpr int kMuBytes = 64;
constexpr int kRhoPrimeBytes = 64;
// 2^23 - 2^13 + 1
constexpr uint32_t kPrime = 8380417;
// Inverse of -kPrime modulo 2^32
constexpr uint32_t kPrimeNegInverse = 4236238847;
constexpr int kDroppedBits = 13;
constexpr uint32_t kHalfPrime = (kPrime - 1) / 2;
constexpr uint32_t kGamma2 = (kPrime - 1) / 32;
// 256^-1 mod kPrime, in Montgomery form.
constexpr uint32_t kInverseDegreeMontgomery = 41978;
// Constants that vary depending on ML-DSA size.
//
// These are implemented as templates which take the K parameter to distinguish
// the ML-DSA sizes. (At the time of writing, `if constexpr` was not available.)
//
// TODO(crbug.com/42290600): Switch this to `if constexpr` when C++17 is
// available.
template <int K>
constexpr size_t public_key_bytes();
template <>
constexpr size_t public_key_bytes<6>() {
return MLDSA65_PUBLIC_KEY_BYTES;
}
template <int K>
constexpr size_t signature_bytes();
template <>
constexpr size_t signature_bytes<6>() {
return MLDSA65_SIGNATURE_BYTES;
}
template <int K>
constexpr int tau();
template <>
constexpr int tau<6>() {
return 49;
}
template <int K>
constexpr int lambda_bytes();
template <>
constexpr int lambda_bytes<6>() {
return 192 / 8;
}
template <int K>
constexpr int gamma1();
template <>
constexpr int gamma1<6>() {
return 1 << 19;
}
template <int K>
constexpr int beta();
template <>
constexpr int beta<6>() {
return 196;
}
template <int K>
constexpr int omega();
template <>
constexpr int omega<6>() {
return 55;
}
template <int K>
constexpr int eta();
template <>
constexpr int eta<6>() {
return 4;
}
template <int K>
constexpr int plus_minus_eta_bitlen();
template <>
constexpr int plus_minus_eta_bitlen<6>() {
return 4;
}
// Fundamental types.
typedef struct scalar {
uint32_t c[kDegree];
} scalar;
template <int K>
struct vector {
scalar v[K];
};
template <int K, int L>
struct matrix {
scalar v[K][L];
};
/* Arithmetic */
// This bit of Python will be referenced in some of the following comments:
//
// q = 8380417
// # Inverse of -q modulo 2^32
// q_neg_inverse = 4236238847
// # 2^64 modulo q
// montgomery_square = 2365951
//
// def bitreverse(i):
// ret = 0
// for n in range(8):
// bit = i & 1
// ret <<= 1
// ret |= bit
// i >>= 1
// return ret
//
// def montgomery_reduce(x):
// a = (x * q_neg_inverse) % 2**32
// b = x + a * q
// assert b & 0xFFFF_FFFF == 0
// c = b >> 32
// assert c < q
// return c
//
// def montgomery_transform(x):
// return montgomery_reduce(x * montgomery_square)
// kNTTRootsMontgomery = [
// montgomery_transform(pow(1753, bitreverse(i), q)) for i in range(256)
// ]
static const uint32_t kNTTRootsMontgomery[256] = {
4193792, 25847, 5771523, 7861508, 237124, 7602457, 7504169, 466468,
1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103,
2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868,
6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005,
2706023, 95776, 3077325, 3530437, 6718724, 4788269, 5842901, 3915439,
4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118,
6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596,
811944, 531354, 954230, 3881043, 3900724, 5823537, 2071892, 5582638,
4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196,
7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922,
3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370,
7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987,
5037034, 264944, 508951, 3097992, 44288, 7280319, 904516, 3958618,
4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969, 7063561,
189548, 4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330,
1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961,
2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955,
266997, 2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039,
900702, 1859098, 909542, 819034, 495491, 6767243, 8337157, 7857917,
7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579,
342297, 286988, 5942594, 4108315, 3437287, 5038140, 1735879, 203044,
2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974,
4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447,
7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775,
7100756, 1917081, 5834105, 7005614, 1500165, 777191, 2235880, 3406031,
7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136, 4603424,
6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531, 7173032,
5196991, 162844, 1616392, 3014001, 810149, 1652634, 4686184, 6581310,
5341501, 3523897, 3866901, 269760, 2213111, 7404533, 1717735, 472078,
7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524,
5441381, 6144432, 7959518, 6094090, 183443, 7403526, 1612842, 4834730,
7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782};
// Reduces x mod kPrime in constant time, where 0 <= x < 2*kPrime.
static uint32_t reduce_once(uint32_t x) {
declassify_assert(x < 2 * kPrime);
// return x < kPrime ? x : x - kPrime;
return constant_time_select_int(constant_time_lt_w(x, kPrime), x, x - kPrime);
}
// Returns the absolute value in constant time.
static uint32_t abs_signed(uint32_t x) {
// return is_positive(x) ? x : -x;
// Note: MSVC doesn't like applying the unary minus operator to unsigned types
// (warning C4146), so we write the negation as a bitwise not plus one
// (assuming two's complement representation).
return constant_time_select_int(constant_time_lt_w(x, 0x80000000), x, 0u - x);
}
// Returns the absolute value modulo kPrime.
static uint32_t abs_mod_prime(uint32_t x) {
declassify_assert(x < kPrime);
// return x > kHalfPrime ? kPrime - x : x;
return constant_time_select_int(constant_time_lt_w(kHalfPrime, x), kPrime - x,
x);
}
// Returns the maximum of two values in constant time.
static uint32_t maximum(uint32_t x, uint32_t y) {
// return x < y ? y : x;
return constant_time_select_int(constant_time_lt_w(x, y), y, x);
}
static uint32_t mod_sub(uint32_t a, uint32_t b) {
declassify_assert(a < kPrime);
declassify_assert(b < kPrime);
return reduce_once(kPrime + a - b);
}
static void scalar_add(scalar *out, const scalar *lhs, const scalar *rhs) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = reduce_once(lhs->c[i] + rhs->c[i]);
}
}
static void scalar_sub(scalar *out, const scalar *lhs, const scalar *rhs) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = mod_sub(lhs->c[i], rhs->c[i]);
}
}
static uint32_t reduce_montgomery(uint64_t x) {
declassify_assert(x <= ((uint64_t)kPrime << 32));
uint64_t a = (uint32_t)x * kPrimeNegInverse;
uint64_t b = x + a * kPrime;
declassify_assert((b & 0xffffffff) == 0);
uint32_t c = b >> 32;
return reduce_once(c);
}
// Multiply two scalars in the number theoretically transformed state.
static void scalar_mult(scalar *out, const scalar *lhs, const scalar *rhs) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = reduce_montgomery((uint64_t)lhs->c[i] * (uint64_t)rhs->c[i]);
}
}
// In place number theoretic transform of a given scalar.
//
// FIPS 204, Algorithm 41 (`NTT`).
static void scalar_ntt(scalar *s) {
// Step: 1, 2, 4, 8, ..., 128
// Offset: 128, 64, 32, 16, ..., 1
int offset = kDegree;
for (int step = 1; step < kDegree; step <<= 1) {
offset >>= 1;
int k = 0;
for (int i = 0; i < step; i++) {
assert(k == 2 * offset * i);
const uint32_t step_root = kNTTRootsMontgomery[step + i];
for (int j = k; j < k + offset; j++) {
uint32_t even = s->c[j];
// |reduce_montgomery| works on values up to kPrime*R and R > 2*kPrime.
// |step_root| < kPrime because it's static data. |s->c[...]| is <
// kPrime by the invariants of that struct.
uint32_t odd =
reduce_montgomery((uint64_t)step_root * (uint64_t)s->c[j + offset]);
s->c[j] = reduce_once(odd + even);
s->c[j + offset] = mod_sub(even, odd);
}
k += 2 * offset;
}
}
}
// In place inverse number theoretic transform of a given scalar.
//
// FIPS 204, Algorithm 42 (`NTT^-1`).
static void scalar_inverse_ntt(scalar *s) {
// Step: 128, 64, 32, 16, ..., 1
// Offset: 1, 2, 4, 8, ..., 128
int step = kDegree;
for (int offset = 1; offset < kDegree; offset <<= 1) {
step >>= 1;
int k = 0;
for (int i = 0; i < step; i++) {
assert(k == 2 * offset * i);
const uint32_t step_root =
kPrime - kNTTRootsMontgomery[step + (step - 1 - i)];
for (int j = k; j < k + offset; j++) {
uint32_t even = s->c[j];
uint32_t odd = s->c[j + offset];
s->c[j] = reduce_once(odd + even);
// |reduce_montgomery| works on values up to kPrime*R and R > 2*kPrime.
// kPrime + even < 2*kPrime because |even| < kPrime, by the invariants
// of that structure. Thus kPrime + even - odd < 2*kPrime because odd >=
// 0, because it's unsigned and less than kPrime. Lastly step_root <
// kPrime, because |kNTTRootsMontgomery| is static data.
s->c[j + offset] = reduce_montgomery((uint64_t)step_root *
(uint64_t)(kPrime + even - odd));
}
k += 2 * offset;
}
}
for (int i = 0; i < kDegree; i++) {
s->c[i] = reduce_montgomery((uint64_t)s->c[i] *
(uint64_t)kInverseDegreeMontgomery);
}
}
template <int X>
static void vector_zero(vector<X> *out) {
OPENSSL_memset(out, 0, sizeof(*out));
}
template <int X>
static void vector_add(vector<X> *out, const vector<X> *lhs,
const vector<X> *rhs) {
for (int i = 0; i < X; i++) {
scalar_add(&out->v[i], &lhs->v[i], &rhs->v[i]);
}
}
template <int X>
static void vector_sub(vector<X> *out, const vector<X> *lhs,
const vector<X> *rhs) {
for (int i = 0; i < X; i++) {
scalar_sub(&out->v[i], &lhs->v[i], &rhs->v[i]);
}
}
template <int X>
static void vector_mult_scalar(vector<X> *out, const vector<X> *lhs,
const scalar *rhs) {
for (int i = 0; i < X; i++) {
scalar_mult(&out->v[i], &lhs->v[i], rhs);
}
}
template <int X>
static void vector_ntt(vector<X> *a) {
for (int i = 0; i < X; i++) {
scalar_ntt(&a->v[i]);
}
}
template <int X>
static void vector_inverse_ntt(vector<X> *a) {
for (int i = 0; i < X; i++) {
scalar_inverse_ntt(&a->v[i]);
}
}
template <int K, int L>
static void matrix_mult(vector<K> *out, const matrix<K, L> *m,
const vector<L> *a) {
vector_zero(out);
for (int i = 0; i < K; i++) {
for (int j = 0; j < L; j++) {
scalar product;
scalar_mult(&product, &m->v[i][j], &a->v[j]);
scalar_add(&out->v[i], &out->v[i], &product);
}
}
}
/* Rounding & hints */
// FIPS 204, Algorithm 35 (`Power2Round`).
static void power2_round(uint32_t *r1, uint32_t *r0, uint32_t r) {
*r1 = r >> kDroppedBits;
*r0 = r - (*r1 << kDroppedBits);
uint32_t r0_adjusted = mod_sub(*r0, 1 << kDroppedBits);
uint32_t r1_adjusted = *r1 + 1;
// Mask is set iff r0 > 2^(dropped_bits - 1).
crypto_word_t mask =
constant_time_lt_w((uint32_t)(1 << (kDroppedBits - 1)), *r0);
// r0 = mask ? r0_adjusted : r0
*r0 = constant_time_select_int(mask, r0_adjusted, *r0);
// r1 = mask ? r1_adjusted : r1
*r1 = constant_time_select_int(mask, r1_adjusted, *r1);
}
// Scale back previously rounded value.
static void scale_power2_round(uint32_t *out, uint32_t r1) {
// Pre-condition: 0 <= r1 <= 2^10 - 1
assert(r1 < (1u << 10));
*out = r1 << kDroppedBits;
// Post-condition: 0 <= out <= 2^23 - 2^13 = kPrime - 1
assert(*out < kPrime);
}
// FIPS 204, Algorithm 37 (`HighBits`).
static uint32_t high_bits(uint32_t x) {
// Reference description (given 0 <= x < q):
//
// ```
// int32_t r0 = x mod+- (2 * kGamma2);
// if (x - r0 == q - 1) {
// return 0;
// } else {
// return (x - r0) / (2 * kGamma2);
// }
// ```
//
// Below is the formula taken from the reference implementation.
//
// Here, kGamma2 == 2^18 - 2^8
// This returns ((ceil(x / 2^7) * (2^10 + 1) + 2^21) / 2^22) mod 2^4
uint32_t r1 = (x + 127) >> 7;
r1 = (r1 * 1025 + (1 << 21)) >> 22;
r1 &= 15;
return r1;
}
// FIPS 204, Algorithm 36 (`Decompose`).
static void decompose(uint32_t *r1, int32_t *r0, uint32_t r) {
*r1 = high_bits(r);
*r0 = r;
*r0 -= *r1 * 2 * (int32_t)kGamma2;
*r0 -= (((int32_t)kHalfPrime - *r0) >> 31) & (int32_t)kPrime;
}
// FIPS 204, Algorithm 38 (`LowBits`).
static int32_t low_bits(uint32_t x) {
uint32_t r1;
int32_t r0;
decompose(&r1, &r0, x);
return r0;
}
// FIPS 204, Algorithm 39 (`MakeHint`).
//
// In the spec this takes two arguments, z and r, and is called with
// z = -ct0
// r = w - cs2 + ct0
//
// It then computes HighBits (algorithm 37) of z and z+r. But z+r is just w -
// cs2, so this takes three arguments and saves an addition.
static int32_t make_hint(uint32_t ct0, uint32_t cs2, uint32_t w) {
uint32_t r_plus_z = mod_sub(w, cs2);
uint32_t r = reduce_once(r_plus_z + ct0);
return high_bits(r) != high_bits(r_plus_z);
}
// FIPS 204, Algorithm 40 (`UseHint`).
static uint32_t use_hint_vartime(uint32_t h, uint32_t r) {
uint32_t r1;
int32_t r0;
decompose(&r1, &r0, r);
if (h) {
if (r0 > 0) {
// m = 16, thus |mod m| in the spec turns into |& 15|.
return (r1 + 1) & 15;
} else {
return (r1 - 1) & 15;
}
}
return r1;
}
static void scalar_power2_round(scalar *s1, scalar *s0, const scalar *s) {
for (int i = 0; i < kDegree; i++) {
power2_round(&s1->c[i], &s0->c[i], s->c[i]);
}
}
static void scalar_scale_power2_round(scalar *out, const scalar *in) {
for (int i = 0; i < kDegree; i++) {
scale_power2_round(&out->c[i], in->c[i]);
}
}
static void scalar_high_bits(scalar *out, const scalar *in) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = high_bits(in->c[i]);
}
}
static void scalar_low_bits(scalar *out, const scalar *in) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = low_bits(in->c[i]);
}
}
static void scalar_max(uint32_t *max, const scalar *s) {
for (int i = 0; i < kDegree; i++) {
uint32_t abs = abs_mod_prime(s->c[i]);
*max = maximum(*max, abs);
}
}
static void scalar_max_signed(uint32_t *max, const scalar *s) {
for (int i = 0; i < kDegree; i++) {
uint32_t abs = abs_signed(s->c[i]);
*max = maximum(*max, abs);
}
}
static void scalar_make_hint(scalar *out, const scalar *ct0, const scalar *cs2,
const scalar *w) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = make_hint(ct0->c[i], cs2->c[i], w->c[i]);
}
}
static void scalar_use_hint_vartime(scalar *out, const scalar *h,
const scalar *r) {
for (int i = 0; i < kDegree; i++) {
out->c[i] = use_hint_vartime(h->c[i], r->c[i]);
}
}
template <int X>
static void vector_power2_round(vector<X> *t1, vector<X> *t0,
const vector<X> *t) {
for (int i = 0; i < X; i++) {
scalar_power2_round(&t1->v[i], &t0->v[i], &t->v[i]);
}
}
template <int X>
static void vector_scale_power2_round(vector<X> *out, const vector<X> *in) {
for (int i = 0; i < X; i++) {
scalar_scale_power2_round(&out->v[i], &in->v[i]);
}
}
template <int X>
static void vector_high_bits(vector<X> *out, const vector<X> *in) {
for (int i = 0; i < X; i++) {
scalar_high_bits(&out->v[i], &in->v[i]);
}
}
template <int X>
static void vector_low_bits(vector<X> *out, const vector<X> *in) {
for (int i = 0; i < X; i++) {
scalar_low_bits(&out->v[i], &in->v[i]);
}
}
template <int X>
static uint32_t vector_max(const vector<X> *a) {
uint32_t max = 0;
for (int i = 0; i < X; i++) {
scalar_max(&max, &a->v[i]);
}
return max;
}
template <int X>
static uint32_t vector_max_signed(const vector<X> *a) {
uint32_t max = 0;
for (int i = 0; i < X; i++) {
scalar_max_signed(&max, &a->v[i]);
}
return max;
}
// The input vector contains only zeroes and ones.
template <int X>
static size_t vector_count_ones(const vector<X> *a) {
size_t count = 0;
for (int i = 0; i < X; i++) {
for (int j = 0; j < kDegree; j++) {
count += a->v[i].c[j];
}
}
return count;
}
template <int X>
static void vector_make_hint(vector<X> *out, const vector<X> *ct0,
const vector<X> *cs2, const vector<X> *w) {
for (int i = 0; i < X; i++) {
scalar_make_hint(&out->v[i], &ct0->v[i], &cs2->v[i], &w->v[i]);
}
}
template <int X>
static void vector_use_hint_vartime(vector<X> *out, const vector<X> *h,
const vector<X> *r) {
for (int i = 0; i < X; i++) {
scalar_use_hint_vartime(&out->v[i], &h->v[i], &r->v[i]);
}
}
/* Bit packing */
// FIPS 204, Algorithm 16 (`SimpleBitPack`). Specialized to bitlen(b) = 4.
static void scalar_encode_4(uint8_t out[128], const scalar *s) {
// Every two elements lands on a byte boundary.
static_assert(kDegree % 2 == 0, "kDegree must be a multiple of 2");
for (int i = 0; i < kDegree / 2; i++) {
uint32_t a = s->c[2 * i];
uint32_t b = s->c[2 * i + 1];
declassify_assert(a < 16);
declassify_assert(b < 16);
out[i] = a | (b << 4);
}
}
// FIPS 204, Algorithm 16 (`SimpleBitPack`). Specialized to bitlen(b) = 10.
static void scalar_encode_10(uint8_t out[320], const scalar *s) {
// Every four elements lands on a byte boundary.
static_assert(kDegree % 4 == 0, "kDegree must be a multiple of 4");
for (int i = 0; i < kDegree / 4; i++) {
uint32_t a = s->c[4 * i];
uint32_t b = s->c[4 * i + 1];
uint32_t c = s->c[4 * i + 2];
uint32_t d = s->c[4 * i + 3];
declassify_assert(a < 1024);
declassify_assert(b < 1024);
declassify_assert(c < 1024);
declassify_assert(d < 1024);
out[5 * i] = (uint8_t)a;
out[5 * i + 1] = (uint8_t)((a >> 8) | (b << 2));
out[5 * i + 2] = (uint8_t)((b >> 6) | (c << 4));
out[5 * i + 3] = (uint8_t)((c >> 4) | (d << 6));
out[5 * i + 4] = (uint8_t)(d >> 2);
}
}
// FIPS 204, Algorithm 17 (`BitPack`). Specialized to bitlen(b) = 4 and b = 4.
static void scalar_encode_signed_4_4(uint8_t out[128], const scalar *s) {
// Every two elements lands on a byte boundary.
static_assert(kDegree % 2 == 0, "kDegree must be a multiple of 2");
for (int i = 0; i < kDegree / 2; i++) {
uint32_t a = mod_sub(4, s->c[2 * i]);
uint32_t b = mod_sub(4, s->c[2 * i + 1]);
declassify_assert(a < 16);
declassify_assert(b < 16);
out[i] = a | (b << 4);
}
}
// FIPS 204, Algorithm 17 (`BitPack`). Specialized to bitlen(b) = 13 and b =
// 2^12.
static void scalar_encode_signed_13_12(uint8_t out[416], const scalar *s) {
static const uint32_t kMax = 1u << 12;
// Every two elements lands on a byte boundary.
static_assert(kDegree % 8 == 0, "kDegree must be a multiple of 8");
for (int i = 0; i < kDegree / 8; i++) {
uint32_t a = mod_sub(kMax, s->c[8 * i]);
uint32_t b = mod_sub(kMax, s->c[8 * i + 1]);
uint32_t c = mod_sub(kMax, s->c[8 * i + 2]);
uint32_t d = mod_sub(kMax, s->c[8 * i + 3]);
uint32_t e = mod_sub(kMax, s->c[8 * i + 4]);
uint32_t f = mod_sub(kMax, s->c[8 * i + 5]);
uint32_t g = mod_sub(kMax, s->c[8 * i + 6]);
uint32_t h = mod_sub(kMax, s->c[8 * i + 7]);
declassify_assert(a < (1u << 13));
declassify_assert(b < (1u << 13));
declassify_assert(c < (1u << 13));
declassify_assert(d < (1u << 13));
declassify_assert(e < (1u << 13));
declassify_assert(f < (1u << 13));
declassify_assert(g < (1u << 13));
declassify_assert(h < (1u << 13));
a |= b << 13;
a |= c << 26;
c >>= 6;
c |= d << 7;
c |= e << 20;
e >>= 12;
e |= f << 1;
e |= g << 14;
e |= h << 27;
h >>= 5;
OPENSSL_memcpy(&out[13 * i], &a, sizeof(a));
OPENSSL_memcpy(&out[13 * i + 4], &c, sizeof(c));
OPENSSL_memcpy(&out[13 * i + 8], &e, sizeof(e));
OPENSSL_memcpy(&out[13 * i + 12], &h, 1);
}
}
// FIPS 204, Algorithm 17 (`BitPack`). Specialized to bitlen(b) = 20 and b =
// 2^19.
static void scalar_encode_signed_20_19(uint8_t out[640], const scalar *s) {
static const uint32_t kMax = 1u << 19;
// Every two elements lands on a byte boundary.
static_assert(kDegree % 4 == 0, "kDegree must be a multiple of 4");
for (int i = 0; i < kDegree / 4; i++) {
uint32_t a = mod_sub(kMax, s->c[4 * i]);
uint32_t b = mod_sub(kMax, s->c[4 * i + 1]);
uint32_t c = mod_sub(kMax, s->c[4 * i + 2]);
uint32_t d = mod_sub(kMax, s->c[4 * i + 3]);
declassify_assert(a < (1u << 20));
declassify_assert(b < (1u << 20));
declassify_assert(c < (1u << 20));
declassify_assert(d < (1u << 20));
a |= b << 20;
b >>= 12;
b |= c << 8;
b |= d << 28;
d >>= 4;
OPENSSL_memcpy(&out[10 * i], &a, sizeof(a));
OPENSSL_memcpy(&out[10 * i + 4], &b, sizeof(b));
OPENSSL_memcpy(&out[10 * i + 8], &d, 2);
}
}
// FIPS 204, Algorithm 17 (`BitPack`).
static void scalar_encode_signed(uint8_t *out, const scalar *s, int bits,
uint32_t max) {
if (bits == 4) {
assert(max == 4);
scalar_encode_signed_4_4(out, s);
} else if (bits == 20) {
assert(max == 1u << 19);
scalar_encode_signed_20_19(out, s);
} else {
assert(bits == 13);
assert(max == 1u << 12);
scalar_encode_signed_13_12(out, s);
}
}
// FIPS 204, Algorithm 18 (`SimpleBitUnpack`). Specialized for bitlen(b) == 10.
static void scalar_decode_10(scalar *out, const uint8_t in[320]) {
uint32_t v;
static_assert(kDegree % 4 == 0, "kDegree must be a multiple of 4");
for (int i = 0; i < kDegree / 4; i++) {
OPENSSL_memcpy(&v, &in[5 * i], sizeof(v));
out->c[4 * i] = v & 0x3ff;
out->c[4 * i + 1] = (v >> 10) & 0x3ff;
out->c[4 * i + 2] = (v >> 20) & 0x3ff;
out->c[4 * i + 3] = (v >> 30) | (((uint32_t)in[5 * i + 4]) << 2);
}
}
// FIPS 204, Algorithm 19 (`BitUnpack`). Specialized to bitlen(a+b) = 4 and b =
// 4.
static int scalar_decode_signed_4_4(scalar *out, const uint8_t in[128]) {
uint32_t v;
static_assert(kDegree % 8 == 0, "kDegree must be a multiple of 8");
for (int i = 0; i < kDegree / 8; i++) {
OPENSSL_memcpy(&v, &in[4 * i], sizeof(v));
// None of the nibbles may be >= 9. So if the MSB of any nibble is set, none
// of the other bits may be set. First, select all the MSBs.
const uint32_t msbs = v & 0x88888888u;
// For each nibble where the MSB is set, form a mask of all the other bits.
const uint32_t mask = (msbs >> 1) | (msbs >> 2) | (msbs >> 3);
// A nibble is only out of range in the case of invalid input, in which case
// it is okay to leak the value.
if (constant_time_declassify_int((mask & v) != 0)) {
return 0;
}
out->c[i * 8] = mod_sub(4, v & 15);
out->c[i * 8 + 1] = mod_sub(4, (v >> 4) & 15);
out->c[i * 8 + 2] = mod_sub(4, (v >> 8) & 15);
out->c[i * 8 + 3] = mod_sub(4, (v >> 12) & 15);
out->c[i * 8 + 4] = mod_sub(4, (v >> 16) & 15);
out->c[i * 8 + 5] = mod_sub(4, (v >> 20) & 15);
out->c[i * 8 + 6] = mod_sub(4, (v >> 24) & 15);
out->c[i * 8 + 7] = mod_sub(4, v >> 28);
}
return 1;
}
// FIPS 204, Algorithm 19 (`BitUnpack`). Specialized to bitlen(a+b) = 13 and b =
// 2^12.
static void scalar_decode_signed_13_12(scalar *out, const uint8_t in[416]) {
static const uint32_t kMax = 1u << 12;
static const uint32_t k13Bits = (1u << 13) - 1;
static const uint32_t k7Bits = (1u << 7) - 1;
uint32_t a, b, c;
uint8_t d;
static_assert(kDegree % 8 == 0, "kDegree must be a multiple of 8");
for (int i = 0; i < kDegree / 8; i++) {
OPENSSL_memcpy(&a, &in[13 * i], sizeof(a));
OPENSSL_memcpy(&b, &in[13 * i + 4], sizeof(b));
OPENSSL_memcpy(&c, &in[13 * i + 8], sizeof(c));
d = in[13 * i + 12];
// It's not possible for a 13-bit number to be out of range when the max is
// 2^12.
out->c[i * 8] = mod_sub(kMax, a & k13Bits);
out->c[i * 8 + 1] = mod_sub(kMax, (a >> 13) & k13Bits);
out->c[i * 8 + 2] = mod_sub(kMax, (a >> 26) | ((b & k7Bits) << 6));
out->c[i * 8 + 3] = mod_sub(kMax, (b >> 7) & k13Bits);
out->c[i * 8 + 4] = mod_sub(kMax, (b >> 20) | ((c & 1) << 12));
out->c[i * 8 + 5] = mod_sub(kMax, (c >> 1) & k13Bits);
out->c[i * 8 + 6] = mod_sub(kMax, (c >> 14) & k13Bits);
out->c[i * 8 + 7] = mod_sub(kMax, (c >> 27) | ((uint32_t)d) << 5);
}
}
// FIPS 204, Algorithm 19 (`BitUnpack`). Specialized to bitlen(a+b) = 20 and b =
// 2^19.
static void scalar_decode_signed_20_19(scalar *out, const uint8_t in[640]) {
static const uint32_t kMax = 1u << 19;
static const uint32_t k20Bits = (1u << 20) - 1;
uint32_t a, b;
uint16_t c;
static_assert(kDegree % 4 == 0, "kDegree must be a multiple of 4");
for (int i = 0; i < kDegree / 4; i++) {
OPENSSL_memcpy(&a, &in[10 * i], sizeof(a));
OPENSSL_memcpy(&b, &in[10 * i + 4], sizeof(b));
OPENSSL_memcpy(&c, &in[10 * i + 8], sizeof(c));
// It's not possible for a 20-bit number to be out of range when the max is
// 2^19.
out->c[i * 4] = mod_sub(kMax, a & k20Bits);
out->c[i * 4 + 1] = mod_sub(kMax, (a >> 20) | ((b & 0xff) << 12));
out->c[i * 4 + 2] = mod_sub(kMax, (b >> 8) & k20Bits);
out->c[i * 4 + 3] = mod_sub(kMax, (b >> 28) | ((uint32_t)c) << 4);
}
}
// FIPS 204, Algorithm 19 (`BitUnpack`).
static int scalar_decode_signed(scalar *out, const uint8_t *in, int bits,
uint32_t max) {
if (bits == 4) {
assert(max == 4);
return scalar_decode_signed_4_4(out, in);
} else if (bits == 13) {
assert(max == (1u << 12));
scalar_decode_signed_13_12(out, in);
return 1;
} else if (bits == 20) {
assert(max == (1u << 19));
scalar_decode_signed_20_19(out, in);
return 1;
} else {
abort();
}
}
/* Expansion functions */
// FIPS 204, Algorithm 30 (`RejNTTPoly`).
//
// Rejection samples a Keccak stream to get uniformly distributed elements. This
// is used for matrix expansion and only operates on public inputs.
static void scalar_from_keccak_vartime(
scalar *out, const uint8_t derived_seed[kRhoBytes + 2]) {
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake128);
BORINGSSL_keccak_absorb(&keccak_ctx, derived_seed, kRhoBytes + 2);
assert(keccak_ctx.squeeze_offset == 0);
assert(keccak_ctx.rate_bytes == 168);
static_assert(168 % 3 == 0, "block and coefficient boundaries do not align");
int done = 0;
while (done < kDegree) {
uint8_t block[168];
BORINGSSL_keccak_squeeze(&keccak_ctx, block, sizeof(block));
for (size_t i = 0; i < sizeof(block) && done < kDegree; i += 3) {
// FIPS 204, Algorithm 14 (`CoeffFromThreeBytes`).
uint32_t value = (uint32_t)block[i] | ((uint32_t)block[i + 1] << 8) |
(((uint32_t)block[i + 2] & 0x7f) << 16);
if (value < kPrime) {
out->c[done++] = value;
}
}
}
}
template <int ETA>
static bool coefficient_from_nibble(uint32_t nibble, uint32_t *result);
template <>
bool coefficient_from_nibble<4>(uint32_t nibble, uint32_t *result) {
if (constant_time_declassify_int(nibble < 9)) {
*result = mod_sub(4, nibble);
return true;
}
return false;
}
// FIPS 204, Algorithm 31 (`RejBoundedPoly`).
template <int ETA>
static void scalar_uniform(scalar *out,
const uint8_t derived_seed[kSigmaBytes + 2]) {
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, derived_seed, kSigmaBytes + 2);
assert(keccak_ctx.squeeze_offset == 0);
assert(keccak_ctx.rate_bytes == 136);
int done = 0;
while (done < kDegree) {
uint8_t block[136];
BORINGSSL_keccak_squeeze(&keccak_ctx, block, sizeof(block));
for (size_t i = 0; i < sizeof(block) && done < kDegree; ++i) {
uint32_t t0 = block[i] & 0x0F;
uint32_t t1 = block[i] >> 4;
// FIPS 204, Algorithm 15 (`CoefFromHalfByte`). Although both the input
// and output here are secret, it is OK to leak when we rejected a byte.
// Individual bytes of the SHAKE-256 stream are (indistiguishable from)
// independent of each other and the original seed, so leaking information
// about the rejected bytes does not reveal the input or output.
uint32_t v;
if (coefficient_from_nibble<ETA>(t0, &v)) {
out->c[done++] = v;
}
if (done < kDegree && coefficient_from_nibble<ETA>(t1, &v)) {
out->c[done++] = v;
}
}
}
}
// FIPS 204, Algorithm 34 (`ExpandMask`), but just a single step.
static void scalar_sample_mask(scalar *out,
const uint8_t derived_seed[kRhoPrimeBytes + 2]) {
uint8_t buf[640];
BORINGSSL_keccak(buf, sizeof(buf), derived_seed, kRhoPrimeBytes + 2,
boringssl_shake256);
scalar_decode_signed_20_19(out, buf);
}
// FIPS 204, Algorithm 29 (`SampleInBall`).
static void scalar_sample_in_ball_vartime(scalar *out, const uint8_t *seed,
int len, int tau) {
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, seed, len);
assert(keccak_ctx.squeeze_offset == 0);
assert(keccak_ctx.rate_bytes == 136);
uint8_t block[136];
BORINGSSL_keccak_squeeze(&keccak_ctx, block, sizeof(block));
uint64_t signs = CRYPTO_load_u64_le(block);
int offset = 8;
// SampleInBall implements a Fisher–Yates shuffle, which unavoidably leaks
// where the zeros are by memory access pattern. Although this leak happens
// before bad signatures are rejected, this is safe. See
// https://boringssl-review.googlesource.com/c/boringssl/+/67747/comment/8d8f01ac_70af3f21/
CONSTTIME_DECLASSIFY(block + offset, sizeof(block) - offset);
OPENSSL_memset(out, 0, sizeof(*out));
for (size_t i = kDegree - tau; i < kDegree; i++) {
size_t byte;
for (;;) {
if (offset == 136) {
BORINGSSL_keccak_squeeze(&keccak_ctx, block, sizeof(block));
// See above.
CONSTTIME_DECLASSIFY(block, sizeof(block));
offset = 0;
}
byte = block[offset++];
if (byte <= i) {
break;
}
}
out->c[i] = out->c[byte];
out->c[byte] = mod_sub(1, 2 * (signs & 1));
signs >>= 1;
}
}
// FIPS 204, Algorithm 32 (`ExpandA`).
template <int K, int L>
static void matrix_expand(matrix<K, L> *out, const uint8_t rho[kRhoBytes]) {
static_assert(K <= 0x100, "K must fit in 8 bits");
static_assert(L <= 0x100, "L must fit in 8 bits");
uint8_t derived_seed[kRhoBytes + 2];
OPENSSL_memcpy(derived_seed, rho, kRhoBytes);
for (int i = 0; i < K; i++) {
for (int j = 0; j < L; j++) {
derived_seed[kRhoBytes + 1] = (uint8_t)i;
derived_seed[kRhoBytes] = (uint8_t)j;
scalar_from_keccak_vartime(&out->v[i][j], derived_seed);
}
}
}
// FIPS 204, Algorithm 33 (`ExpandS`).
template <int K, int L>
static void vector_expand_short(vector<L> *s1, vector<K> *s2,
const uint8_t sigma[kSigmaBytes]) {
static_assert(K <= 0x100, "K must fit in 8 bits");
static_assert(L <= 0x100, "L must fit in 8 bits");
static_assert(K + L <= 0x100, "K+L must fit in 8 bits");
uint8_t derived_seed[kSigmaBytes + 2];
OPENSSL_memcpy(derived_seed, sigma, kSigmaBytes);
derived_seed[kSigmaBytes] = 0;
derived_seed[kSigmaBytes + 1] = 0;
for (int i = 0; i < L; i++) {
scalar_uniform<eta<K>()>(&s1->v[i], derived_seed);
++derived_seed[kSigmaBytes];
}
for (int i = 0; i < K; i++) {
scalar_uniform<eta<K>()>(&s2->v[i], derived_seed);
++derived_seed[kSigmaBytes];
}
}
// FIPS 204, Algorithm 34 (`ExpandMask`).
template <int L>
static void vector_expand_mask(vector<L> *out,
const uint8_t seed[kRhoPrimeBytes],
size_t kappa) {
assert(kappa + L <= 0x10000);
uint8_t derived_seed[kRhoPrimeBytes + 2];
OPENSSL_memcpy(derived_seed, seed, kRhoPrimeBytes);
for (int i = 0; i < L; i++) {
size_t index = kappa + i;
derived_seed[kRhoPrimeBytes] = index & 0xFF;
derived_seed[kRhoPrimeBytes + 1] = (index >> 8) & 0xFF;
scalar_sample_mask(&out->v[i], derived_seed);
}
}
/* Encoding */
// FIPS 204, Algorithm 16 (`SimpleBitPack`).
//
// Encodes an entire vector into 32*K*|bits| bytes. Note that since 256
// (kDegree) is divisible by 8, the individual vector entries will always fill a
// whole number of bytes, so we do not need to worry about bit packing here.
template <int K>
static void vector_encode(uint8_t *out, const vector<K> *a, int bits) {
if (bits == 4) {
for (int i = 0; i < K; i++) {
scalar_encode_4(out + i * bits * kDegree / 8, &a->v[i]);
}
} else {
assert(bits == 10);
for (int i = 0; i < K; i++) {
scalar_encode_10(out + i * bits * kDegree / 8, &a->v[i]);
}
}
}
// FIPS 204, Algorithm 18 (`SimpleBitUnpack`).
template <int K>
static void vector_decode_10(vector<K> *out, const uint8_t *in) {
for (int i = 0; i < K; i++) {
scalar_decode_10(&out->v[i], in + i * 10 * kDegree / 8);
}
}
// FIPS 204, Algorithm 17 (`BitPack`).
//
// Encodes an entire vector into 32*L*|bits| bytes. Note that since 256
// (kDegree) is divisible by 8, the individual vector entries will always fill a
// whole number of bytes, so we do not need to worry about bit packing here.
template <int X>
static void vector_encode_signed(uint8_t *out, const vector<X> *a, int bits,
uint32_t max) {
for (int i = 0; i < X; i++) {
scalar_encode_signed(out + i * bits * kDegree / 8, &a->v[i], bits, max);
}
}
template <int X>
static int vector_decode_signed(vector<X> *out, const uint8_t *in, int bits,
uint32_t max) {
for (int i = 0; i < X; i++) {
if (!scalar_decode_signed(&out->v[i], in + i * bits * kDegree / 8, bits,
max)) {
return 0;
}
}
return 1;
}
// FIPS 204, Algorithm 28 (`w1Encode`).
template <int K>
static void w1_encode(uint8_t out[128 * K], const vector<K> *w1) {
vector_encode(out, w1, 4);
}
// FIPS 204, Algorithm 20 (`HintBitPack`).
template <int K>
static void hint_bit_pack(uint8_t out[omega<K>() + K], const vector<K> *h) {
OPENSSL_memset(out, 0, omega<K>() + K);
int index = 0;
for (int i = 0; i < K; i++) {
for (int j = 0; j < kDegree; j++) {
if (h->v[i].c[j]) {
// h must have at most omega<K>() non-zero coefficients.
BSSL_CHECK(index < omega<K>());
out[index++] = j;
}
}
out[omega<K>() + i] = index;
}
}
// FIPS 204, Algorithm 21 (`HintBitUnpack`).
template <int K>
static int hint_bit_unpack(vector<K> *h, const uint8_t in[omega<K>() + K]) {
vector_zero(h);
int index = 0;
for (int i = 0; i < K; i++) {
const int limit = in[omega<K>() + i];
if (limit < index || limit > omega<K>()) {
return 0;
}
int last = -1;
while (index < limit) {
int byte = in[index++];
if (last >= 0 && byte <= last) {
return 0;
}
last = byte;
static_assert(kDegree == 256,
"kDegree must be 256 for this write to be in bounds");
h->v[i].c[byte] = 1;
}
}
for (; index < omega<K>(); index++) {
if (in[index] != 0) {
return 0;
}
}
return 1;
}
template <int K>
struct public_key {
uint8_t rho[kRhoBytes];
vector<K> t1;
// Pre-cached value(s).
uint8_t public_key_hash[kTrBytes];
};
template <int K, int L>
struct private_key {
uint8_t rho[kRhoBytes];
uint8_t k[kKBytes];
uint8_t public_key_hash[kTrBytes];
vector<L> s1;
vector<K> s2;
vector<K> t0;
};
template <int K, int L>
struct signature {
uint8_t c_tilde[2 * lambda_bytes<K>()];
vector<L> z;
vector<K> h;
};
// FIPS 204, Algorithm 22 (`pkEncode`).
template <int K>
static int mldsa_marshal_public_key(CBB *out, const struct public_key<K> *pub) {
if (!CBB_add_bytes(out, pub->rho, sizeof(pub->rho))) {
return 0;
}
uint8_t *vectork_output;
if (!CBB_add_space(out, &vectork_output, 320 * K)) {
return 0;
}
vector_encode(vectork_output, &pub->t1, 10);
return 1;
}
// FIPS 204, Algorithm 23 (`pkDecode`).
template <int K>
static int mldsa_parse_public_key(struct public_key<K> *pub, CBS *in) {
const CBS orig_in = *in;
if (!CBS_copy_bytes(in, pub->rho, sizeof(pub->rho))) {
return 0;
}
CBS t1_bytes;
if (!CBS_get_bytes(in, &t1_bytes, 320 * K) || CBS_len(in) != 0) {
return 0;
}
vector_decode_10(&pub->t1, CBS_data(&t1_bytes));
// Compute pre-cached values.
BORINGSSL_keccak(pub->public_key_hash, sizeof(pub->public_key_hash),
CBS_data(&orig_in), CBS_len(&orig_in), boringssl_shake256);
return 1;
}
// FIPS 204, Algorithm 24 (`skEncode`).
template <int K, int L>
static int mldsa_marshal_private_key(CBB *out,
const struct private_key<K, L> *priv) {
if (!CBB_add_bytes(out, priv->rho, sizeof(priv->rho)) ||
!CBB_add_bytes(out, priv->k, sizeof(priv->k)) ||
!CBB_add_bytes(out, priv->public_key_hash,
sizeof(priv->public_key_hash))) {
return 0;
}
constexpr size_t scalar_bytes =
(kDegree * plus_minus_eta_bitlen<K>() + 7) / 8;
uint8_t *vectorl_output;
if (!CBB_add_space(out, &vectorl_output, scalar_bytes * L)) {
return 0;
}
vector_encode_signed(vectorl_output, &priv->s1, plus_minus_eta_bitlen<K>(),
eta<K>());
uint8_t *s2_output;
if (!CBB_add_space(out, &s2_output, scalar_bytes * K)) {
return 0;
}
vector_encode_signed(s2_output, &priv->s2, plus_minus_eta_bitlen<K>(),
eta<K>());
uint8_t *t0_output;
if (!CBB_add_space(out, &t0_output, 416 * K)) {
return 0;
}
vector_encode_signed(t0_output, &priv->t0, 13, 1 << 12);
return 1;
}
// FIPS 204, Algorithm 25 (`skDecode`).
template <int K, int L>
static int mldsa_parse_private_key(struct private_key<K, L> *priv, CBS *in) {
CBS s1_bytes;
CBS s2_bytes;
CBS t0_bytes;
constexpr size_t scalar_bytes =
(kDegree * plus_minus_eta_bitlen<K>() + 7) / 8;
if (!CBS_copy_bytes(in, priv->rho, sizeof(priv->rho)) ||
!CBS_copy_bytes(in, priv->k, sizeof(priv->k)) ||
!CBS_copy_bytes(in, priv->public_key_hash,
sizeof(priv->public_key_hash)) ||
!CBS_get_bytes(in, &s1_bytes, scalar_bytes * L) ||
!vector_decode_signed(&priv->s1, CBS_data(&s1_bytes),
plus_minus_eta_bitlen<K>(), eta<K>()) ||
!CBS_get_bytes(in, &s2_bytes, scalar_bytes * K) ||
!vector_decode_signed(&priv->s2, CBS_data(&s2_bytes),
plus_minus_eta_bitlen<K>(), eta<K>()) ||
!CBS_get_bytes(in, &t0_bytes, 416 * K) ||
// Note: Decoding 13 bits into (-2^12, 2^12] cannot fail.
!vector_decode_signed(&priv->t0, CBS_data(&t0_bytes), 13, 1 << 12)) {
return 0;
}
return 1;
}
// FIPS 204, Algorithm 26 (`sigEncode`).
template <int K, int L>
static int mldsa_marshal_signature(CBB *out,
const struct signature<K, L> *sign) {
if (!CBB_add_bytes(out, sign->c_tilde, sizeof(sign->c_tilde))) {
return 0;
}
uint8_t *vectorl_output;
if (!CBB_add_space(out, &vectorl_output, 640 * L)) {
return 0;
}
vector_encode_signed(vectorl_output, &sign->z, 20, 1 << 19);
uint8_t *hint_output;
if (!CBB_add_space(out, &hint_output, omega<K>() + K)) {
return 0;
}
hint_bit_pack(hint_output, &sign->h);
return 1;
}
// FIPS 204, Algorithm 27 (`sigDecode`).
template <int K, int L>
static int mldsa_parse_signature(struct signature<K, L> *sign, CBS *in) {
CBS z_bytes;
CBS hint_bytes;
if (!CBS_copy_bytes(in, sign->c_tilde, sizeof(sign->c_tilde)) ||
!CBS_get_bytes(in, &z_bytes, 640 * L) ||
// Note: Decoding 20 bits into (-2^19, 2^19] cannot fail.
!vector_decode_signed(&sign->z, CBS_data(&z_bytes), 20, 1 << 19) ||
!CBS_get_bytes(in, &hint_bytes, omega<K>() + K) ||
!hint_bit_unpack(&sign->h, CBS_data(&hint_bytes))) {
return 0;
};
return 1;
}
template <typename T>
struct DeleterFree {
void operator()(T *ptr) { OPENSSL_free(ptr); }
};
// FIPS 204, Algorithm 6 (`ML-DSA.KeyGen_internal`). Returns 1 on success and 0
// on failure.
template <int K, int L>
static int mldsa_generate_key_external_entropy(
uint8_t out_encoded_public_key[public_key_bytes<K>()],
struct private_key<K, L> *priv, const uint8_t entropy[MLDSA_SEED_BYTES]) {
// Intermediate values, allocated on the heap to allow use when there is a
// limited amount of stack.
struct values_st {
struct public_key<K> pub;
matrix<K, L> a_ntt;
vector<L> s1_ntt;
vector<K> t;
};
std::unique_ptr<values_st, DeleterFree<values_st>> values(
reinterpret_cast<struct values_st *>(OPENSSL_malloc(sizeof(values_st))));
if (values == NULL) {
return 0;
}
uint8_t augmented_entropy[MLDSA_SEED_BYTES + 2];
OPENSSL_memcpy(augmented_entropy, entropy, MLDSA_SEED_BYTES);
// The k and l parameters are appended to the seed.
augmented_entropy[MLDSA_SEED_BYTES] = K;
augmented_entropy[MLDSA_SEED_BYTES + 1] = L;
uint8_t expanded_seed[kRhoBytes + kSigmaBytes + kKBytes];
BORINGSSL_keccak(expanded_seed, sizeof(expanded_seed), augmented_entropy,
sizeof(augmented_entropy), boringssl_shake256);
const uint8_t *const rho = expanded_seed;
const uint8_t *const sigma = expanded_seed + kRhoBytes;
const uint8_t *const k = expanded_seed + kRhoBytes + kSigmaBytes;
// rho is public.
CONSTTIME_DECLASSIFY(rho, kRhoBytes);
OPENSSL_memcpy(values->pub.rho, rho, sizeof(values->pub.rho));
OPENSSL_memcpy(priv->rho, rho, sizeof(priv->rho));
OPENSSL_memcpy(priv->k, k, sizeof(priv->k));
matrix_expand(&values->a_ntt, rho);
vector_expand_short(&priv->s1, &priv->s2, sigma);
OPENSSL_memcpy(&values->s1_ntt, &priv->s1, sizeof(values->s1_ntt));
vector_ntt(&values->s1_ntt);
matrix_mult(&values->t, &values->a_ntt, &values->s1_ntt);
vector_inverse_ntt(&values->t);
vector_add(&values->t, &values->t, &priv->s2);
vector_power2_round(&values->pub.t1, &priv->t0, &values->t);
// t1 is public.
CONSTTIME_DECLASSIFY(&values->pub.t1, sizeof(values->pub.t1));
CBB cbb;
CBB_init_fixed(&cbb, out_encoded_public_key, public_key_bytes<K>());
if (!mldsa_marshal_public_key(&cbb, &values->pub)) {
return 0;
}
assert(CBB_len(&cbb) == public_key_bytes<K>());
BORINGSSL_keccak(priv->public_key_hash, sizeof(priv->public_key_hash),
out_encoded_public_key, public_key_bytes<K>(),
boringssl_shake256);
return 1;
}
template <int K, int L>
static int mldsa_public_from_private(struct public_key<K> *pub,
const struct private_key<K, L> *priv) {
// Intermediate values, allocated on the heap to allow use when there is a
// limited amount of stack.
struct values_st {
matrix<K, L> a_ntt;
vector<L> s1_ntt;
vector<K> t;
vector<K> t0;
};
std::unique_ptr<values_st, DeleterFree<values_st>> values(
reinterpret_cast<struct values_st *>(OPENSSL_malloc(sizeof(values_st))));
if (values == NULL) {
return 0;
}
OPENSSL_memcpy(pub->rho, priv->rho, sizeof(pub->rho));
OPENSSL_memcpy(pub->public_key_hash, priv->public_key_hash,
sizeof(pub->public_key_hash));
matrix_expand(&values->a_ntt, priv->rho);
OPENSSL_memcpy(&values->s1_ntt, &priv->s1, sizeof(values->s1_ntt));
vector_ntt(&values->s1_ntt);
matrix_mult(&values->t, &values->a_ntt, &values->s1_ntt);
vector_inverse_ntt(&values->t);
vector_add(&values->t, &values->t, &priv->s2);
vector_power2_round(&pub->t1, &values->t0, &values->t);
return 1;
}
// FIPS 204, Algorithm 7 (`ML-DSA.Sign_internal`). Returns 1 on success and 0
// on failure.
template <int K, int L>
static int mldsa_sign_internal(
uint8_t out_encoded_signature[signature_bytes<K>()],
const struct private_key<K, L> *priv, const uint8_t *msg, size_t msg_len,
const uint8_t *context_prefix, size_t context_prefix_len,
const uint8_t *context, size_t context_len,
const uint8_t randomizer[MLDSA_SIGNATURE_RANDOMIZER_BYTES]) {
uint8_t mu[kMuBytes];
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, priv->public_key_hash,
sizeof(priv->public_key_hash));
BORINGSSL_keccak_absorb(&keccak_ctx, context_prefix, context_prefix_len);
BORINGSSL_keccak_absorb(&keccak_ctx, context, context_len);
BORINGSSL_keccak_absorb(&keccak_ctx, msg, msg_len);
BORINGSSL_keccak_squeeze(&keccak_ctx, mu, kMuBytes);
uint8_t rho_prime[kRhoPrimeBytes];
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, priv->k, sizeof(priv->k));
BORINGSSL_keccak_absorb(&keccak_ctx, randomizer,
MLDSA_SIGNATURE_RANDOMIZER_BYTES);
BORINGSSL_keccak_absorb(&keccak_ctx, mu, kMuBytes);
BORINGSSL_keccak_squeeze(&keccak_ctx, rho_prime, kRhoPrimeBytes);
// Intermediate values, allocated on the heap to allow use when there is a
// limited amount of stack.
struct values_st {
struct signature<K, L> sign;
vector<L> s1_ntt;
vector<K> s2_ntt;
vector<K> t0_ntt;
matrix<K, L> a_ntt;
vector<L> y;
vector<K> w;
vector<K> w1;
vector<L> cs1;
vector<K> cs2;
};
std::unique_ptr<values_st, DeleterFree<values_st>> values(
reinterpret_cast<struct values_st *>(OPENSSL_malloc(sizeof(values_st))));
if (values == NULL) {
return 0;
}
OPENSSL_memcpy(&values->s1_ntt, &priv->s1, sizeof(values->s1_ntt));
vector_ntt(&values->s1_ntt);
OPENSSL_memcpy(&values->s2_ntt, &priv->s2, sizeof(values->s2_ntt));
vector_ntt(&values->s2_ntt);
OPENSSL_memcpy(&values->t0_ntt, &priv->t0, sizeof(values->t0_ntt));
vector_ntt(&values->t0_ntt);
matrix_expand(&values->a_ntt, priv->rho);
// kappa must not exceed 2**16/L = 13107. But the probability of it
// exceeding even 1000 iterations is vanishingly small.
for (size_t kappa = 0;; kappa += L) {
vector_expand_mask(&values->y, rho_prime, kappa);
vector<L> *y_ntt = &values->cs1;
OPENSSL_memcpy(y_ntt, &values->y, sizeof(*y_ntt));
vector_ntt(y_ntt);
matrix_mult(&values->w, &values->a_ntt, y_ntt);
vector_inverse_ntt(&values->w);
vector_high_bits(&values->w1, &values->w);
uint8_t w1_encoded[128 * K];
w1_encode(w1_encoded, &values->w1);
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, mu, kMuBytes);
BORINGSSL_keccak_absorb(&keccak_ctx, w1_encoded, 128 * K);
BORINGSSL_keccak_squeeze(&keccak_ctx, values->sign.c_tilde,
2 * lambda_bytes<K>());
scalar c_ntt;
scalar_sample_in_ball_vartime(&c_ntt, values->sign.c_tilde,
sizeof(values->sign.c_tilde), tau<K>());
scalar_ntt(&c_ntt);
vector_mult_scalar(&values->cs1, &values->s1_ntt, &c_ntt);
vector_inverse_ntt(&values->cs1);
vector_mult_scalar(&values->cs2, &values->s2_ntt, &c_ntt);
vector_inverse_ntt(&values->cs2);
vector_add(&values->sign.z, &values->y, &values->cs1);
vector<K> *r0 = &values->w1;
vector_sub(r0, &values->w, &values->cs2);
vector_low_bits(r0, r0);
// Leaking the fact that a signature was rejected is fine as the next
// attempt at a signature will be (indistinguishable from) independent of
// this one. Note, however, that we additionally leak which of the two
// branches rejected the signature. Section 5.5 of
// https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
// describes this leak as OK. Note we leak less than what is described by
// the paper; we do not reveal which coefficient violated the bound, and
// we hide which of the |z_max| or |r0_max| bound failed. See also
// https://boringssl-review.googlesource.com/c/boringssl/+/67747/comment/2bbab0fa_d241d35a/
uint32_t z_max = vector_max(&values->sign.z);
uint32_t r0_max = vector_max_signed(r0);
if (constant_time_declassify_w(
constant_time_ge_w(z_max, gamma1<K>() - beta<K>()) |
constant_time_ge_w(r0_max, kGamma2 - beta<K>()))) {
continue;
}
vector<K> *ct0 = &values->w1;
vector_mult_scalar(ct0, &values->t0_ntt, &c_ntt);
vector_inverse_ntt(ct0);
vector_make_hint(&values->sign.h, ct0, &values->cs2, &values->w);
// See above.
uint32_t ct0_max = vector_max(ct0);
size_t h_ones = vector_count_ones(&values->sign.h);
if (constant_time_declassify_w(constant_time_ge_w(ct0_max, kGamma2) |
constant_time_lt_w(omega<K>(), h_ones))) {
continue;
}
// Although computed with the private key, the signature is public.
CONSTTIME_DECLASSIFY(values->sign.c_tilde, sizeof(values->sign.c_tilde));
CONSTTIME_DECLASSIFY(&values->sign.z, sizeof(values->sign.z));
CONSTTIME_DECLASSIFY(&values->sign.h, sizeof(values->sign.h));
CBB cbb;
CBB_init_fixed(&cbb, out_encoded_signature, signature_bytes<K>());
if (!mldsa_marshal_signature(&cbb, &values->sign)) {
return 0;
}
BSSL_CHECK(CBB_len(&cbb) == signature_bytes<K>());
return 1;
}
}
// FIPS 204, Algorithm 8 (`ML-DSA.Verify_internal`).
template <int K, int L>
static int mldsa_verify_internal(
const struct public_key<K> *pub,
const uint8_t encoded_signature[signature_bytes<K>()], const uint8_t *msg,
size_t msg_len, const uint8_t *context_prefix, size_t context_prefix_len,
const uint8_t *context, size_t context_len) {
// Intermediate values, allocated on the heap to allow use when there is a
// limited amount of stack.
struct values_st {
struct signature<K, L> sign;
matrix<K, L> a_ntt;
vector<L> z_ntt;
vector<K> az_ntt;
vector<K> ct1_ntt;
};
std::unique_ptr<values_st, DeleterFree<values_st>> values(
reinterpret_cast<struct values_st *>(OPENSSL_malloc(sizeof(values_st))));
if (values == NULL) {
return 0;
}
CBS cbs;
CBS_init(&cbs, encoded_signature, signature_bytes<K>());
if (!mldsa_parse_signature(&values->sign, &cbs)) {
return 0;
}
matrix_expand(&values->a_ntt, pub->rho);
uint8_t mu[kMuBytes];
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, pub->public_key_hash,
sizeof(pub->public_key_hash));
BORINGSSL_keccak_absorb(&keccak_ctx, context_prefix, context_prefix_len);
BORINGSSL_keccak_absorb(&keccak_ctx, context, context_len);
BORINGSSL_keccak_absorb(&keccak_ctx, msg, msg_len);
BORINGSSL_keccak_squeeze(&keccak_ctx, mu, kMuBytes);
scalar c_ntt;
scalar_sample_in_ball_vartime(&c_ntt, values->sign.c_tilde,
sizeof(values->sign.c_tilde), tau<K>());
scalar_ntt(&c_ntt);
OPENSSL_memcpy(&values->z_ntt, &values->sign.z, sizeof(values->z_ntt));
vector_ntt(&values->z_ntt);
matrix_mult(&values->az_ntt, &values->a_ntt, &values->z_ntt);
vector_scale_power2_round(&values->ct1_ntt, &pub->t1);
vector_ntt(&values->ct1_ntt);
vector_mult_scalar(&values->ct1_ntt, &values->ct1_ntt, &c_ntt);
vector<K> *const w1 = &values->az_ntt;
vector_sub(w1, &values->az_ntt, &values->ct1_ntt);
vector_inverse_ntt(w1);
vector_use_hint_vartime(w1, &values->sign.h, w1);
uint8_t w1_encoded[128 * K];
w1_encode(w1_encoded, w1);
uint8_t c_tilde[2 * lambda_bytes<K>()];
BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake256);
BORINGSSL_keccak_absorb(&keccak_ctx, mu, kMuBytes);
BORINGSSL_keccak_absorb(&keccak_ctx, w1_encoded, 128 * K);
BORINGSSL_keccak_squeeze(&keccak_ctx, c_tilde, 2 * lambda_bytes<K>());
uint32_t z_max = vector_max(&values->sign.z);
return z_max < static_cast<uint32_t>(gamma1<K>() - beta<K>()) &&
OPENSSL_memcmp(c_tilde, values->sign.c_tilde, 2 * lambda_bytes<K>()) ==
0;
}
} // namespace
// ML-DSA-65 specific wrappers.
static struct private_key<6, 5> *mldsa65_private_key_from_external(
const struct MLDSA65_private_key *external) {
static_assert(sizeof(struct MLDSA65_private_key) ==
sizeof(struct private_key<6, 5>),
"MLDSA65 private key size incorrect");
static_assert(alignof(struct MLDSA65_private_key) ==
alignof(struct private_key<6, 5>),
"MLDSA65 private key align incorrect");
return (struct private_key<6, 5> *)external;
}
static struct public_key<6> *
mldsa65_public_key_from_external(const struct MLDSA65_public_key *external) {
static_assert(sizeof(struct MLDSA65_public_key) ==
sizeof(struct public_key<6>),
"MLDSA65 public key size incorrect");
static_assert(alignof(struct MLDSA65_public_key) ==
alignof(struct public_key<6>),
"MLDSA65 public key align incorrect");
return (struct public_key<6> *)external;
}
int MLDSA65_parse_public_key(struct MLDSA65_public_key *public_key, CBS *in) {
return mldsa_parse_public_key(mldsa65_public_key_from_external(public_key),
in);
}
int MLDSA65_marshal_private_key(CBB *out,
const struct MLDSA65_private_key *private_key) {
return mldsa_marshal_private_key(
out, mldsa65_private_key_from_external(private_key));
}
int MLDSA65_parse_private_key(struct MLDSA65_private_key *private_key,
CBS *in) {
return mldsa_parse_private_key(mldsa65_private_key_from_external(private_key),
in) &&
CBS_len(in) == 0;
}
// Calls |MLDSA_generate_key_external_entropy| with random bytes from
// |RAND_bytes|. Returns 1 on success and 0 on failure.
int MLDSA65_generate_key(
uint8_t out_encoded_public_key[MLDSA65_PUBLIC_KEY_BYTES],
uint8_t out_seed[MLDSA_SEED_BYTES],
struct MLDSA65_private_key *out_private_key) {
RAND_bytes(out_seed, MLDSA_SEED_BYTES);
return MLDSA65_generate_key_external_entropy(out_encoded_public_key,
out_private_key, out_seed);
}
int MLDSA65_private_key_from_seed(struct MLDSA65_private_key *out_private_key,
const uint8_t *seed, size_t seed_len) {
if (seed_len != MLDSA_SEED_BYTES) {
return 0;
}
uint8_t public_key[MLDSA65_PUBLIC_KEY_BYTES];
return MLDSA65_generate_key_external_entropy(public_key, out_private_key,
seed);
}
int MLDSA65_generate_key_external_entropy(
uint8_t out_encoded_public_key[MLDSA65_PUBLIC_KEY_BYTES],
struct MLDSA65_private_key *out_private_key,
const uint8_t entropy[MLDSA_SEED_BYTES]) {
return mldsa_generate_key_external_entropy(
out_encoded_public_key,
mldsa65_private_key_from_external(out_private_key), entropy);
}
int MLDSA65_public_from_private(struct MLDSA65_public_key *out_public_key,
const struct MLDSA65_private_key *private_key) {
return mldsa_public_from_private(
mldsa65_public_key_from_external(out_public_key),
mldsa65_private_key_from_external(private_key));
}
int MLDSA65_sign_internal(
uint8_t out_encoded_signature[MLDSA65_SIGNATURE_BYTES],
const struct MLDSA65_private_key *private_key, const uint8_t *msg,
size_t msg_len, const uint8_t *context_prefix, size_t context_prefix_len,
const uint8_t *context, size_t context_len,
const uint8_t randomizer[MLDSA_SIGNATURE_RANDOMIZER_BYTES]) {
return mldsa_sign_internal(out_encoded_signature,
mldsa65_private_key_from_external(private_key),
msg, msg_len, context_prefix, context_prefix_len,
context, context_len, randomizer);
}
// ML-DSA signature in randomized mode, filling the random bytes with
// |RAND_bytes|. Returns 1 on success and 0 on failure.
int MLDSA65_sign(uint8_t out_encoded_signature[MLDSA65_SIGNATURE_BYTES],
const struct MLDSA65_private_key *private_key,
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > 255) {
return 0;
}
uint8_t randomizer[MLDSA_SIGNATURE_RANDOMIZER_BYTES];
RAND_bytes(randomizer, sizeof(randomizer));
const uint8_t context_prefix[2] = {0, static_cast<uint8_t>(context_len)};
return MLDSA65_sign_internal(out_encoded_signature, private_key, msg, msg_len,
context_prefix, sizeof(context_prefix), context,
context_len, randomizer);
}
// FIPS 204, Algorithm 3 (`ML-DSA.Verify`).
int MLDSA65_verify(const struct MLDSA65_public_key *public_key,
const uint8_t *signature, size_t signature_len,
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > 255 || signature_len != MLDSA65_SIGNATURE_BYTES) {
return 0;
}
const uint8_t context_prefix[2] = {0, static_cast<uint8_t>(context_len)};
return MLDSA65_verify_internal(public_key, signature, msg, msg_len,
context_prefix, sizeof(context_prefix),
context, context_len);
}
int MLDSA65_verify_internal(
const struct MLDSA65_public_key *public_key,
const uint8_t encoded_signature[MLDSA65_SIGNATURE_BYTES],
const uint8_t *msg, size_t msg_len, const uint8_t *context_prefix,
size_t context_prefix_len, const uint8_t *context, size_t context_len) {
return mldsa_verify_internal<6, 5>(
mldsa65_public_key_from_external(public_key), encoded_signature, msg,
msg_len, context_prefix, context_prefix_len, context, context_len);
}
int MLDSA65_marshal_public_key(CBB *out,
const struct MLDSA65_public_key *public_key) {
return mldsa_marshal_public_key(out,
mldsa65_public_key_from_external(public_key));
}