Adapt gcm_*_neon to aarch64.

This makes AES-GCM always constant-time on aarch64 (provided assembly is
enabled). Unlike vpaes, this does come at a binary size penalty of 1K
compared to the gcm_*_4bit version.

ABI testing already covered by GCMTest.ABI (GHASH_ASM_ARM covers both
OPENSSL_ARM and OPENSSL_AARCH64.)

Cortex-A53 (Raspberry Pi 3 Model B+)
Before:
Did 274000 AES-128-GCM (16 bytes) seal operations in 1003461us (273055.0 ops/sec): 4.4 MB/s
Did 53000 AES-128-GCM (256 bytes) seal operations in 1007689us (52595.6 ops/sec): 13.5 MB/s
Did 12000 AES-128-GCM (1350 bytes) seal operations in 1075908us (11153.4 ops/sec): 15.1 MB/s
Did 2068 AES-128-GCM (8192 bytes) seal operations in 1089037us (1898.9 ops/sec): 15.6 MB/s
After:
Did 298000 AES-128-GCM (16 bytes) seal operations in 1002917us (297133.3 ops/sec): 4.8 MB/s
Did 64000 AES-128-GCM (256 bytes) seal operations in 1001124us (63928.1 ops/sec): 16.4 MB/s
Did 14000 AES-128-GCM (1350 bytes) seal operations in 1015477us (13786.6 ops/sec): 18.6 MB/s
Did 2497 AES-128-GCM (8192 bytes) seal operations in 1057951us (2360.2 ops/sec): 19.3 MB/s

Bug: 265
Change-Id: I251bf0f2eae0578580bb14192755e5d8ff64cd14
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35285
Reviewed-by: Adam Langley <agl@google.com>
3 files changed
tree: 4fe3d56394ee8ec7bbb89ba94c4349bb49c8521c
  1. .clang-format
  2. .github/
  3. .gitignore
  4. API-CONVENTIONS.md
  5. BREAKING-CHANGES.md
  6. BUILDING.md
  7. CMakeLists.txt
  8. CONTRIBUTING.md
  9. FUZZING.md
  10. INCORPORATING.md
  11. LICENSE
  12. PORTING.md
  13. README.md
  14. STYLE.md
  15. codereview.settings
  16. crypto/
  17. decrepit/
  18. fipstools/
  19. fuzz/
  20. go.mod
  21. include/
  22. sources.cmake
  23. ssl/
  24. third_party/
  25. tool/
  26. util/
README.md

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.

Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.

BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.

Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.

There are other files in this directory which might be helpful: