| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| namespace bssl { |
| |
| // kMaxEmptyRecords is the number of consecutive, empty records that will be |
| // processed. Without this limit an attacker could send empty records at a |
| // faster rate than we can process and cause record processing to loop |
| // forever. |
| static const uint8_t kMaxEmptyRecords = 32; |
| |
| // kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that |
| // will be skipped. Without this limit an attacker could send records at a |
| // faster rate than we can process and cause trial decryption to loop forever. |
| // This value should be slightly above kMaxEarlyDataAccepted, which is measured |
| // in plaintext. |
| static const size_t kMaxEarlyDataSkipped = 16384; |
| |
| // kMaxWarningAlerts is the number of consecutive warning alerts that will be |
| // processed. |
| static const uint8_t kMaxWarningAlerts = 4; |
| |
| // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher |
| // state needs record-splitting and zero otherwise. |
| static int ssl_needs_record_splitting(const SSL *ssl) { |
| #if !defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| return !ssl->s3->aead_write_ctx->is_null_cipher() && |
| ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION && |
| (ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 && |
| SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher()); |
| #else |
| return 0; |
| #endif |
| } |
| |
| int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) { |
| for (size_t i = seq_len - 1; i < seq_len; i--) { |
| ++seq[i]; |
| if (seq[i] != 0) { |
| return 1; |
| } |
| } |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| size_t ssl_record_prefix_len(const SSL *ssl) { |
| size_t header_len; |
| if (SSL_is_dtls(ssl)) { |
| header_len = DTLS1_RT_HEADER_LENGTH; |
| } else { |
| header_len = SSL3_RT_HEADER_LENGTH; |
| } |
| |
| return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen(); |
| } |
| |
| size_t ssl_seal_align_prefix_len(const SSL *ssl) { |
| if (SSL_is_dtls(ssl)) { |
| return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
| } |
| |
| size_t ret = |
| SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
| if (ssl_needs_record_splitting(ssl)) { |
| ret += SSL3_RT_HEADER_LENGTH; |
| ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
| } |
| return ret; |
| } |
| |
| enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, CBS *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| uint8_t *in, size_t in_len) { |
| *out_consumed = 0; |
| |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| |
| // Decode the record header. |
| uint8_t type; |
| uint16_t version, ciphertext_len; |
| if (!CBS_get_u8(&cbs, &type) || |
| !CBS_get_u16(&cbs, &version) || |
| !CBS_get_u16(&cbs, &ciphertext_len)) { |
| *out_consumed = SSL3_RT_HEADER_LENGTH; |
| return ssl_open_record_partial; |
| } |
| |
| bool version_ok; |
| if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
| // Only check the first byte. Enforcing beyond that can prevent decoding |
| // version negotiation failure alerts. |
| version_ok = (version >> 8) == SSL3_VERSION_MAJOR; |
| } else { |
| version_ok = version == ssl->s3->aead_read_ctx->RecordVersion(); |
| } |
| |
| if (!version_ok) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER); |
| *out_alert = SSL_AD_PROTOCOL_VERSION; |
| return ssl_open_record_error; |
| } |
| |
| // Check the ciphertext length. |
| if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| *out_alert = SSL_AD_RECORD_OVERFLOW; |
| return ssl_open_record_error; |
| } |
| |
| // Extract the body. |
| CBS body; |
| if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) { |
| *out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len; |
| return ssl_open_record_partial; |
| } |
| |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, in, |
| SSL3_RT_HEADER_LENGTH); |
| |
| *out_consumed = in_len - CBS_len(&cbs); |
| |
| // Skip early data received when expecting a second ClientHello if we rejected |
| // 0RTT. |
| if (ssl->s3->skip_early_data && |
| ssl->s3->aead_read_ctx->is_null_cipher() && |
| type == SSL3_RT_APPLICATION_DATA) { |
| goto skipped_data; |
| } |
| |
| // Decrypt the body in-place. |
| if (!ssl->s3->aead_read_ctx->Open(out, type, version, ssl->s3->read_sequence, |
| (uint8_t *)CBS_data(&body), |
| CBS_len(&body))) { |
| if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) { |
| ERR_clear_error(); |
| goto skipped_data; |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| *out_alert = SSL_AD_BAD_RECORD_MAC; |
| return ssl_open_record_error; |
| } |
| |
| ssl->s3->skip_early_data = false; |
| |
| if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return ssl_open_record_error; |
| } |
| |
| // TLS 1.3 hides the record type inside the encrypted data. |
| if (!ssl->s3->aead_read_ctx->is_null_cipher() && |
| ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
| // The outer record type is always application_data. |
| if (type != SSL3_RT_APPLICATION_DATA) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return ssl_open_record_error; |
| } |
| |
| do { |
| if (!CBS_get_last_u8(out, &type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| *out_alert = SSL_AD_DECRYPT_ERROR; |
| return ssl_open_record_error; |
| } |
| } while (type == 0); |
| } |
| |
| // Check the plaintext length. |
| if (CBS_len(out) > SSL3_RT_MAX_PLAIN_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| *out_alert = SSL_AD_RECORD_OVERFLOW; |
| return ssl_open_record_error; |
| } |
| |
| // Limit the number of consecutive empty records. |
| if (CBS_len(out) == 0) { |
| ssl->s3->empty_record_count++; |
| if (ssl->s3->empty_record_count > kMaxEmptyRecords) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| // Apart from the limit, empty records are returned up to the caller. This |
| // allows the caller to reject records of the wrong type. |
| } else { |
| ssl->s3->empty_record_count = 0; |
| } |
| |
| if (type == SSL3_RT_ALERT) { |
| // Return end_of_early_data alerts as-is for the caller to process. |
| if (CBS_len(out) == 2 && |
| CBS_data(out)[0] == SSL3_AL_WARNING && |
| CBS_data(out)[1] == TLS1_AD_END_OF_EARLY_DATA) { |
| *out_type = type; |
| return ssl_open_record_success; |
| } |
| |
| return ssl_process_alert(ssl, out_alert, CBS_data(out), CBS_len(out)); |
| } |
| |
| ssl->s3->warning_alert_count = 0; |
| |
| *out_type = type; |
| return ssl_open_record_success; |
| |
| skipped_data: |
| ssl->s3->early_data_skipped += *out_consumed; |
| if (ssl->s3->early_data_skipped < *out_consumed) { |
| ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1; |
| } |
| |
| if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| return ssl_open_record_discard; |
| } |
| |
| static int do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
| uint8_t *out_suffix, uint8_t type, const uint8_t *in, |
| const size_t in_len) { |
| uint8_t *extra_in = NULL; |
| size_t extra_in_len = 0; |
| if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
| ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
| // TLS 1.3 hides the actual record type inside the encrypted data. |
| extra_in = &type; |
| extra_in_len = 1; |
| } |
| |
| size_t suffix_len; |
| if (!ssl->s3->aead_write_ctx->SuffixLen(&suffix_len, in_len, extra_in_len)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
| return 0; |
| } |
| size_t ciphertext_len = |
| ssl->s3->aead_write_ctx->ExplicitNonceLen() + suffix_len; |
| if (ciphertext_len + in_len < ciphertext_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
| return 0; |
| } |
| ciphertext_len += in_len; |
| |
| assert(in == out || !buffers_alias(in, in_len, out, in_len)); |
| assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl))); |
| assert(!buffers_alias(in, in_len, out_suffix, suffix_len)); |
| |
| if (extra_in_len) { |
| out_prefix[0] = SSL3_RT_APPLICATION_DATA; |
| } else { |
| out_prefix[0] = type; |
| } |
| |
| uint16_t record_version = ssl->s3->aead_write_ctx->RecordVersion(); |
| |
| out_prefix[1] = record_version >> 8; |
| out_prefix[2] = record_version & 0xff; |
| out_prefix[3] = ciphertext_len >> 8; |
| out_prefix[4] = ciphertext_len & 0xff; |
| |
| if (!ssl->s3->aead_write_ctx->SealScatter( |
| out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, type, |
| record_version, ssl->s3->write_sequence, in, in_len, extra_in, |
| extra_in_len) || |
| !ssl_record_sequence_update(ssl->s3->write_sequence, 8)) { |
| return 0; |
| } |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, out_prefix, |
| SSL3_RT_HEADER_LENGTH); |
| return 1; |
| } |
| |
| static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type, |
| size_t in_len) { |
| size_t ret = SSL3_RT_HEADER_LENGTH; |
| if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
| ssl_needs_record_splitting(ssl)) { |
| // In the case of record splitting, the 1-byte record (of the 1/n-1 split) |
| // will be placed in the prefix, as will four of the five bytes of the |
| // record header for the main record. The final byte will replace the first |
| // byte of the plaintext that was used in the small record. |
| ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
| ret += SSL3_RT_HEADER_LENGTH - 1; |
| } else { |
| ret += ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
| } |
| return ret; |
| } |
| |
| static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len, |
| uint8_t type, size_t in_len) { |
| size_t extra_in_len = 0; |
| if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
| ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
| // TLS 1.3 adds an extra byte for encrypted record type. |
| extra_in_len = 1; |
| } |
| if (type == SSL3_RT_APPLICATION_DATA && // clang-format off |
| in_len > 1 && |
| ssl_needs_record_splitting(ssl)) { |
| // With record splitting enabled, the first byte gets sealed into a separate |
| // record which is written into the prefix. |
| in_len -= 1; |
| } |
| return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len); |
| } |
| |
| // tls_seal_scatter_record seals a new record of type |type| and body |in| and |
| // splits it between |out_prefix|, |out|, and |out_suffix|. Exactly |
| // |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len| |
| // bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It |
| // returns one on success and zero on error. If enabled, |
| // |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and |
| // may write two records concatenated. |
| static int tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
| uint8_t *out_suffix, uint8_t type, |
| const uint8_t *in, size_t in_len) { |
| if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
| ssl_needs_record_splitting(ssl)) { |
| assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0); |
| const size_t prefix_len = SSL3_RT_HEADER_LENGTH; |
| |
| // Write the 1-byte fragment into |out_prefix|. |
| uint8_t *split_body = out_prefix + prefix_len; |
| uint8_t *split_suffix = split_body + 1; |
| |
| if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in, |
| 1)) { |
| return 0; |
| } |
| |
| size_t split_record_suffix_len; |
| if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) { |
| assert(false); |
| return 0; |
| } |
| const size_t split_record_len = prefix_len + 1 + split_record_suffix_len; |
| assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len( |
| ssl->s3->aead_write_ctx->cipher()) == |
| split_record_len); |
| |
| // Write the n-1-byte fragment. The header gets split between |out_prefix| |
| // (header[:-1]) and |out| (header[-1:]). |
| uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH]; |
| if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1, |
| in_len - 1)) { |
| return 0; |
| } |
| assert(tls_seal_scatter_prefix_len(ssl, type, in_len) == |
| split_record_len + SSL3_RT_HEADER_LENGTH - 1); |
| OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix, |
| SSL3_RT_HEADER_LENGTH - 1); |
| OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1); |
| return 1; |
| } |
| |
| return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len); |
| } |
| |
| int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, |
| uint8_t type, const uint8_t *in, size_t in_len) { |
| if (buffers_alias(in, in_len, out, max_out_len)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
| return 0; |
| } |
| |
| const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len); |
| size_t suffix_len; |
| if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) { |
| return false; |
| } |
| if (in_len + prefix_len < in_len || |
| prefix_len + in_len + suffix_len < prefix_len + in_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
| return 0; |
| } |
| if (max_out_len < in_len + prefix_len + suffix_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| uint8_t *prefix = out; |
| uint8_t *body = out + prefix_len; |
| uint8_t *suffix = body + in_len; |
| if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) { |
| return 0; |
| } |
| |
| *out_len = prefix_len + in_len + suffix_len; |
| return 1; |
| } |
| |
| enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, |
| const uint8_t *in, size_t in_len) { |
| // Alerts records may not contain fragmented or multiple alerts. |
| if (in_len != 2) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
| return ssl_open_record_error; |
| } |
| |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in, in_len); |
| |
| const uint8_t alert_level = in[0]; |
| const uint8_t alert_descr = in[1]; |
| |
| uint16_t alert = (alert_level << 8) | alert_descr; |
| ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert); |
| |
| if (alert_level == SSL3_AL_WARNING) { |
| if (alert_descr == SSL_AD_CLOSE_NOTIFY) { |
| ssl->s3->recv_shutdown = ssl_shutdown_close_notify; |
| return ssl_open_record_close_notify; |
| } |
| |
| // Warning alerts do not exist in TLS 1.3. |
| if (ssl->s3->have_version && |
| ssl3_protocol_version(ssl) >= TLS1_3_VERSION) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
| return ssl_open_record_error; |
| } |
| |
| ssl->s3->warning_alert_count++; |
| if (ssl->s3->warning_alert_count > kMaxWarningAlerts) { |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS); |
| return ssl_open_record_error; |
| } |
| return ssl_open_record_discard; |
| } |
| |
| if (alert_level == SSL3_AL_FATAL) { |
| ssl->s3->recv_shutdown = ssl_shutdown_fatal_alert; |
| |
| char tmp[16]; |
| OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr); |
| BIO_snprintf(tmp, sizeof(tmp), "%d", alert_descr); |
| ERR_add_error_data(2, "SSL alert number ", tmp); |
| return ssl_open_record_fatal_alert; |
| } |
| |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE); |
| return ssl_open_record_error; |
| } |
| |
| OpenRecordResult OpenRecord(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_record_len, uint8_t *out_alert, |
| const Span<uint8_t> in) { |
| // This API is a work in progress and currently only works for TLS 1.2 servers |
| // and below. |
| if (SSL_in_init(ssl) || |
| SSL_is_dtls(ssl) || |
| ssl3_protocol_version(ssl) > TLS1_2_VERSION) { |
| assert(false); |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return OpenRecordResult::kError; |
| } |
| |
| CBS plaintext; |
| uint8_t type; |
| const ssl_open_record_t result = tls_open_record( |
| ssl, &type, &plaintext, out_record_len, out_alert, in.data(), in.size()); |
| |
| switch (result) { |
| case ssl_open_record_success: |
| if (type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_ALERT) { |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return OpenRecordResult::kError; |
| } |
| *out = MakeSpan( |
| const_cast<uint8_t*>(CBS_data(&plaintext)), CBS_len(&plaintext)); |
| return OpenRecordResult::kOK; |
| case ssl_open_record_discard: |
| return OpenRecordResult::kDiscard; |
| case ssl_open_record_partial: |
| return OpenRecordResult::kIncompleteRecord; |
| case ssl_open_record_close_notify: |
| return OpenRecordResult::kAlertCloseNotify; |
| case ssl_open_record_fatal_alert: |
| return OpenRecordResult::kAlertFatal; |
| case ssl_open_record_error: |
| return OpenRecordResult::kError; |
| } |
| assert(false); |
| return OpenRecordResult::kError; |
| } |
| |
| size_t SealRecordPrefixLen(const SSL *ssl, const size_t record_len) { |
| return tls_seal_scatter_prefix_len(ssl, SSL3_RT_APPLICATION_DATA, record_len); |
| } |
| |
| size_t SealRecordSuffixLen(const SSL *ssl, const size_t plaintext_len) { |
| assert(plaintext_len <= SSL3_RT_MAX_PLAIN_LENGTH); |
| size_t suffix_len; |
| if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, SSL3_RT_APPLICATION_DATA, |
| plaintext_len)) { |
| assert(false); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| assert(suffix_len <= SSL3_RT_MAX_ENCRYPTED_OVERHEAD); |
| return suffix_len; |
| } |
| |
| bool SealRecord(SSL *ssl, const Span<uint8_t> out_prefix, |
| const Span<uint8_t> out, Span<uint8_t> out_suffix, |
| const Span<const uint8_t> in) { |
| // This API is a work in progress and currently only works for TLS 1.2 servers |
| // and below. |
| if (SSL_in_init(ssl) || |
| SSL_is_dtls(ssl) || |
| ssl3_protocol_version(ssl) > TLS1_2_VERSION) { |
| assert(false); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| if (out_prefix.size() != SealRecordPrefixLen(ssl, in.size()) || |
| out.size() != in.size() || |
| out_suffix.size() != SealRecordSuffixLen(ssl, in.size())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
| return false; |
| } |
| return tls_seal_scatter_record(ssl, out_prefix.data(), out.data(), |
| out_suffix.data(), SSL3_RT_APPLICATION_DATA, |
| in.data(), in.size()); |
| } |
| |
| } // namespace bssl |
| |
| using namespace bssl; |
| |
| size_t SSL_max_seal_overhead(const SSL *ssl) { |
| if (SSL_is_dtls(ssl)) { |
| return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch); |
| } |
| |
| size_t ret = SSL3_RT_HEADER_LENGTH; |
| ret += ssl->s3->aead_write_ctx->MaxOverhead(); |
| // TLS 1.3 needs an extra byte for the encrypted record type. |
| if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
| ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
| ret += 1; |
| } |
| if (ssl_needs_record_splitting(ssl)) { |
| ret *= 2; |
| } |
| return ret; |
| } |