Move some RSA keygen support code into separate files.
This was all new code. There was a request to make this available under
ISC.
Change-Id: Ibabbe6fbf593c2a781aac47a4de7ac378604dbcf
Reviewed-on: https://boringssl-review.googlesource.com/28267
Reviewed-by: Adam Langley <agl@google.com>
diff --git a/crypto/fipsmodule/bcm.c b/crypto/fipsmodule/bcm.c
index 51ac7d5..e456d3a 100644
--- a/crypto/fipsmodule/bcm.c
+++ b/crypto/fipsmodule/bcm.c
@@ -36,8 +36,10 @@
#include "bn/cmp.c"
#include "bn/ctx.c"
#include "bn/div.c"
+#include "bn/div_extra.c"
#include "bn/exponentiation.c"
#include "bn/gcd.c"
+#include "bn/gcd_extra.c"
#include "bn/generic.c"
#include "bn/jacobi.c"
#include "bn/montgomery.c"
diff --git a/crypto/fipsmodule/bn/div_extra.c b/crypto/fipsmodule/bn/div_extra.c
new file mode 100644
index 0000000..7f03f28
--- /dev/null
+++ b/crypto/fipsmodule/bn/div_extra.c
@@ -0,0 +1,87 @@
+/* Copyright (c) 2018, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+#include <openssl/bn.h>
+
+#include <assert.h>
+
+#include "internal.h"
+
+
+// The following functions use a Barrett reduction variant to avoid leaking the
+// numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
+//
+// We use 32-bit numerator and 16-bit divisor for simplicity. This allows
+// computing |m| and |q| without architecture-specific code.
+
+// mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see
+// reference). For proof of correctness in Coq, see
+// https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v
+// Note the Coq version of |mod_u16| additionally includes the computation of
+// |p| and |m| from |bn_mod_u16_consttime| below.
+static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) {
+ // Compute floor(n/d) per steps 3 through 5.
+ uint32_t q = ((uint64_t)m * n) >> 32;
+ // Note there is a typo in the reference. We right-shift by one, not two.
+ uint32_t t = ((n - q) >> 1) + q;
+ t = t >> (p - 1);
+
+ // Multiply and subtract to get the remainder.
+ n -= d * t;
+ assert(n < d);
+ return n;
+}
+
+// shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the
+// "magic numbers" for |d| (see reference).
+static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d,
+ uint32_t p, uint32_t m) {
+ // Incorporate |a| in two 16-bit chunks.
+ uint32_t t = r;
+ t <<= 16;
+ t |= a >> 16;
+ t = mod_u16(t, d, p, m);
+
+ t <<= 16;
+ t |= a & 0xffff;
+ t = mod_u16(t, d, p, m);
+ return t;
+}
+
+uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) {
+ if (d <= 1) {
+ return 0;
+ }
+
+ // Compute the "magic numbers" for |d|. See steps 1 and 2.
+ // This computes p = ceil(log_2(d)).
+ uint32_t p = BN_num_bits_word(d - 1);
+ // This operation is not constant-time, but |p| and |d| are public values.
+ // Note that |p| is at most 16, so the computation fits in |uint64_t|.
+ assert(p <= 16);
+ uint32_t m = ((UINT64_C(1) << (32 + p)) + d - 1) / d;
+
+ uint16_t ret = 0;
+ for (int i = bn->width - 1; i >= 0; i--) {
+#if BN_BITS2 == 32
+ ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m);
+#elif BN_BITS2 == 64
+ ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m);
+ ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m);
+#else
+#error "Unknown BN_ULONG size"
+#endif
+ }
+ return ret;
+}
diff --git a/crypto/fipsmodule/bn/gcd.c b/crypto/fipsmodule/bn/gcd.c
index 7868b40..bd0fa6f 100644
--- a/crypto/fipsmodule/bn/gcd.c
+++ b/crypto/fipsmodule/bn/gcd.c
@@ -108,316 +108,11 @@
#include <openssl/bn.h>
-#include <assert.h>
-
#include <openssl/err.h>
#include "internal.h"
-static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); }
-
-static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp,
- size_t num) {
- bn_rshift1_words(tmp, a, num);
- bn_select_words(a, mask, tmp, a, num);
-}
-
-static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry,
- BN_ULONG mask, BN_ULONG *tmp,
- size_t num) {
- maybe_rshift1_words(a, mask, tmp, num);
- if (num != 0) {
- carry &= mask;
- a[num - 1] |= carry << (BN_BITS2-1);
- }
-}
-
-static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b,
- BN_ULONG *tmp, size_t num) {
- BN_ULONG carry = bn_add_words(tmp, a, b, num);
- bn_select_words(a, mask, tmp, a, num);
- return carry & mask;
-}
-
-static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- size_t width = x->width > y->width ? x->width : y->width;
- if (width == 0) {
- *out_shift = 0;
- BN_zero(r);
- return 1;
- }
-
- // This is a constant-time implementation of Stein's algorithm (binary GCD).
- int ret = 0;
- BN_CTX_start(ctx);
- BIGNUM *u = BN_CTX_get(ctx);
- BIGNUM *v = BN_CTX_get(ctx);
- BIGNUM *tmp = BN_CTX_get(ctx);
- if (u == NULL || v == NULL || tmp == NULL ||
- !BN_copy(u, x) ||
- !BN_copy(v, y) ||
- !bn_resize_words(u, width) ||
- !bn_resize_words(v, width) ||
- !bn_resize_words(tmp, width)) {
- goto err;
- }
-
- // Each loop iteration halves at least one of |u| and |v|. Thus we need at
- // most the combined bit width of inputs for at least one value to be zero.
- unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2;
- unsigned num_iters = x_bits + y_bits;
- if (num_iters < x_bits) {
- OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
- goto err;
- }
-
- unsigned shift = 0;
- for (unsigned i = 0; i < num_iters; i++) {
- BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
-
- // If both |u| and |v| are odd, subtract the smaller from the larger.
- BN_ULONG u_less_than_v =
- (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width);
- bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width);
- bn_sub_words(tmp->d, v->d, u->d, width);
- bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width);
-
- // At least one of |u| and |v| is now even.
- BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]);
- BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]);
- assert(!(u_is_odd & v_is_odd));
-
- // If both are even, the final GCD gains a factor of two.
- shift += 1 & (~u_is_odd & ~v_is_odd);
-
- // Halve any which are even.
- maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width);
- maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width);
- }
-
- // One of |u| or |v| is zero at this point. The algorithm usually makes |u|
- // zero, unless |y| was already zero on input. Fix this by combining the
- // values.
- assert(BN_is_zero(u) || BN_is_zero(v));
- for (size_t i = 0; i < width; i++) {
- v->d[i] |= u->d[i];
- }
-
- *out_shift = shift;
- ret = bn_set_words(r, v->d, width);
-
-err:
- BN_CTX_end(ctx);
- return ret;
-}
-
-int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) {
- unsigned shift;
- return bn_gcd_consttime(r, &shift, x, y, ctx) &&
- BN_lshift(r, r, shift);
-}
-
-int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx) {
- int ret = 0;
- BN_CTX_start(ctx);
- unsigned shift;
- BIGNUM *gcd = BN_CTX_get(ctx);
- if (gcd == NULL ||
- !bn_gcd_consttime(gcd, &shift, x, y, ctx)) {
- goto err;
- }
-
- // Check that 2^|shift| * |gcd| is one.
- if (gcd->width == 0) {
- *out_relatively_prime = 0;
- } else {
- BN_ULONG mask = shift | (gcd->d[0] ^ 1);
- for (int i = 1; i < gcd->width; i++) {
- mask |= gcd->d[i];
- }
- *out_relatively_prime = mask == 0;
- }
- ret = 1;
-
-err:
- BN_CTX_end(ctx);
- return ret;
-}
-
-int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
- BN_CTX_start(ctx);
- unsigned shift;
- BIGNUM *gcd = BN_CTX_get(ctx);
- int ret = gcd != NULL &&
- bn_mul_consttime(r, a, b, ctx) &&
- bn_gcd_consttime(gcd, &shift, a, b, ctx) &&
- bn_div_consttime(r, NULL, r, gcd, ctx) &&
- bn_rshift_secret_shift(r, r, shift, ctx);
- BN_CTX_end(ctx);
- return ret;
-}
-
-int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a,
- const BIGNUM *n, BN_CTX *ctx) {
- *out_no_inverse = 0;
- if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) {
- OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
- return 0;
- }
- if (BN_is_zero(a)) {
- if (BN_is_one(n)) {
- BN_zero(r);
- return 1;
- }
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- return 0;
- }
-
- // This is a constant-time implementation of the extended binary GCD
- // algorithm. It is adapted from the Handbook of Applied Cryptography, section
- // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid
- // negative numbers.
- //
- // For more details and proof of correctness, see
- // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step|
- // and |mod_inverse_consttime| for the algorithm in Gallina and see
- // |mod_inverse_consttime_spec| for the correctness result.
-
- if (!BN_is_odd(a) && !BN_is_odd(n)) {
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- return 0;
- }
-
- // This function exists to compute the RSA private exponent, where |a| is one
- // word. We'll thus use |a_width| when available.
- size_t n_width = n->width, a_width = a->width;
- if (a_width > n_width) {
- a_width = n_width;
- }
-
- int ret = 0;
- BN_CTX_start(ctx);
- BIGNUM *u = BN_CTX_get(ctx);
- BIGNUM *v = BN_CTX_get(ctx);
- BIGNUM *A = BN_CTX_get(ctx);
- BIGNUM *B = BN_CTX_get(ctx);
- BIGNUM *C = BN_CTX_get(ctx);
- BIGNUM *D = BN_CTX_get(ctx);
- BIGNUM *tmp = BN_CTX_get(ctx);
- BIGNUM *tmp2 = BN_CTX_get(ctx);
- if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL ||
- D == NULL || tmp == NULL || tmp2 == NULL ||
- !BN_copy(u, a) ||
- !BN_copy(v, n) ||
- !BN_one(A) ||
- !BN_one(D) ||
- // For convenience, size |u| and |v| equivalently.
- !bn_resize_words(u, n_width) ||
- !bn_resize_words(v, n_width) ||
- // |A| and |C| are bounded by |m|.
- !bn_resize_words(A, n_width) ||
- !bn_resize_words(C, n_width) ||
- // |B| and |D| are bounded by |a|.
- !bn_resize_words(B, a_width) ||
- !bn_resize_words(D, a_width) ||
- // |tmp| and |tmp2| may be used at either size.
- !bn_resize_words(tmp, n_width) ||
- !bn_resize_words(tmp2, n_width)) {
- goto err;
- }
-
- // Each loop iteration halves at least one of |u| and |v|. Thus we need at
- // most the combined bit width of inputs for at least one value to be zero.
- unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2;
- unsigned num_iters = a_bits + n_bits;
- if (num_iters < a_bits) {
- OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
- goto err;
- }
-
- // Before and after each loop iteration, the following hold:
- //
- // u = A*a - B*n
- // v = D*n - C*a
- // 0 < u <= a
- // 0 <= v <= n
- // 0 <= A < n
- // 0 <= B <= a
- // 0 <= C < n
- // 0 <= D <= a
- //
- // After each loop iteration, u and v only get smaller, and at least one of
- // them shrinks by at least a factor of two.
- for (unsigned i = 0; i < num_iters; i++) {
- BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
-
- // If both |u| and |v| are odd, subtract the smaller from the larger.
- BN_ULONG v_less_than_u =
- (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width);
- bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width);
- bn_sub_words(tmp->d, u->d, v->d, n_width);
- bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width);
-
- // If we updated one of the values, update the corresponding coefficient.
- BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width);
- carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width);
- bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width);
- bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width);
- bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width);
-
- bn_add_words(tmp->d, B->d, D->d, a_width);
- bn_sub_words(tmp2->d, tmp->d, a->d, a_width);
- bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width);
- bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width);
- bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width);
-
- // Our loop invariants hold at this point. Additionally, exactly one of |u|
- // and |v| is now even.
- BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]);
- BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]);
- assert(u_is_even != v_is_even);
-
- // Halve the even one and adjust the corresponding coefficient.
- maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width);
- BN_ULONG A_or_B_is_odd =
- word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]);
- BN_ULONG A_carry =
- maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width);
- BN_ULONG B_carry =
- maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width);
- maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width);
- maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width);
-
- maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width);
- BN_ULONG C_or_D_is_odd =
- word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]);
- BN_ULONG C_carry =
- maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width);
- BN_ULONG D_carry =
- maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width);
- maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width);
- maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width);
- }
-
- assert(BN_is_zero(v));
- if (!BN_is_one(u)) {
- *out_no_inverse = 1;
- OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
- goto err;
- }
-
- ret = BN_copy(r, A) != NULL;
-
-err:
- BN_CTX_end(ctx);
- return ret;
-}
-
int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
const BIGNUM *n, BN_CTX *ctx) {
*out_no_inverse = 0;
diff --git a/crypto/fipsmodule/bn/gcd_extra.c b/crypto/fipsmodule/bn/gcd_extra.c
new file mode 100644
index 0000000..30540e3
--- /dev/null
+++ b/crypto/fipsmodule/bn/gcd_extra.c
@@ -0,0 +1,325 @@
+/* Copyright (c) 2018, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+#include <openssl/bn.h>
+
+#include <assert.h>
+
+#include <openssl/err.h>
+
+#include "internal.h"
+
+
+static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); }
+
+static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp,
+ size_t num) {
+ bn_rshift1_words(tmp, a, num);
+ bn_select_words(a, mask, tmp, a, num);
+}
+
+static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry,
+ BN_ULONG mask, BN_ULONG *tmp,
+ size_t num) {
+ maybe_rshift1_words(a, mask, tmp, num);
+ if (num != 0) {
+ carry &= mask;
+ a[num - 1] |= carry << (BN_BITS2-1);
+ }
+}
+
+static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b,
+ BN_ULONG *tmp, size_t num) {
+ BN_ULONG carry = bn_add_words(tmp, a, b, num);
+ bn_select_words(a, mask, tmp, a, num);
+ return carry & mask;
+}
+
+static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x,
+ const BIGNUM *y, BN_CTX *ctx) {
+ size_t width = x->width > y->width ? x->width : y->width;
+ if (width == 0) {
+ *out_shift = 0;
+ BN_zero(r);
+ return 1;
+ }
+
+ // This is a constant-time implementation of Stein's algorithm (binary GCD).
+ int ret = 0;
+ BN_CTX_start(ctx);
+ BIGNUM *u = BN_CTX_get(ctx);
+ BIGNUM *v = BN_CTX_get(ctx);
+ BIGNUM *tmp = BN_CTX_get(ctx);
+ if (u == NULL || v == NULL || tmp == NULL ||
+ !BN_copy(u, x) ||
+ !BN_copy(v, y) ||
+ !bn_resize_words(u, width) ||
+ !bn_resize_words(v, width) ||
+ !bn_resize_words(tmp, width)) {
+ goto err;
+ }
+
+ // Each loop iteration halves at least one of |u| and |v|. Thus we need at
+ // most the combined bit width of inputs for at least one value to be zero.
+ unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2;
+ unsigned num_iters = x_bits + y_bits;
+ if (num_iters < x_bits) {
+ OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
+ goto err;
+ }
+
+ unsigned shift = 0;
+ for (unsigned i = 0; i < num_iters; i++) {
+ BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
+
+ // If both |u| and |v| are odd, subtract the smaller from the larger.
+ BN_ULONG u_less_than_v =
+ (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width);
+ bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width);
+ bn_sub_words(tmp->d, v->d, u->d, width);
+ bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width);
+
+ // At least one of |u| and |v| is now even.
+ BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]);
+ BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]);
+ assert(!(u_is_odd & v_is_odd));
+
+ // If both are even, the final GCD gains a factor of two.
+ shift += 1 & (~u_is_odd & ~v_is_odd);
+
+ // Halve any which are even.
+ maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width);
+ maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width);
+ }
+
+ // One of |u| or |v| is zero at this point. The algorithm usually makes |u|
+ // zero, unless |y| was already zero on input. Fix this by combining the
+ // values.
+ assert(BN_is_zero(u) || BN_is_zero(v));
+ for (size_t i = 0; i < width; i++) {
+ v->d[i] |= u->d[i];
+ }
+
+ *out_shift = shift;
+ ret = bn_set_words(r, v->d, width);
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) {
+ unsigned shift;
+ return bn_gcd_consttime(r, &shift, x, y, ctx) &&
+ BN_lshift(r, r, shift);
+}
+
+int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x,
+ const BIGNUM *y, BN_CTX *ctx) {
+ int ret = 0;
+ BN_CTX_start(ctx);
+ unsigned shift;
+ BIGNUM *gcd = BN_CTX_get(ctx);
+ if (gcd == NULL ||
+ !bn_gcd_consttime(gcd, &shift, x, y, ctx)) {
+ goto err;
+ }
+
+ // Check that 2^|shift| * |gcd| is one.
+ if (gcd->width == 0) {
+ *out_relatively_prime = 0;
+ } else {
+ BN_ULONG mask = shift | (gcd->d[0] ^ 1);
+ for (int i = 1; i < gcd->width; i++) {
+ mask |= gcd->d[i];
+ }
+ *out_relatively_prime = mask == 0;
+ }
+ ret = 1;
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
+ BN_CTX_start(ctx);
+ unsigned shift;
+ BIGNUM *gcd = BN_CTX_get(ctx);
+ int ret = gcd != NULL &&
+ bn_mul_consttime(r, a, b, ctx) &&
+ bn_gcd_consttime(gcd, &shift, a, b, ctx) &&
+ bn_div_consttime(r, NULL, r, gcd, ctx) &&
+ bn_rshift_secret_shift(r, r, shift, ctx);
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a,
+ const BIGNUM *n, BN_CTX *ctx) {
+ *out_no_inverse = 0;
+ if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) {
+ OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
+ return 0;
+ }
+ if (BN_is_zero(a)) {
+ if (BN_is_one(n)) {
+ BN_zero(r);
+ return 1;
+ }
+ *out_no_inverse = 1;
+ OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
+ return 0;
+ }
+
+ // This is a constant-time implementation of the extended binary GCD
+ // algorithm. It is adapted from the Handbook of Applied Cryptography, section
+ // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid
+ // negative numbers.
+ //
+ // For more details and proof of correctness, see
+ // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step|
+ // and |mod_inverse_consttime| for the algorithm in Gallina and see
+ // |mod_inverse_consttime_spec| for the correctness result.
+
+ if (!BN_is_odd(a) && !BN_is_odd(n)) {
+ *out_no_inverse = 1;
+ OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
+ return 0;
+ }
+
+ // This function exists to compute the RSA private exponent, where |a| is one
+ // word. We'll thus use |a_width| when available.
+ size_t n_width = n->width, a_width = a->width;
+ if (a_width > n_width) {
+ a_width = n_width;
+ }
+
+ int ret = 0;
+ BN_CTX_start(ctx);
+ BIGNUM *u = BN_CTX_get(ctx);
+ BIGNUM *v = BN_CTX_get(ctx);
+ BIGNUM *A = BN_CTX_get(ctx);
+ BIGNUM *B = BN_CTX_get(ctx);
+ BIGNUM *C = BN_CTX_get(ctx);
+ BIGNUM *D = BN_CTX_get(ctx);
+ BIGNUM *tmp = BN_CTX_get(ctx);
+ BIGNUM *tmp2 = BN_CTX_get(ctx);
+ if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL ||
+ D == NULL || tmp == NULL || tmp2 == NULL ||
+ !BN_copy(u, a) ||
+ !BN_copy(v, n) ||
+ !BN_one(A) ||
+ !BN_one(D) ||
+ // For convenience, size |u| and |v| equivalently.
+ !bn_resize_words(u, n_width) ||
+ !bn_resize_words(v, n_width) ||
+ // |A| and |C| are bounded by |m|.
+ !bn_resize_words(A, n_width) ||
+ !bn_resize_words(C, n_width) ||
+ // |B| and |D| are bounded by |a|.
+ !bn_resize_words(B, a_width) ||
+ !bn_resize_words(D, a_width) ||
+ // |tmp| and |tmp2| may be used at either size.
+ !bn_resize_words(tmp, n_width) ||
+ !bn_resize_words(tmp2, n_width)) {
+ goto err;
+ }
+
+ // Each loop iteration halves at least one of |u| and |v|. Thus we need at
+ // most the combined bit width of inputs for at least one value to be zero.
+ unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2;
+ unsigned num_iters = a_bits + n_bits;
+ if (num_iters < a_bits) {
+ OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
+ goto err;
+ }
+
+ // Before and after each loop iteration, the following hold:
+ //
+ // u = A*a - B*n
+ // v = D*n - C*a
+ // 0 < u <= a
+ // 0 <= v <= n
+ // 0 <= A < n
+ // 0 <= B <= a
+ // 0 <= C < n
+ // 0 <= D <= a
+ //
+ // After each loop iteration, u and v only get smaller, and at least one of
+ // them shrinks by at least a factor of two.
+ for (unsigned i = 0; i < num_iters; i++) {
+ BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
+
+ // If both |u| and |v| are odd, subtract the smaller from the larger.
+ BN_ULONG v_less_than_u =
+ (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width);
+ bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width);
+ bn_sub_words(tmp->d, u->d, v->d, n_width);
+ bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width);
+
+ // If we updated one of the values, update the corresponding coefficient.
+ BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width);
+ carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width);
+ bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width);
+ bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width);
+ bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width);
+
+ bn_add_words(tmp->d, B->d, D->d, a_width);
+ bn_sub_words(tmp2->d, tmp->d, a->d, a_width);
+ bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width);
+ bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width);
+ bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width);
+
+ // Our loop invariants hold at this point. Additionally, exactly one of |u|
+ // and |v| is now even.
+ BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]);
+ BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]);
+ assert(u_is_even != v_is_even);
+
+ // Halve the even one and adjust the corresponding coefficient.
+ maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width);
+ BN_ULONG A_or_B_is_odd =
+ word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]);
+ BN_ULONG A_carry =
+ maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width);
+ BN_ULONG B_carry =
+ maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width);
+ maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width);
+ maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width);
+
+ maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width);
+ BN_ULONG C_or_D_is_odd =
+ word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]);
+ BN_ULONG C_carry =
+ maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width);
+ BN_ULONG D_carry =
+ maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width);
+ maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width);
+ maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width);
+ }
+
+ assert(BN_is_zero(v));
+ if (!BN_is_one(u)) {
+ *out_no_inverse = 1;
+ OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
+ goto err;
+ }
+
+ ret = BN_copy(r, A) != NULL;
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
diff --git a/crypto/fipsmodule/bn/prime.c b/crypto/fipsmodule/bn/prime.c
index 80b33c2..903d6b1 100644
--- a/crypto/fipsmodule/bn/prime.c
+++ b/crypto/fipsmodule/bn/prime.c
@@ -532,73 +532,6 @@
return found;
}
-// The following functions use a Barrett reduction variant to avoid leaking the
-// numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
-//
-// We use 32-bit numerator and 16-bit divisor for simplicity. This allows
-// computing |m| and |q| without architecture-specific code.
-
-// mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see
-// reference). For proof of correctness in Coq, see
-// https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v
-// Note the Coq version of |mod_u16| additionally includes the computation of
-// |p| and |m| from |bn_mod_u16_consttime| below.
-static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) {
- // Compute floor(n/d) per steps 3 through 5.
- uint32_t q = ((uint64_t)m * n) >> 32;
- // Note there is a typo in the reference. We right-shift by one, not two.
- uint32_t t = ((n - q) >> 1) + q;
- t = t >> (p - 1);
-
- // Multiply and subtract to get the remainder.
- n -= d * t;
- assert(n < d);
- return n;
-}
-
-// shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the
-// "magic numbers" for |d| (see reference).
-static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d,
- uint32_t p, uint32_t m) {
- // Incorporate |a| in two 16-bit chunks.
- uint32_t t = r;
- t <<= 16;
- t |= a >> 16;
- t = mod_u16(t, d, p, m);
-
- t <<= 16;
- t |= a & 0xffff;
- t = mod_u16(t, d, p, m);
- return t;
-}
-
-uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) {
- if (d <= 1) {
- return 0;
- }
-
- // Compute the "magic numbers" for |d|. See steps 1 and 2.
- // This computes p = ceil(log_2(d)).
- uint32_t p = BN_num_bits_word(d - 1);
- // This operation is not constant-time, but |p| and |d| are public values.
- // Note that |p| is at most 16, so the computation fits in |uint64_t|.
- assert(p <= 16);
- uint32_t m = ((UINT64_C(1) << (32 + p)) + d - 1) / d;
-
- uint16_t ret = 0;
- for (int i = bn->width - 1; i >= 0; i--) {
-#if BN_BITS2 == 32
- ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m);
-#elif BN_BITS2 == 64
- ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m);
- ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m);
-#else
-#error "Unknown BN_ULONG size"
-#endif
- }
- return ret;
-}
-
static int bn_trial_division(uint16_t *out, const BIGNUM *bn) {
const size_t num_primes = num_trial_division_primes(bn);
for (size_t i = 1; i < num_primes; i++) {