blob: 248ac38e0a841cccd11d99899d752b8ee12b361f [file] [log] [blame]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/err.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
static void tls_on_handshake_complete(SSL *ssl) {
// The handshake should have released its final message.
assert(!ssl->s3->has_message);
// During the handshake, |hs_buf| is retained. Release if it there is no
// excess in it. There should not be any excess because the handshake logic
// rejects unprocessed data after each Finished message. Note this means we do
// not allow a TLS 1.2 HelloRequest to be packed into the same record as
// Finished. (Schannel also rejects this.)
assert(!ssl->s3->hs_buf || ssl->s3->hs_buf->length == 0);
if (ssl->s3->hs_buf && ssl->s3->hs_buf->length == 0) {
ssl->s3->hs_buf.reset();
}
}
static bool tls_set_read_state(SSL *ssl, ssl_encryption_level_t level,
UniquePtr<SSLAEADContext> aead_ctx,
Span<const uint8_t> traffic_secret) {
// Cipher changes are forbidden if the current epoch has leftover data.
if (tls_has_unprocessed_handshake_data(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return false;
}
if (SSL_is_quic(ssl)) {
if ((ssl->s3->hs == nullptr || !ssl->s3->hs->hints_requested) &&
!ssl->quic_method->set_read_secret(ssl, level, aead_ctx->cipher(),
traffic_secret.data(),
traffic_secret.size())) {
return false;
}
// QUIC only uses |ssl| for handshake messages, which never use early data
// keys, so we return without installing anything. This avoids needing to
// have two secrets active at once in 0-RTT.
if (level == ssl_encryption_early_data) {
return true;
}
ssl->s3->quic_read_level = level;
}
ssl->s3->read_sequence = 0;
ssl->s3->aead_read_ctx = std::move(aead_ctx);
return true;
}
static bool tls_set_write_state(SSL *ssl, ssl_encryption_level_t level,
UniquePtr<SSLAEADContext> aead_ctx,
Span<const uint8_t> traffic_secret) {
if (!tls_flush_pending_hs_data(ssl)) {
return false;
}
if (SSL_is_quic(ssl)) {
if ((ssl->s3->hs == nullptr || !ssl->s3->hs->hints_requested) &&
!ssl->quic_method->set_write_secret(ssl, level, aead_ctx->cipher(),
traffic_secret.data(),
traffic_secret.size())) {
return false;
}
// QUIC only uses |ssl| for handshake messages, which never use early data
// keys, so we return without installing anything. This avoids needing to
// have two secrets active at once in 0-RTT.
if (level == ssl_encryption_early_data) {
return true;
}
ssl->s3->quic_write_level = level;
}
ssl->s3->write_sequence = 0;
ssl->s3->aead_write_ctx = std::move(aead_ctx);
return true;
}
static void tls_finish_flight(SSL *ssl) {
// We don't track whether a flight is complete in TLS and instead always flush
// every queued message in |tls_flush|, whether the flight is complete or not.
}
static void tls_schedule_ack(SSL *ssl) {
// TLS does not use ACKs.
}
static const SSL_PROTOCOL_METHOD kTLSProtocolMethod = {
false /* is_dtls */,
tls_new,
tls_free,
tls_get_message,
tls_next_message,
tls_has_unprocessed_handshake_data,
tls_open_handshake,
tls_open_change_cipher_spec,
tls_open_app_data,
tls_write_app_data,
tls_dispatch_alert,
tls_init_message,
tls_finish_message,
tls_add_message,
tls_add_change_cipher_spec,
tls_finish_flight,
tls_schedule_ack,
tls_flush,
tls_on_handshake_complete,
tls_set_read_state,
tls_set_write_state,
};
static bool ssl_noop_x509_check_client_CA_names(
STACK_OF(CRYPTO_BUFFER) *names) {
return true;
}
static void ssl_noop_x509_clear(CERT *cert) {}
static void ssl_noop_x509_free(CERT *cert) {}
static void ssl_noop_x509_dup(CERT *new_cert, const CERT *cert) {}
static void ssl_noop_x509_flush_cached_leaf(CERT *cert) {}
static void ssl_noop_x509_flush_cached_chain(CERT *cert) {}
static bool ssl_noop_x509_session_cache_objects(SSL_SESSION *sess) {
return true;
}
static bool ssl_noop_x509_session_dup(SSL_SESSION *new_session,
const SSL_SESSION *session) {
return true;
}
static void ssl_noop_x509_session_clear(SSL_SESSION *session) {}
static bool ssl_noop_x509_session_verify_cert_chain(SSL_SESSION *session,
SSL_HANDSHAKE *hs,
uint8_t *out_alert) {
return false;
}
static void ssl_noop_x509_hs_flush_cached_ca_names(SSL_HANDSHAKE *hs) {}
static bool ssl_noop_x509_ssl_new(SSL_HANDSHAKE *hs) { return true; }
static void ssl_noop_x509_ssl_config_free(SSL_CONFIG *cfg) {}
static void ssl_noop_x509_ssl_flush_cached_client_CA(SSL_CONFIG *cfg) {}
static bool ssl_noop_x509_ssl_auto_chain_if_needed(SSL_HANDSHAKE *hs) {
return true;
}
static bool ssl_noop_x509_ssl_ctx_new(SSL_CTX *ctx) { return true; }
static void ssl_noop_x509_ssl_ctx_free(SSL_CTX *ctx) {}
static void ssl_noop_x509_ssl_ctx_flush_cached_client_CA(SSL_CTX *ctx) {}
const SSL_X509_METHOD ssl_noop_x509_method = {
ssl_noop_x509_check_client_CA_names,
ssl_noop_x509_clear,
ssl_noop_x509_free,
ssl_noop_x509_dup,
ssl_noop_x509_flush_cached_chain,
ssl_noop_x509_flush_cached_leaf,
ssl_noop_x509_session_cache_objects,
ssl_noop_x509_session_dup,
ssl_noop_x509_session_clear,
ssl_noop_x509_session_verify_cert_chain,
ssl_noop_x509_hs_flush_cached_ca_names,
ssl_noop_x509_ssl_new,
ssl_noop_x509_ssl_config_free,
ssl_noop_x509_ssl_flush_cached_client_CA,
ssl_noop_x509_ssl_auto_chain_if_needed,
ssl_noop_x509_ssl_ctx_new,
ssl_noop_x509_ssl_ctx_free,
ssl_noop_x509_ssl_ctx_flush_cached_client_CA,
};
BSSL_NAMESPACE_END
using namespace bssl;
const SSL_METHOD *TLS_method(void) {
static const SSL_METHOD kMethod = {
0,
&kTLSProtocolMethod,
&ssl_crypto_x509_method,
};
return &kMethod;
}
const SSL_METHOD *SSLv23_method(void) { return TLS_method(); }
const SSL_METHOD *TLS_with_buffers_method(void) {
static const SSL_METHOD kMethod = {
0,
&kTLSProtocolMethod,
&ssl_noop_x509_method,
};
return &kMethod;
}
// Legacy version-locked methods.
const SSL_METHOD *TLSv1_2_method(void) {
static const SSL_METHOD kMethod = {
TLS1_2_VERSION,
&kTLSProtocolMethod,
&ssl_crypto_x509_method,
};
return &kMethod;
}
const SSL_METHOD *TLSv1_1_method(void) {
static const SSL_METHOD kMethod = {
TLS1_1_VERSION,
&kTLSProtocolMethod,
&ssl_crypto_x509_method,
};
return &kMethod;
}
const SSL_METHOD *TLSv1_method(void) {
static const SSL_METHOD kMethod = {
TLS1_VERSION,
&kTLSProtocolMethod,
&ssl_crypto_x509_method,
};
return &kMethod;
}
// Legacy side-specific methods.
const SSL_METHOD *TLSv1_2_server_method(void) { return TLSv1_2_method(); }
const SSL_METHOD *TLSv1_1_server_method(void) { return TLSv1_1_method(); }
const SSL_METHOD *TLSv1_server_method(void) { return TLSv1_method(); }
const SSL_METHOD *TLSv1_2_client_method(void) { return TLSv1_2_method(); }
const SSL_METHOD *TLSv1_1_client_method(void) { return TLSv1_1_method(); }
const SSL_METHOD *TLSv1_client_method(void) { return TLSv1_method(); }
const SSL_METHOD *SSLv23_server_method(void) { return SSLv23_method(); }
const SSL_METHOD *SSLv23_client_method(void) { return SSLv23_method(); }
const SSL_METHOD *TLS_server_method(void) { return TLS_method(); }
const SSL_METHOD *TLS_client_method(void) { return TLS_method(); }