Remove legacy SHA-2 CBC ciphers.

All CBC ciphers in TLS are broken and insecure. TLS 1.2 introduced
AEAD-based ciphers which avoid their many problems. It also introduced
new CBC ciphers based on HMAC-SHA256 and HMAC-SHA384 that share the same
flaws as the original HMAC-SHA1 ones. These serve no purpose. Old
clients don't support them, they have the highest overhead of all TLS
ciphers, and new clients can use AEADs anyway.

Remove them from libssl. This is the smaller, more easily reverted
portion of the removal. If it survives a week or so, we can unwind a lot
more code elsewhere in libcrypto. This removal will allow us to clear
some indirect calls from crypto/cipher_extra/tls_cbc.c, aligning with
the recommendations here:

https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md#2-avoid-indirect-branches-in-constant-time-code

Update-Note: The following cipher suites are removed:
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

Change-Id: I7ade0fc1fa2464626560d156659893899aab6f77
Reviewed-on: https://boringssl-review.googlesource.com/27944
Reviewed-by: Adam Langley <agl@google.com>
5 files changed
tree: 4a51bf5c5edc3bd26a56d35cd23b5b3a078ef598
  1. .github/
  2. crypto/
  3. decrepit/
  4. fipstools/
  5. fuzz/
  6. include/
  7. infra/
  8. ssl/
  9. third_party/
  10. tool/
  11. util/
  12. .clang-format
  13. .gitignore
  14. API-CONVENTIONS.md
  15. BREAKING-CHANGES.md
  16. BUILDING.md
  17. CMakeLists.txt
  18. codereview.settings
  19. CONTRIBUTING.md
  20. FUZZING.md
  21. INCORPORATING.md
  22. LICENSE
  23. PORTING.md
  24. README.md
  25. sources.cmake
  26. STYLE.md
README.md

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.

Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.

BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.

Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.

There are other files in this directory which might be helpful: