| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| |
| #include "internal.h" |
| |
| |
| size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) { |
| if (form != POINT_CONVERSION_COMPRESSED && |
| form != POINT_CONVERSION_UNCOMPRESSED) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); |
| return 0; |
| } |
| |
| const size_t field_len = BN_num_bytes(&group->field); |
| size_t output_len = 1 /* type byte */ + field_len; |
| if (form == POINT_CONVERSION_UNCOMPRESSED) { |
| // Uncompressed points have a second coordinate. |
| output_len += field_len; |
| } |
| return output_len; |
| } |
| |
| size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, |
| point_conversion_form_t form, uint8_t *buf, |
| size_t max_out) { |
| size_t output_len = ec_point_byte_len(group, form); |
| if (max_out < output_len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| size_t field_len; |
| ec_felem_to_bytes(group, buf + 1, &field_len, &point->X); |
| assert(field_len == BN_num_bytes(&group->field)); |
| |
| if (form == POINT_CONVERSION_UNCOMPRESSED) { |
| ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y); |
| assert(field_len == BN_num_bytes(&group->field)); |
| buf[0] = form; |
| } else { |
| uint8_t y_buf[EC_MAX_BYTES]; |
| ec_felem_to_bytes(group, y_buf, &field_len, &point->Y); |
| buf[0] = form + (y_buf[field_len - 1] & 1); |
| } |
| |
| return output_len; |
| } |
| |
| int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, |
| const uint8_t *in, size_t len) { |
| const size_t field_len = BN_num_bytes(&group->field); |
| if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| return 0; |
| } |
| |
| EC_FELEM x, y; |
| if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || |
| !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || |
| !ec_point_set_affine_coordinates(group, out, &x, &y)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, |
| const uint8_t *buf, size_t len, |
| BN_CTX *ctx) { |
| if (len == 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| point_conversion_form_t form = buf[0]; |
| if (form == POINT_CONVERSION_UNCOMPRESSED) { |
| EC_AFFINE affine; |
| if (!ec_point_from_uncompressed(group, &affine, buf, len)) { |
| // In the event of an error, defend against the caller not checking the |
| // return value by setting a known safe value. |
| ec_set_to_safe_point(group, &point->raw); |
| return 0; |
| } |
| ec_affine_to_jacobian(group, &point->raw, &affine); |
| return 1; |
| } |
| |
| const int y_bit = form & 1; |
| const size_t field_len = BN_num_bytes(&group->field); |
| form = form & ~1u; |
| if (form != POINT_CONVERSION_COMPRESSED || |
| len != 1 /* type byte */ + field_len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| return 0; |
| } |
| |
| // TODO(davidben): Integrate compressed coordinates with the lower-level EC |
| // abstractions. This requires a way to compute square roots, which is tricky |
| // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's |
| // prime is particularly inconvenient for compressed coordinates. See |
| // https://cr.yp.to/papers/sqroot.pdf |
| BN_CTX *new_ctx = NULL; |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *x = BN_CTX_get(ctx); |
| if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) { |
| goto err; |
| } |
| if (BN_ucmp(x, &group->field) >= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| goto err; |
| } |
| |
| if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, |
| const uint8_t *buf, size_t len, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| return ec_GFp_simple_oct2point(group, point, buf, len, ctx); |
| } |
| |
| size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, |
| point_conversion_form_t form, uint8_t *buf, |
| size_t max_out, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| if (buf == NULL) { |
| // When |buf| is NULL, just return the number of bytes that would be |
| // written, without doing an expensive Jacobian-to-affine conversion. |
| if (ec_GFp_simple_is_at_infinity(group, &point->raw)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| return ec_point_byte_len(group, form); |
| } |
| EC_AFFINE affine; |
| if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { |
| return 0; |
| } |
| return ec_point_to_bytes(group, &affine, form, buf, max_out); |
| } |
| |
| size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, |
| point_conversion_form_t form, uint8_t **out_buf, |
| BN_CTX *ctx) { |
| *out_buf = NULL; |
| size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); |
| if (len == 0) { |
| return 0; |
| } |
| uint8_t *buf = OPENSSL_malloc(len); |
| if (buf == NULL) { |
| return 0; |
| } |
| len = EC_POINT_point2oct(group, point, form, buf, len, ctx); |
| if (len == 0) { |
| OPENSSL_free(buf); |
| return 0; |
| } |
| *out_buf = buf; |
| return len; |
| } |
| |
| int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, |
| EC_POINT *point, const BIGNUM *x, |
| int y_bit, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| |
| if (BN_is_negative(x) || BN_cmp(x, &group->field) >= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
| return 0; |
| } |
| |
| BN_CTX *new_ctx = NULL; |
| int ret = 0; |
| |
| ERR_clear_error(); |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| y_bit = (y_bit != 0); |
| |
| BN_CTX_start(ctx); |
| BIGNUM *tmp1 = BN_CTX_get(ctx); |
| BIGNUM *tmp2 = BN_CTX_get(ctx); |
| BIGNUM *a = BN_CTX_get(ctx); |
| BIGNUM *b = BN_CTX_get(ctx); |
| BIGNUM *y = BN_CTX_get(ctx); |
| if (y == NULL || |
| !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { |
| goto err; |
| } |
| |
| // Recover y. We have a Weierstrass equation |
| // y^2 = x^3 + a*x + b, |
| // so y is one of the square roots of x^3 + a*x + b. |
| |
| // tmp1 := x^3 |
| if (!BN_mod_sqr(tmp2, x, &group->field, ctx) || |
| !BN_mod_mul(tmp1, tmp2, x, &group->field, ctx)) { |
| goto err; |
| } |
| |
| // tmp1 := tmp1 + a*x |
| if (group->a_is_minus3) { |
| if (!bn_mod_lshift1_consttime(tmp2, x, &group->field, ctx) || |
| !bn_mod_add_consttime(tmp2, tmp2, x, &group->field, ctx) || |
| !bn_mod_sub_consttime(tmp1, tmp1, tmp2, &group->field, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_mod_mul(tmp2, a, x, &group->field, ctx) || |
| !bn_mod_add_consttime(tmp1, tmp1, tmp2, &group->field, ctx)) { |
| goto err; |
| } |
| } |
| |
| // tmp1 := tmp1 + b |
| if (!bn_mod_add_consttime(tmp1, tmp1, b, &group->field, ctx)) { |
| goto err; |
| } |
| |
| if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) { |
| uint32_t err = ERR_peek_last_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_BN && |
| ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { |
| ERR_clear_error(); |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
| } else { |
| OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
| } |
| goto err; |
| } |
| |
| if (y_bit != BN_is_odd(y)) { |
| if (BN_is_zero(y)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); |
| goto err; |
| } |
| if (!BN_usub(y, &group->field, y)) { |
| goto err; |
| } |
| } |
| if (y_bit != BN_is_odd(y)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |