Verify RSA private key operation regardless of whether CRT is used.

Previously, the verification was only done when using the CRT method,
as the CRT method has been shown to be extremely sensitive to fault
attacks. However, there's no reason to avoid doing the verification
when the non-CRT method is used (performance-sensitive applications
should always be using the CRT-capable keys).

Previously, when we detected a fault (attack) through this verification,
libcrypto would fall back to the non-CRT method and assume that the
non-CRT method would give a correct result, despite having just
detecting corruption that is likely from an attack. Instead, just give
up, like NSS does.

Previously, the code tried to handle the case where the input was not
reduced mod rsa->n. This is (was) not possible, so avoid trying to
handle that. This simplifies the equality check and lets us use
|CRYPTO_memcmp|.

Change-Id: I78d1e55520a1c8c280cae2b7256e12ff6290507d
Reviewed-on: https://boringssl-review.googlesource.com/7582
Reviewed-by: David Benjamin <davidben@google.com>
3 files changed
tree: b9da3986c21bbeff2203682a9d4e2adbe9511dfc
  1. .github/
  2. crypto/
  3. decrepit/
  4. fuzz/
  5. include/
  6. ssl/
  7. tool/
  8. util/
  9. .clang-format
  10. .gitignore
  11. BUILDING.md
  12. CMakeLists.txt
  13. codereview.settings
  14. CONTRIBUTING.md
  15. FUZZING.md
  16. INCORPORATING.md
  17. LICENSE
  18. PORTING.md
  19. README.md
  20. STYLE.md
README.md

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.

Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.

BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.

Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.

There are other files in this directory which might be helpful: