| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECC cipher suite support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. |
| */ |
| |
| #ifndef OPENSSL_HEADER_SSL_INTERNAL_H |
| #define OPENSSL_HEADER_SSL_INTERNAL_H |
| |
| #include <openssl/base.h> |
| |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <bitset> |
| #include <initializer_list> |
| #include <limits> |
| #include <new> |
| #include <type_traits> |
| #include <utility> |
| |
| #include <openssl/aead.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/err.h> |
| #include <openssl/hpke.h> |
| #include <openssl/lhash.h> |
| #include <openssl/mem.h> |
| #include <openssl/span.h> |
| #include <openssl/ssl.h> |
| #include <openssl/stack.h> |
| |
| #include "../crypto/err/internal.h" |
| #include "../crypto/internal.h" |
| #include "../crypto/lhash/internal.h" |
| |
| |
| #if defined(OPENSSL_WINDOWS) |
| // Windows defines struct timeval in winsock2.h. |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <winsock2.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #else |
| #include <sys/time.h> |
| #endif |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| struct SSL_CONFIG; |
| struct SSL_HANDSHAKE; |
| struct SSL_PROTOCOL_METHOD; |
| struct SSL_X509_METHOD; |
| |
| // C++ utilities. |
| |
| // Fill-ins for various functions in C++17. |
| // TODO(crbug.com/42290600): Replace these with the standard ones when we |
| // require C++17. |
| |
| template <typename ForwardIt> |
| ForwardIt cxx17_uninitialized_default_construct_n(ForwardIt first, size_t n) { |
| using T = typename std::iterator_traits<ForwardIt>::value_type; |
| while (n > 0) { |
| new (std::addressof(*first)) T; |
| first++; |
| n--; |
| } |
| return first; |
| } |
| |
| template <typename ForwardIt> |
| ForwardIt cxx17_uninitialized_value_construct_n(ForwardIt first, size_t n) { |
| using T = typename std::iterator_traits<ForwardIt>::value_type; |
| while (n > 0) { |
| new (std::addressof(*first)) T(); |
| first++; |
| n--; |
| } |
| return first; |
| } |
| |
| template <typename InputIt, typename OutputIt> |
| InputIt cxx17_uninitialized_move(InputIt first, InputIt last, OutputIt out) { |
| using OutputT = typename std::iterator_traits<OutputIt>::value_type; |
| for (; first != last; ++first) { |
| new (std::addressof(*out)) OutputT(std::move(*first)); |
| ++out; |
| } |
| return out; |
| } |
| |
| template <typename ForwardIt> |
| ForwardIt cxx17_destroy_n(ForwardIt first, size_t n) { |
| using T = typename std::iterator_traits<ForwardIt>::value_type; |
| while (n > 0) { |
| first->~T(); |
| first++; |
| n--; |
| } |
| return first; |
| } |
| |
| // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It |
| // returns nullptr on allocation error. It only implements single-object |
| // allocation and not new T[n]. |
| // |
| // Note: unlike |new|, this does not support non-public constructors. |
| template <typename T, typename... Args> |
| T *New(Args &&... args) { |
| void *t = OPENSSL_malloc(sizeof(T)); |
| if (t == nullptr) { |
| return nullptr; |
| } |
| return new (t) T(std::forward<Args>(args)...); |
| } |
| |
| // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. |
| // |
| // Note: unlike |delete| this does not support non-public destructors. |
| template <typename T> |
| void Delete(T *t) { |
| if (t != nullptr) { |
| t->~T(); |
| OPENSSL_free(t); |
| } |
| } |
| |
| // All types with kAllowUniquePtr set may be used with UniquePtr. Other types |
| // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. |
| namespace internal { |
| template <typename T> |
| struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> { |
| static void Free(T *t) { Delete(t); } |
| }; |
| } // namespace internal |
| |
| // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation |
| // error. |
| template <typename T, typename... Args> |
| UniquePtr<T> MakeUnique(Args &&... args) { |
| return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); |
| } |
| |
| // Array<T> is an owning array of elements of |T|. |
| template <typename T> |
| class Array { |
| public: |
| // Array's default constructor creates an empty array. |
| Array() {} |
| Array(const Array &) = delete; |
| Array(Array &&other) { *this = std::move(other); } |
| |
| ~Array() { Reset(); } |
| |
| Array &operator=(const Array &) = delete; |
| Array &operator=(Array &&other) { |
| Reset(); |
| other.Release(&data_, &size_); |
| return *this; |
| } |
| |
| const T *data() const { return data_; } |
| T *data() { return data_; } |
| size_t size() const { return size_; } |
| bool empty() const { return size_ == 0; } |
| |
| const T &operator[](size_t i) const { |
| BSSL_CHECK(i < size_); |
| return data_[i]; |
| } |
| T &operator[](size_t i) { |
| BSSL_CHECK(i < size_); |
| return data_[i]; |
| } |
| |
| T *begin() { return data_; } |
| const T *begin() const { return data_; } |
| T *end() { return data_ + size_; } |
| const T *end() const { return data_ + size_; } |
| |
| void Reset() { Reset(nullptr, 0); } |
| |
| // Reset releases the current contents of the array and takes ownership of the |
| // raw pointer supplied by the caller. |
| void Reset(T *new_data, size_t new_size) { |
| cxx17_destroy_n(data_, size_); |
| OPENSSL_free(data_); |
| data_ = new_data; |
| size_ = new_size; |
| } |
| |
| // Release releases ownership of the array to a raw pointer supplied by the |
| // caller. |
| void Release(T **out, size_t *out_size) { |
| *out = data_; |
| *out_size = size_; |
| data_ = nullptr; |
| size_ = 0; |
| } |
| |
| // Init replaces the array with a newly-allocated array of |new_size| |
| // value-constructed copies of |T|. It returns true on success and false on |
| // error. If |T| is a primitive type like |uint8_t|, value-construction means |
| // it will be zero-initialized. |
| bool Init(size_t new_size) { |
| if (!InitUninitialized(new_size)) { |
| return false; |
| } |
| cxx17_uninitialized_value_construct_n(data_, size_); |
| return true; |
| } |
| |
| // InitForOverwrite behaves like |Init| but it default-constructs each element |
| // instead. This means that, if |T| is a primitive type, the array will be |
| // uninitialized and thus must be filled in by the caller. |
| bool InitForOverwrite(size_t new_size) { |
| if (!InitUninitialized(new_size)) { |
| return false; |
| } |
| cxx17_uninitialized_default_construct_n(data_, size_); |
| return true; |
| } |
| |
| // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns |
| // true on success and false on error. |
| bool CopyFrom(Span<const T> in) { |
| if (!InitUninitialized(in.size())) { |
| return false; |
| } |
| std::uninitialized_copy(in.begin(), in.end(), data_); |
| return true; |
| } |
| |
| // Shrink shrinks the stored size of the array to |new_size|. It crashes if |
| // the new size is larger. Note this does not shrink the allocation itself. |
| void Shrink(size_t new_size) { |
| if (new_size > size_) { |
| abort(); |
| } |
| cxx17_destroy_n(data_ + new_size, size_ - new_size); |
| size_ = new_size; |
| } |
| |
| private: |
| // InitUninitialized replaces the array with a newly-allocated array of |
| // |new_size| elements, but whose constructor has not yet run. On success, the |
| // elements must be constructed before returning control to the caller. |
| bool InitUninitialized(size_t new_size) { |
| Reset(); |
| if (new_size == 0) { |
| return true; |
| } |
| |
| if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T))); |
| if (data_ == nullptr) { |
| return false; |
| } |
| size_ = new_size; |
| return true; |
| } |
| |
| T *data_ = nullptr; |
| size_t size_ = 0; |
| }; |
| |
| // Vector<T> is a resizable array of elements of |T|. |
| template <typename T> |
| class Vector { |
| public: |
| Vector() = default; |
| Vector(const Vector &) = delete; |
| Vector(Vector &&other) { *this = std::move(other); } |
| ~Vector() { clear(); } |
| |
| Vector &operator=(const Vector &) = delete; |
| Vector &operator=(Vector &&other) { |
| clear(); |
| std::swap(data_, other.data_); |
| std::swap(size_, other.size_); |
| std::swap(capacity_, other.capacity_); |
| return *this; |
| } |
| |
| const T *data() const { return data_; } |
| T *data() { return data_; } |
| size_t size() const { return size_; } |
| bool empty() const { return size_ == 0; } |
| |
| const T &operator[](size_t i) const { |
| BSSL_CHECK(i < size_); |
| return data_[i]; |
| } |
| T &operator[](size_t i) { |
| BSSL_CHECK(i < size_); |
| return data_[i]; |
| } |
| |
| T *begin() { return data_; } |
| const T *begin() const { return data_; } |
| T *end() { return data_ + size_; } |
| const T *end() const { return data_ + size_; } |
| |
| void clear() { |
| cxx17_destroy_n(data_, size_); |
| OPENSSL_free(data_); |
| data_ = nullptr; |
| size_ = 0; |
| capacity_ = 0; |
| } |
| |
| // Push adds |elem| at the end of the internal array, growing if necessary. It |
| // returns false when allocation fails. |
| bool Push(T elem) { |
| if (!MaybeGrow()) { |
| return false; |
| } |
| new (&data_[size_]) T(std::move(elem)); |
| size_++; |
| return true; |
| } |
| |
| // CopyFrom replaces the contents of the array with a copy of |in|. It returns |
| // true on success and false on allocation error. |
| bool CopyFrom(Span<const T> in) { |
| Array<T> copy; |
| if (!copy.CopyFrom(in)) { |
| return false; |
| } |
| |
| clear(); |
| copy.Release(&data_, &size_); |
| capacity_ = size_; |
| return true; |
| } |
| |
| private: |
| // If there is no room for one more element, creates a new backing array with |
| // double the size of the old one and copies elements over. |
| bool MaybeGrow() { |
| // No need to grow if we have room for one more T. |
| if (size_ < capacity_) { |
| return true; |
| } |
| size_t new_capacity = kDefaultSize; |
| if (capacity_ > 0) { |
| // Double the array's size if it's safe to do so. |
| if (capacity_ > std::numeric_limits<size_t>::max() / 2) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| new_capacity = capacity_ * 2; |
| } |
| if (new_capacity > std::numeric_limits<size_t>::max() / sizeof(T)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| T *new_data = |
| reinterpret_cast<T *>(OPENSSL_malloc(new_capacity * sizeof(T))); |
| if (new_data == nullptr) { |
| return false; |
| } |
| size_t new_size = size_; |
| cxx17_uninitialized_move(begin(), end(), new_data); |
| clear(); |
| data_ = new_data; |
| size_ = new_size; |
| capacity_ = new_capacity; |
| return true; |
| } |
| |
| // data_ is a pointer to |capacity_| objects of size |T|, the first |size_| of |
| // which are constructed. |
| T *data_ = nullptr; |
| // |size_| is the number of elements stored in this Vector. |
| size_t size_ = 0; |
| // |capacity_| is the number of elements allocated in this Vector. |
| size_t capacity_ = 0; |
| // |kDefaultSize| is the default initial size of the backing array. |
| static constexpr size_t kDefaultSize = 16; |
| }; |
| |
| // A PackedSize is an integer that can store values from 0 to N, represented as |
| // a minimal-width integer. |
| template <size_t N> |
| using PackedSize = std::conditional_t< |
| N <= 0xff, uint8_t, |
| std::conditional_t<N <= 0xffff, uint16_t, |
| std::conditional_t<N <= 0xffffffff, uint32_t, size_t>>>; |
| |
| // An InplaceVector is like a Vector, but stores up to N elements inline in the |
| // object. It is inspired by std::inplace_vector in C++26. |
| template <typename T, size_t N> |
| class InplaceVector { |
| public: |
| InplaceVector() = default; |
| InplaceVector(const InplaceVector &other) { *this = other; } |
| InplaceVector(InplaceVector &&other) { *this = std::move(other); } |
| ~InplaceVector() { clear(); } |
| InplaceVector &operator=(const InplaceVector &other) { |
| if (this != &other) { |
| CopyFrom(other); |
| } |
| return *this; |
| } |
| InplaceVector &operator=(InplaceVector &&other) { |
| clear(); |
| cxx17_uninitialized_move(other.begin(), other.end(), data()); |
| size_ = other.size(); |
| return *this; |
| } |
| |
| const T *data() const { return reinterpret_cast<const T *>(storage_); } |
| T *data() { return reinterpret_cast<T *>(storage_); } |
| size_t size() const { return size_; } |
| static constexpr size_t capacity() { return N; } |
| bool empty() const { return size_ == 0; } |
| |
| const T &operator[](size_t i) const { |
| BSSL_CHECK(i < size_); |
| return data()[i]; |
| } |
| T &operator[](size_t i) { |
| BSSL_CHECK(i < size_); |
| return data()[i]; |
| } |
| |
| T *begin() { return data(); } |
| const T *begin() const { return data(); } |
| T *end() { return data() + size_; } |
| const T *end() const { return data() + size_; } |
| |
| void clear() { Shrink(0); } |
| |
| // Shrink resizes the vector to |new_size|, which must not be larger than the |
| // current size. Unlike |Resize|, this can be called when |T| is not |
| // default-constructible. |
| void Shrink(size_t new_size) { |
| BSSL_CHECK(new_size <= size_); |
| cxx17_destroy_n(data() + new_size, size_ - new_size); |
| size_ = static_cast<PackedSize<N>>(new_size); |
| } |
| |
| // TryResize resizes the vector to |new_size| and returns true, or returns |
| // false if |new_size| is too large. Any newly-added elements are |
| // value-initialized. |
| bool TryResize(size_t new_size) { |
| if (new_size <= size_) { |
| Shrink(new_size); |
| return true; |
| } |
| if (new_size > capacity()) { |
| return false; |
| } |
| cxx17_uninitialized_value_construct_n(data() + size_, new_size - size_); |
| size_ = static_cast<PackedSize<N>>(new_size); |
| return true; |
| } |
| |
| // TryResizeForOverwrite behaves like |TryResize|, but newly-added elements |
| // are default-initialized, so POD types may contain uninitialized values that |
| // the caller is responsible for filling in. |
| bool TryResizeForOverwrite(size_t new_size) { |
| if (new_size <= size_) { |
| Shrink(new_size); |
| return true; |
| } |
| if (new_size > capacity()) { |
| return false; |
| } |
| cxx17_uninitialized_default_construct_n(data() + size_, new_size - size_); |
| size_ = static_cast<PackedSize<N>>(new_size); |
| return true; |
| } |
| |
| // TryCopyFrom sets the vector to a copy of |in| and returns true, or returns |
| // false if |in| is too large. |
| bool TryCopyFrom(Span<const T> in) { |
| if (in.size() > capacity()) { |
| return false; |
| } |
| clear(); |
| std::uninitialized_copy(in.begin(), in.end(), data()); |
| size_ = in.size(); |
| return true; |
| } |
| |
| // TryPushBack appends |val| to the vector and returns a pointer to the |
| // newly-inserted value, or nullptr if the vector is at capacity. |
| T *TryPushBack(T val) { |
| if (size() >= capacity()) { |
| return nullptr; |
| } |
| T *ret = &data()[size_]; |
| new (ret) T(std::move(val)); |
| size_++; |
| return ret; |
| } |
| |
| // The following methods behave like their |Try*| counterparts, but abort the |
| // program on failure. |
| void Resize(size_t size) { BSSL_CHECK(TryResize(size)); } |
| void ResizeForOverwrite(size_t size) { |
| BSSL_CHECK(TryResizeForOverwrite(size)); |
| } |
| void CopyFrom(Span<const T> in) { BSSL_CHECK(TryCopyFrom(in)); } |
| T &PushBack(T val) { |
| T *ret = TryPushBack(std::move(val)); |
| BSSL_CHECK(ret != nullptr); |
| return *ret; |
| } |
| |
| template <typename Pred> |
| void EraseIf(Pred pred) { |
| // See if anything needs to be erased at all. This avoids a self-move. |
| auto iter = std::find_if(begin(), end(), pred); |
| if (iter == end()) { |
| return; |
| } |
| |
| // Elements before the first to be erased may be left as-is. |
| size_t new_size = iter - begin(); |
| // Swap all subsequent elements in if they are to be kept. |
| for (size_t i = new_size + 1; i < size(); i++) { |
| if (!pred((*this)[i])) { |
| (*this)[new_size] = std::move((*this)[i]); |
| new_size++; |
| } |
| } |
| |
| Shrink(new_size); |
| } |
| |
| private: |
| alignas(T) char storage_[sizeof(T[N])]; |
| PackedSize<N> size_ = 0; |
| }; |
| |
| // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. |
| OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out); |
| |
| // GetAllNames helps to implement |*_get_all_*_names| style functions. It |
| // writes at most |max_out| string pointers to |out| and returns the number that |
| // it would have liked to have written. The strings written consist of |
| // |fixed_names_len| strings from |fixed_names| followed by |objects_len| |
| // strings taken by projecting |objects| through |name|. |
| template <typename T, typename Name> |
| inline size_t GetAllNames(const char **out, size_t max_out, |
| Span<const char *const> fixed_names, Name(T::*name), |
| Span<const T> objects) { |
| auto span = bssl::MakeSpan(out, max_out); |
| for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) { |
| span[0] = fixed_names[i]; |
| span = span.subspan(1); |
| } |
| span = span.subspan(0, objects.size()); |
| for (size_t i = 0; i < span.size(); i++) { |
| span[i] = objects[i].*name; |
| } |
| return fixed_names.size() + objects.size(); |
| } |
| |
| // RefCounted is a common base for ref-counted types. This is an instance of the |
| // C++ curiously-recurring template pattern, so a type Foo must subclass |
| // RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling |
| // the destructor. |
| template <typename Derived> |
| class RefCounted { |
| public: |
| RefCounted(const RefCounted &) = delete; |
| RefCounted &operator=(const RefCounted &) = delete; |
| |
| // These methods are intentionally named differently from `bssl::UpRef` to |
| // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free` |
| // should call these. |
| void UpRefInternal() { CRYPTO_refcount_inc(&references_); } |
| void DecRefInternal() { |
| if (CRYPTO_refcount_dec_and_test_zero(&references_)) { |
| Derived *d = static_cast<Derived *>(this); |
| d->~Derived(); |
| OPENSSL_free(d); |
| } |
| } |
| |
| protected: |
| // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`, |
| // can call the constructor. This catches bugs where someone inherited from |
| // the wrong base. |
| class CheckSubClass { |
| private: |
| friend Derived; |
| CheckSubClass() = default; |
| }; |
| RefCounted(CheckSubClass) { |
| static_assert(std::is_base_of<RefCounted, Derived>::value, |
| "Derived must subclass RefCounted<Derived>"); |
| } |
| |
| ~RefCounted() = default; |
| |
| private: |
| CRYPTO_refcount_t references_ = 1; |
| }; |
| |
| |
| // Protocol versions. |
| // |
| // Due to DTLS's historical wire version differences, we maintain two notions of |
| // version. |
| // |
| // The "version" or "wire version" is the actual 16-bit value that appears on |
| // the wire. It uniquely identifies a version and is also used at API |
| // boundaries. The set of supported versions differs between TLS and DTLS. Wire |
| // versions are opaque values and may not be compared numerically. |
| // |
| // The "protocol version" identifies the high-level handshake variant being |
| // used. DTLS versions map to the corresponding TLS versions. Protocol versions |
| // are sequential and may be compared numerically. |
| |
| // ssl_protocol_version_from_wire sets |*out| to the protocol version |
| // corresponding to wire version |version| and returns true. If |version| is not |
| // a valid TLS or DTLS version, it returns false. |
| // |
| // Note this simultaneously handles both DTLS and TLS. Use one of the |
| // higher-level functions below for most operations. |
| bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); |
| |
| // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the |
| // minimum and maximum enabled protocol versions, respectively. |
| bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version, |
| uint16_t *out_max_version); |
| |
| // ssl_supports_version returns whether |hs| supports |version|. |
| bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version); |
| |
| // ssl_method_supports_version returns whether |method| supports |version|. |
| bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method, |
| uint16_t version); |
| |
| // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in |
| // decreasing preference order. The version list is filtered to those whose |
| // protocol version is at least |extra_min_version|. |
| bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb, |
| uint16_t extra_min_version); |
| |
| // ssl_negotiate_version negotiates a common version based on |hs|'s preferences |
| // and the peer preference list in |peer_versions|. On success, it returns true |
| // and sets |*out_version| to the selected version. Otherwise, it returns false |
| // and sets |*out_alert| to an alert to send. |
| bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| uint16_t *out_version, const CBS *peer_versions); |
| |
| // ssl_protocol_version returns |ssl|'s protocol version. It is an error to |
| // call this function before the version is determined. |
| uint16_t ssl_protocol_version(const SSL *ssl); |
| |
| // Cipher suites. |
| |
| BSSL_NAMESPACE_END |
| |
| struct ssl_cipher_st { |
| // name is the OpenSSL name for the cipher. |
| const char *name; |
| // standard_name is the IETF name for the cipher. |
| const char *standard_name; |
| // id is the cipher suite value bitwise OR-d with 0x03000000. |
| uint32_t id; |
| |
| // algorithm_* determine the cipher suite. See constants below for the values. |
| uint32_t algorithm_mkey; |
| uint32_t algorithm_auth; |
| uint32_t algorithm_enc; |
| uint32_t algorithm_mac; |
| uint32_t algorithm_prf; |
| }; |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // Bits for |algorithm_mkey| (key exchange algorithm). |
| #define SSL_kRSA 0x00000001u |
| #define SSL_kECDHE 0x00000002u |
| // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. |
| #define SSL_kPSK 0x00000004u |
| #define SSL_kGENERIC 0x00000008u |
| |
| // Bits for |algorithm_auth| (server authentication). |
| #define SSL_aRSA_SIGN 0x00000001u |
| #define SSL_aRSA_DECRYPT 0x00000002u |
| #define SSL_aECDSA 0x00000004u |
| // SSL_aPSK is set for both PSK and ECDHE_PSK. |
| #define SSL_aPSK 0x00000008u |
| #define SSL_aGENERIC 0x00000010u |
| |
| #define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA) |
| |
| // Bits for |algorithm_enc| (symmetric encryption). |
| #define SSL_3DES 0x00000001u |
| #define SSL_AES128 0x00000002u |
| #define SSL_AES256 0x00000004u |
| #define SSL_AES128GCM 0x00000008u |
| #define SSL_AES256GCM 0x00000010u |
| #define SSL_CHACHA20POLY1305 0x00000020u |
| |
| #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) |
| |
| // Bits for |algorithm_mac| (symmetric authentication). |
| #define SSL_SHA1 0x00000001u |
| #define SSL_SHA256 0x00000002u |
| // SSL_AEAD is set for all AEADs. |
| #define SSL_AEAD 0x00000004u |
| |
| // Bits for |algorithm_prf| (handshake digest). |
| #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 |
| #define SSL_HANDSHAKE_MAC_SHA256 0x2 |
| #define SSL_HANDSHAKE_MAC_SHA384 0x4 |
| |
| // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384. |
| #define SSL_MAX_MD_SIZE 48 |
| |
| // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal- |
| // preference groups. For TLS clients, the groups are moot because the server |
| // picks the cipher and groups cannot be expressed on the wire. However, for |
| // servers, the equal-preference groups allow the client's preferences to be |
| // partially respected. (This only has an effect with |
| // SSL_OP_CIPHER_SERVER_PREFERENCE). |
| // |
| // The equal-preference groups are expressed by grouping SSL_CIPHERs together. |
| // All elements of a group have the same priority: no ordering is expressed |
| // within a group. |
| // |
| // The values in |ciphers| are in one-to-one correspondence with |
| // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of |
| // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to |
| // indicate that the corresponding SSL_CIPHER is not the last element of a |
| // group, or 0 to indicate that it is. |
| // |
| // For example, if |in_group_flags| contains all zeros then that indicates a |
| // traditional, fully-ordered preference. Every SSL_CIPHER is the last element |
| // of the group (i.e. they are all in a one-element group). |
| // |
| // For a more complex example, consider: |
| // ciphers: A B C D E F |
| // in_group_flags: 1 1 0 0 1 0 |
| // |
| // That would express the following, order: |
| // |
| // A E |
| // B -> D -> F |
| // C |
| struct SSLCipherPreferenceList { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| SSLCipherPreferenceList() = default; |
| ~SSLCipherPreferenceList(); |
| |
| bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers, |
| Span<const bool> in_group_flags); |
| bool Init(const SSLCipherPreferenceList &); |
| |
| void Remove(const SSL_CIPHER *cipher); |
| |
| UniquePtr<STACK_OF(SSL_CIPHER)> ciphers; |
| bool *in_group_flags = nullptr; |
| }; |
| |
| // AllCiphers returns an array of all supported ciphers, sorted by id. |
| Span<const SSL_CIPHER> AllCiphers(); |
| |
| // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD |
| // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| |
| // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, |
| // respectively. The MAC key length is zero except for legacy block and stream |
| // ciphers. It returns true on success and false on error. |
| bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, |
| size_t *out_mac_secret_len, |
| size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, |
| uint16_t version); |
| |
| // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and |
| // |cipher|. |
| const EVP_MD *ssl_get_handshake_digest(uint16_t version, |
| const SSL_CIPHER *cipher); |
| |
| // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a |
| // newly-allocated |SSLCipherPreferenceList| containing the result. It returns |
| // true on success and false on failure. If |strict| is true, nonsense will be |
| // rejected. If false, nonsense will be silently ignored. An empty result is |
| // considered an error regardless of |strict|. |has_aes_hw| indicates if the |
| // list should be ordered based on having support for AES in hardware or not. |
| bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list, |
| const bool has_aes_hw, const char *rule_str, |
| bool strict); |
| |
| // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| |
| // values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates |
| // whether |key| may be used for signing. |
| uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok); |
| |
| // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the |
| // server and, optionally, the client with a certificate. |
| bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); |
| |
| // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a |
| // ServerKeyExchange message. |
| // |
| // This function may return false while still allowing |cipher| an optional |
| // ServerKeyExchange. This is the case for plain PSK ciphers. |
| bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); |
| |
| // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the |
| // length of an encrypted 1-byte record, for use in record-splitting. Otherwise |
| // it returns zero. |
| size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); |
| |
| // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best |
| // available from |cipher_suites| compatible with |version| and |policy|. It |
| // returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if |
| // the choice should be made as if support for AES in hardware is available. |
| const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw, |
| uint16_t version, |
| enum ssl_compliance_policy_t policy); |
| |
| // ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given |
| // |policy|. |
| bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id, |
| enum ssl_compliance_policy_t policy); |
| |
| // ssl_cipher_is_deprecated returns true if |cipher| is deprecated. |
| OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher); |
| |
| |
| // Transcript layer. |
| |
| // SSLTranscript maintains the handshake transcript as a combination of a |
| // buffer and running hash. |
| class SSLTranscript { |
| public: |
| explicit SSLTranscript(bool is_dtls); |
| ~SSLTranscript(); |
| |
| SSLTranscript(SSLTranscript &&other) = default; |
| SSLTranscript &operator=(SSLTranscript &&other) = default; |
| |
| // Init initializes the handshake transcript. If called on an existing |
| // transcript, it resets the transcript and hash. It returns true on success |
| // and false on failure. |
| bool Init(); |
| |
| // InitHash initializes the handshake hash based on the PRF and contents of |
| // the handshake transcript. Subsequent calls to |Update| will update the |
| // rolling hash. It returns one on success and zero on failure. It is an error |
| // to call this function after the handshake buffer is released. This may be |
| // called multiple times to change the hash function. |
| bool InitHash(uint16_t version, const SSL_CIPHER *cipher); |
| |
| // UpdateForHelloRetryRequest resets the rolling hash with the |
| // HelloRetryRequest construction. It returns true on success and false on |
| // failure. It is an error to call this function before the handshake buffer |
| // is released. |
| bool UpdateForHelloRetryRequest(); |
| |
| // CopyToHashContext initializes |ctx| with |digest| and the data thus far in |
| // the transcript. It returns true on success and false on failure. If the |
| // handshake buffer is still present, |digest| may be any supported digest. |
| // Otherwise, |digest| must match the transcript hash. |
| bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const; |
| |
| Span<const uint8_t> buffer() const { |
| return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data), |
| buffer_->length); |
| } |
| |
| // FreeBuffer releases the handshake buffer. Subsequent calls to |
| // |Update| will not update the handshake buffer. |
| void FreeBuffer(); |
| |
| // DigestLen returns the length of the PRF hash. |
| size_t DigestLen() const; |
| |
| // Digest returns the PRF hash. For TLS 1.1 and below, this is |
| // |EVP_md5_sha1|. |
| const EVP_MD *Digest() const; |
| |
| // Update adds |in| to the handshake buffer and handshake hash, whichever is |
| // enabled. It returns true on success and false on failure. |
| bool Update(Span<const uint8_t> in); |
| |
| // GetHash writes the handshake hash to |out| which must have room for at |
| // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to |
| // the number of bytes written. Otherwise, it returns false. |
| bool GetHash(uint8_t *out, size_t *out_len) const; |
| |
| // GetFinishedMAC computes the MAC for the Finished message into the bytes |
| // pointed by |out| and writes the number of bytes to |*out_len|. |out| must |
| // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false |
| // on failure. |
| bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, |
| bool from_server) const; |
| |
| private: |
| // HashBuffer initializes |ctx| to use |digest| and writes the contents of |
| // |buffer_| to |ctx|. If this SSLTranscript is for DTLS 1.3, the appropriate |
| // bytes in |buffer_| will be skipped when hashing the buffer. |
| bool HashBuffer(EVP_MD_CTX *ctx, const EVP_MD *digest) const; |
| |
| // AddToBufferOrHash directly adds the contents of |in| to |buffer_| and/or |
| // |hash_|. |
| bool AddToBufferOrHash(Span<const uint8_t> in); |
| |
| // buffer_, if non-null, contains the handshake transcript. |
| UniquePtr<BUF_MEM> buffer_; |
| // hash, if initialized with an |EVP_MD|, maintains the handshake hash. |
| ScopedEVP_MD_CTX hash_; |
| // is_dtls_ indicates whether this is a transcript for a DTLS connection. |
| bool is_dtls_ : 1; |
| // version_ contains the version for the connection (if known). |
| uint16_t version_ = 0; |
| }; |
| |
| // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| |
| // as the secret and |label| as the label. |seed1| and |seed2| are concatenated |
| // to form the seed parameter. It returns true on success and false on failure. |
| bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out, |
| Span<const uint8_t> secret, Span<const char> label, |
| Span<const uint8_t> seed1, Span<const uint8_t> seed2); |
| |
| |
| // Encryption layer. |
| |
| // SSLAEADContext contains information about an AEAD that is being used to |
| // encrypt an SSL connection. |
| class SSLAEADContext { |
| public: |
| explicit SSLAEADContext(const SSL_CIPHER *cipher); |
| ~SSLAEADContext(); |
| static constexpr bool kAllowUniquePtr = true; |
| |
| SSLAEADContext(const SSLAEADContext &&) = delete; |
| SSLAEADContext &operator=(const SSLAEADContext &&) = delete; |
| |
| // CreateNullCipher creates an |SSLAEADContext| for the null cipher. |
| static UniquePtr<SSLAEADContext> CreateNullCipher(); |
| |
| // Create creates an |SSLAEADContext| using the supplied key material. It |
| // returns nullptr on error. Only one of |Open| or |Seal| may be used with the |
| // resulting object, depending on |direction|. |version| is the wire version. |
| static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction, |
| uint16_t version, |
| const SSL_CIPHER *cipher, |
| Span<const uint8_t> enc_key, |
| Span<const uint8_t> mac_key, |
| Span<const uint8_t> fixed_iv); |
| |
| // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the |
| // given cipher. The resulting object can be queried for various properties |
| // but cannot encrypt or decrypt data. |
| static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC( |
| const SSL_CIPHER *cipher); |
| |
| const SSL_CIPHER *cipher() const { return cipher_; } |
| |
| // is_null_cipher returns true if this is the null cipher. |
| bool is_null_cipher() const { return !cipher_; } |
| |
| // ExplicitNonceLen returns the length of the explicit nonce. |
| size_t ExplicitNonceLen() const; |
| |
| // MaxOverhead returns the maximum overhead of calling |Seal|. |
| size_t MaxOverhead() const; |
| |
| // SuffixLen calculates the suffix length written by |SealScatter| and writes |
| // it to |*out_suffix_len|. It returns true on success and false on error. |
| // |in_len| and |extra_in_len| should equal the argument of the same names |
| // passed to |SealScatter|. |
| bool SuffixLen(size_t *out_suffix_len, size_t in_len, |
| size_t extra_in_len) const; |
| |
| // CiphertextLen calculates the total ciphertext length written by |
| // |SealScatter| and writes it to |*out_len|. It returns true on success and |
| // false on error. |in_len| and |extra_in_len| should equal the argument of |
| // the same names passed to |SealScatter|. |
| bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const; |
| |
| // Open authenticates and decrypts |in| in-place. On success, it sets |*out| |
| // to the plaintext in |in| and returns true. Otherwise, it returns |
| // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. |
| bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version, |
| uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in); |
| |
| // Seal encrypts and authenticates |in_len| bytes from |in| and writes the |
| // result to |out|. It returns true on success and false on error. |
| // |
| // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. |
| bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, |
| uint16_t record_version, uint64_t seqnum, |
| Span<const uint8_t> header, const uint8_t *in, size_t in_len); |
| |
| // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits |
| // the result between |out_prefix|, |out| and |out_suffix|. It returns one on |
| // success and zero on error. |
| // |
| // On successful return, exactly |ExplicitNonceLen| bytes are written to |
| // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to |
| // |out_suffix|. |
| // |
| // |extra_in| may point to an additional plaintext buffer. If present, |
| // |extra_in_len| additional bytes are encrypted and authenticated, and the |
| // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should |
| // be used to size |out_suffix| accordingly. |
| // |
| // If |in| and |out| alias then |out| must be == |in|. Other arguments may not |
| // alias anything. |
| bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, |
| uint8_t type, uint16_t record_version, uint64_t seqnum, |
| Span<const uint8_t> header, const uint8_t *in, size_t in_len, |
| const uint8_t *extra_in, size_t extra_in_len); |
| |
| bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; |
| |
| private: |
| // GetAdditionalData returns the additional data, writing into |storage| if |
| // necessary. |
| Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type, |
| uint16_t record_version, |
| uint64_t seqnum, size_t plaintext_len, |
| Span<const uint8_t> header); |
| |
| const SSL_CIPHER *cipher_; |
| ScopedEVP_AEAD_CTX ctx_; |
| // fixed_nonce_ contains any bytes of the nonce that are fixed for all |
| // records. |
| InplaceVector<uint8_t, 12> fixed_nonce_; |
| uint8_t variable_nonce_len_ = 0; |
| // variable_nonce_included_in_record_ is true if the variable nonce |
| // for a record is included as a prefix before the ciphertext. |
| bool variable_nonce_included_in_record_ : 1; |
| // random_variable_nonce_ is true if the variable nonce is |
| // randomly generated, rather than derived from the sequence |
| // number. |
| bool random_variable_nonce_ : 1; |
| // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the |
| // variable nonce rather than prepended. |
| bool xor_fixed_nonce_ : 1; |
| // omit_length_in_ad_ is true if the length should be omitted in the |
| // AEAD's ad parameter. |
| bool omit_length_in_ad_ : 1; |
| // ad_is_header_ is true if the AEAD's ad parameter is the record header. |
| bool ad_is_header_ : 1; |
| }; |
| |
| |
| // DTLS replay bitmap. |
| |
| // DTLSReplayBitmap maintains a sliding window of sequence numbers to detect |
| // replayed packets. |
| class DTLSReplayBitmap { |
| public: |
| // ShouldDiscard returns true if |seq_num| has been seen in |
| // |bitmap| or is stale. Otherwise it returns false. |
| bool ShouldDiscard(uint64_t seqnum) const; |
| |
| // Record updates the bitmap to record receipt of sequence number |
| // |seq_num|. It slides the window forward if needed. It is an error to call |
| // this function on a stale sequence number. |
| void Record(uint64_t seqnum); |
| |
| uint64_t max_seq_num() const { return max_seq_num_; } |
| |
| private: |
| // map is a bitset of sequence numbers that have been seen. Bit i corresponds |
| // to |max_seq_num_ - i|. |
| std::bitset<256> map_; |
| // max_seq_num_ is the largest sequence number seen so far as a 64-bit |
| // integer. |
| uint64_t max_seq_num_ = 0; |
| }; |
| |
| // reconstruct_seqnum takes the low order bits of a record sequence number from |
| // the wire and reconstructs the full sequence number. It does so using the |
| // algorithm described in section 4.2.2 of RFC 9147, where |wire_seq| is the |
| // low bits of the sequence number as seen on the wire, |seq_mask| is a bitmask |
| // of 8 or 16 1 bits corresponding to the length of the sequence number on the |
| // wire, and |max_valid_seqnum| is the largest sequence number of a record |
| // successfully deprotected in this epoch. This function returns the sequence |
| // number that is numerically closest to one plus |max_valid_seqnum| that when |
| // bitwise and-ed with |seq_mask| equals |wire_seq|. |
| OPENSSL_EXPORT uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, |
| uint64_t max_valid_seqnum); |
| |
| |
| // Record layer. |
| |
| class RecordNumberEncrypter { |
| public: |
| static constexpr bool kAllowUniquePtr = true; |
| static constexpr size_t kMaxKeySize = 32; |
| |
| // Create returns a DTLS 1.3 record number encrypter for |traffic_secret|, or |
| // nullptr on error. |
| static UniquePtr<RecordNumberEncrypter> Create( |
| const SSL_CIPHER *cipher, Span<const uint8_t> traffic_secret); |
| |
| virtual ~RecordNumberEncrypter() = default; |
| virtual size_t KeySize() = 0; |
| virtual bool SetKey(Span<const uint8_t> key) = 0; |
| virtual bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) = 0; |
| }; |
| |
| struct DTLSReadEpoch { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| uint16_t epoch = 0; |
| UniquePtr<SSLAEADContext> aead; |
| UniquePtr<RecordNumberEncrypter> rn_encrypter; |
| DTLSReplayBitmap bitmap; |
| }; |
| |
| struct DTLSWriteEpoch { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| uint16_t epoch = 0; |
| UniquePtr<SSLAEADContext> aead; |
| UniquePtr<RecordNumberEncrypter> rn_encrypter; |
| uint64_t next_seq = 0; |
| }; |
| |
| // ssl_record_prefix_len returns the length of the prefix before the ciphertext |
| // of a record for |ssl|. |
| // |
| // TODO(davidben): Expose this as part of public API once the high-level |
| // buffer-free APIs are available. |
| size_t ssl_record_prefix_len(const SSL *ssl); |
| |
| enum ssl_open_record_t { |
| ssl_open_record_success, |
| ssl_open_record_discard, |
| ssl_open_record_partial, |
| ssl_open_record_close_notify, |
| ssl_open_record_error, |
| }; |
| |
| // tls_open_record decrypts a record from |in| in-place. |
| // |
| // If the input did not contain a complete record, it returns |
| // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of |
| // bytes necessary. It is guaranteed that a successful call to |tls_open_record| |
| // will consume at least that many bytes. |
| // |
| // Otherwise, it sets |*out_consumed| to the number of bytes of input |
| // consumed. Note that input may be consumed on all return codes if a record was |
| // decrypted. |
| // |
| // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the |
| // record type and |*out| to the record body in |in|. Note that |*out| may be |
| // empty. |
| // |
| // If a record was successfully processed but should be discarded, it returns |
| // |ssl_open_record_discard|. |
| // |
| // If a record was successfully processed but is a close_notify, it returns |
| // |ssl_open_record_close_notify|. |
| // |
| // On failure or fatal alert, it returns |ssl_open_record_error| and sets |
| // |*out_alert| to an alert to emit, or zero if no alert should be emitted. |
| enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, |
| Span<uint8_t> *out, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| |
| // dtls_open_record implements |tls_open_record| for DTLS. It only returns |
| // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to |
| // zero. The caller should read one packet and try again. |
| enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, |
| Span<uint8_t> *out, |
| size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| |
| // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher |
| // state needs record-splitting and zero otherwise. |
| bool ssl_needs_record_splitting(const SSL *ssl); |
| |
| // tls_seal_record seals a new record of type |type| and body |in| and writes it |
| // to |out|. At most |max_out| bytes will be written. It returns true on success |
| // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC |
| // 1/n-1 record splitting and may write two records concatenated. |
| // |
| // For a large record, the bulk of the ciphertext will begin |
| // |tls_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may |
| // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| |
| // bytes to |out|. |
| // |
| // |in| and |out| may not alias. |
| bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint8_t type, const uint8_t *in, size_t in_len); |
| |
| // dtls_record_header_write_len returns the length of the record header that |
| // will be written at |epoch|. |
| size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch); |
| |
| // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a |
| // record. |
| size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch); |
| |
| // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in |
| // front of the plaintext when sealing a record in-place. |
| size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch); |
| |
| // dtls_seal_record implements |tls_seal_record| for DTLS. |epoch| selects which |
| // epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| may |
| // alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes |
| // ahead of |out|. |
| bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint8_t type, const uint8_t *in, size_t in_len, |
| uint16_t epoch); |
| |
| // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown |
| // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, |
| // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as |
| // appropriate. |
| enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, |
| Span<const uint8_t> in); |
| |
| |
| // Private key operations. |
| |
| // ssl_private_key_* perform the corresponding operation on |
| // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they |
| // call the corresponding function or |complete| depending on whether there is a |
| // pending operation. Otherwise, they implement the operation with |
| // |EVP_PKEY|. |
| |
| enum ssl_private_key_result_t ssl_private_key_sign( |
| SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, |
| uint16_t sigalg, Span<const uint8_t> in); |
| |
| enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, |
| uint8_t *out, |
| size_t *out_len, |
| size_t max_out, |
| Span<const uint8_t> in); |
| |
| // ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign |
| // |sigalg|. |
| bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, |
| uint16_t sigalg, bool is_verify); |
| |
| // ssl_public_key_verify verifies that the |signature| is valid for the public |
| // key |pkey| and input |in|, using the signature algorithm |sigalg|. |
| bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, |
| uint16_t sigalg, EVP_PKEY *pkey, |
| Span<const uint8_t> in); |
| |
| |
| // Key shares. |
| |
| // SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE |
| // cipher suites and the TLS 1.3 key_share extension. |
| // |
| // TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share |
| // extension, but it really implements a KEM abstraction. Additionally, we use |
| // the same type for Encap, which is a one-off, stateless operation, as Generate |
| // and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey |
| // (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap |
| // to be static function. |
| class SSLKeyShare { |
| public: |
| virtual ~SSLKeyShare() {} |
| static constexpr bool kAllowUniquePtr = true; |
| |
| // Create returns a SSLKeyShare instance for use with group |group_id| or |
| // nullptr on error. |
| static UniquePtr<SSLKeyShare> Create(uint16_t group_id); |
| |
| // GroupID returns the group ID. |
| virtual uint16_t GroupID() const = 0; |
| |
| // Generate generates a keypair and writes the public key to |out_public_key|. |
| // It returns true on success and false on error. |
| virtual bool Generate(CBB *out_public_key) = 0; |
| |
| // Encap generates an ephemeral, symmetric secret and encapsulates it with |
| // |peer_key|. On success, it returns true, writes the encapsulated secret to |
| // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure, |
| // it returns false and sets |*out_alert| to an alert to send to the peer. |
| virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret, |
| uint8_t *out_alert, |
| Span<const uint8_t> peer_key) = 0; |
| |
| // Decap decapsulates the symmetric secret in |ciphertext|. On success, it |
| // returns true and sets |*out_secret| to the shared secret. On failure, it |
| // returns false and sets |*out_alert| to an alert to send to the peer. |
| virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert, |
| Span<const uint8_t> ciphertext) = 0; |
| |
| // SerializePrivateKey writes the private key to |out|, returning true if |
| // successful and false otherwise. It should be called after |Generate|. |
| virtual bool SerializePrivateKey(CBB *out) { return false; } |
| |
| // DeserializePrivateKey initializes the state of the key exchange from |in|, |
| // returning true if successful and false otherwise. |
| virtual bool DeserializePrivateKey(CBS *in) { return false; } |
| }; |
| |
| struct NamedGroup { |
| int nid; |
| uint16_t group_id; |
| const char name[32], alias[32]; |
| }; |
| |
| // NamedGroups returns all supported groups. |
| Span<const NamedGroup> NamedGroups(); |
| |
| // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it |
| // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns |
| // false. |
| bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid); |
| |
| // ssl_name_to_group_id looks up the group corresponding to the |name| string of |
| // length |len|. On success, it sets |*out_group_id| to the group ID and returns |
| // true. Otherwise, it returns false. |
| bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); |
| |
| // ssl_group_id_to_nid returns the NID corresponding to |group_id| or |
| // |NID_undef| if unknown. |
| int ssl_group_id_to_nid(uint16_t group_id); |
| |
| |
| // Handshake messages. |
| |
| struct SSLMessage { |
| bool is_v2_hello; |
| uint8_t type; |
| CBS body; |
| // raw is the entire serialized handshake message, including the TLS or DTLS |
| // message header. |
| CBS raw; |
| }; |
| |
| // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including |
| // ChangeCipherSpec, in the longest handshake flight. Currently this is the |
| // client's second leg in a full handshake when client certificates, NPN, and |
| // Channel ID, are all enabled. |
| #define SSL_MAX_HANDSHAKE_FLIGHT 7 |
| |
| extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; |
| extern const uint8_t kTLS12DowngradeRandom[8]; |
| extern const uint8_t kTLS13DowngradeRandom[8]; |
| extern const uint8_t kJDK11DowngradeRandom[8]; |
| |
| // ssl_max_handshake_message_len returns the maximum number of bytes permitted |
| // in a handshake message for |ssl|. |
| size_t ssl_max_handshake_message_len(const SSL *ssl); |
| |
| // tls_can_accept_handshake_data returns whether |ssl| is able to accept more |
| // data into handshake buffer. |
| bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); |
| |
| // tls_has_unprocessed_handshake_data returns whether there is buffered |
| // handshake data that has not been consumed by |get_message|. |
| bool tls_has_unprocessed_handshake_data(const SSL *ssl); |
| |
| // tls_append_handshake_data appends |data| to the handshake buffer. It returns |
| // true on success and false on allocation failure. |
| bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data); |
| |
| // dtls_has_unprocessed_handshake_data behaves like |
| // |tls_has_unprocessed_handshake_data| for DTLS. |
| bool dtls_has_unprocessed_handshake_data(const SSL *ssl); |
| |
| // tls_flush_pending_hs_data flushes any handshake plaintext data. |
| bool tls_flush_pending_hs_data(SSL *ssl); |
| |
| struct DTLS_OUTGOING_MESSAGE { |
| Array<uint8_t> data; |
| uint16_t epoch = 0; |
| bool is_ccs = false; |
| }; |
| |
| // dtls_clear_outgoing_messages releases all buffered outgoing messages. |
| void dtls_clear_outgoing_messages(SSL *ssl); |
| |
| // dtls_clear_unused_write_epochs releases any write epochs that are no longer |
| // needed. |
| void dtls_clear_unused_write_epochs(SSL *ssl); |
| |
| |
| // Callbacks. |
| |
| // ssl_do_info_callback calls |ssl|'s info callback, if set. |
| void ssl_do_info_callback(const SSL *ssl, int type, int value); |
| |
| // ssl_do_msg_callback calls |ssl|'s message callback, if set. |
| void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, |
| Span<const uint8_t> in); |
| |
| |
| // Transport buffers. |
| |
| class SSLBuffer { |
| public: |
| SSLBuffer() {} |
| ~SSLBuffer() { Clear(); } |
| |
| SSLBuffer(const SSLBuffer &) = delete; |
| SSLBuffer &operator=(const SSLBuffer &) = delete; |
| |
| uint8_t *data() { return buf_ + offset_; } |
| size_t size() const { return size_; } |
| bool empty() const { return size_ == 0; } |
| size_t cap() const { return cap_; } |
| |
| Span<uint8_t> span() { return MakeSpan(data(), size()); } |
| |
| Span<uint8_t> remaining() { |
| return MakeSpan(data() + size(), cap() - size()); |
| } |
| |
| // Clear releases the buffer. |
| void Clear(); |
| |
| // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such |
| // that data written after |header_len| is aligned to a |
| // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false |
| // on error. |
| bool EnsureCap(size_t header_len, size_t new_cap); |
| |
| // DidWrite extends the buffer by |len|. The caller must have filled in to |
| // this point. |
| void DidWrite(size_t len); |
| |
| // Consume consumes |len| bytes from the front of the buffer. The memory |
| // consumed will remain valid until the next call to |DiscardConsumed| or |
| // |Clear|. |
| void Consume(size_t len); |
| |
| // DiscardConsumed discards the consumed bytes from the buffer. If the buffer |
| // is now empty, it releases memory used by it. |
| void DiscardConsumed(); |
| |
| private: |
| // buf_ is the memory allocated for this buffer. |
| uint8_t *buf_ = nullptr; |
| // offset_ is the offset into |buf_| which the buffer contents start at. |
| uint16_t offset_ = 0; |
| // size_ is the size of the buffer contents from |buf_| + |offset_|. |
| uint16_t size_ = 0; |
| // cap_ is how much memory beyond |buf_| + |offset_| is available. |
| uint16_t cap_ = 0; |
| // inline_buf_ is a static buffer for short reads. |
| uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH]; |
| // buf_allocated_ is true if |buf_| points to allocated data and must be freed |
| // or false if it points into |inline_buf_|. |
| bool buf_allocated_ = false; |
| }; |
| |
| // ssl_read_buffer_extend_to extends the read buffer to the desired length. For |
| // TLS, it reads to the end of the buffer until the buffer is |len| bytes |
| // long. For DTLS, it reads a new packet and ignores |len|. It returns one on |
| // success, zero on EOF, and a negative number on error. |
| // |
| // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is |
| // non-empty. |
| int ssl_read_buffer_extend_to(SSL *ssl, size_t len); |
| |
| // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| |
| // to a record-processing function. If |ret| is a success or if the caller |
| // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= |
| // 0. |
| int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, |
| size_t consumed, uint8_t alert); |
| |
| // ssl_write_buffer_flush flushes the write buffer to the transport. It returns |
| // one on success and <= 0 on error. For DTLS, whether or not the write |
| // succeeds, the write buffer will be cleared. |
| int ssl_write_buffer_flush(SSL *ssl); |
| |
| |
| // Certificate functions. |
| |
| // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used |
| // by a TLS Certificate message. On success, it advances |cbs| and returns |
| // true. Otherwise, it returns false and sets |*out_alert| to an alert to send |
| // to the peer. |
| // |
| // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to |
| // the certificate chain and the leaf certificate's public key |
| // respectively. Otherwise, both will be set to nullptr. |
| // |
| // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the |
| // SHA-256 hash of the leaf to |out_leaf_sha256|. |
| bool ssl_parse_cert_chain(uint8_t *out_alert, |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, |
| UniquePtr<EVP_PKEY> *out_pubkey, |
| uint8_t *out_leaf_sha256, CBS *cbs, |
| CRYPTO_BUFFER_POOL *pool); |
| |
| enum ssl_key_usage_t { |
| key_usage_digital_signature = 0, |
| key_usage_encipherment = 2, |
| }; |
| |
| // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in| |
| // and returns true if doesn't specify a key usage or, if it does, if it |
| // includes |bit|. Otherwise it pushes to the error queue and returns false. |
| OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in, |
| enum ssl_key_usage_t bit); |
| |
| // ssl_cert_extract_issuer parses the DER-encoded, X.509 certificate in |in| |
| // and extracts the issuer. On success it returns true and the DER encoded |
| // issuer is in |out_dn|, otherwise it returns false. |
| OPENSSL_EXPORT bool ssl_cert_extract_issuer(const CBS *in, CBS *out_dn); |
| |
| // ssl_cert_matches_issuer parses the DER-encoded, X.509 certificate in |in| |
| // and returns true if its issuer is an exact match for the DER encoded |
| // distinguished name in |dn| |
| bool ssl_cert_matches_issuer(const CBS *in, const CBS *dn); |
| |
| // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 |
| // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns |
| // nullptr and pushes to the error queue. |
| UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in); |
| |
| // SSL_parse_CA_list parses a CA list from |cbs| in the format used by a TLS |
| // CertificateRequest message and Certificate Authorities extension. On success, |
| // it returns a newly-allocated |CRYPTO_BUFFER| list and advances |
| // |cbs|. Otherwise, it returns nullptr and sets |*out_alert| to an alert to |
| // send to the peer. |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> SSL_parse_CA_list(SSL *ssl, |
| uint8_t *out_alert, |
| CBS *cbs); |
| |
| // ssl_has_client_CAs returns whether there are configured CAs. |
| bool ssl_has_client_CAs(const SSL_CONFIG *cfg); |
| |
| // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format |
| // used by a TLS CertificateRequest message. It returns true on success and |
| // false on error. |
| bool ssl_add_client_CA_list(const SSL_HANDSHAKE *hs, CBB *cbb); |
| |
| // ssl_has_CA_names returns whether there are configured CA names. |
| bool ssl_has_CA_names(const SSL_CONFIG *cfg); |
| |
| // ssl_add_CA_names adds the configured CA_names list to |cbb| in the format |
| // used by a TLS Certificate Authorities extension. It returns true on success |
| // and false on error. |
| bool ssl_add_CA_names(const SSL_HANDSHAKE *hs, CBB *cbb); |
| |
| // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as |
| // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes |
| // an error on the error queue. |
| bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, |
| const CRYPTO_BUFFER *leaf); |
| |
| |
| // TLS 1.3 key derivation. |
| |
| // tls13_init_key_schedule initializes the handshake hash and key derivation |
| // state, and incorporates the PSK. The cipher suite and PRF hash must have been |
| // selected at this point. It returns true on success and false on error. |
| bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk); |
| |
| // tls13_init_early_key_schedule initializes the handshake hash and key |
| // derivation state from |session| for use with 0-RTT. It returns one on success |
| // and zero on error. |
| bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, |
| const SSL_SESSION *session); |
| |
| // tls13_advance_key_schedule incorporates |in| into the key schedule with |
| // HKDF-Extract. It returns true on success and false on error. |
| bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in); |
| |
| // tls13_set_traffic_key sets the read or write traffic keys to |
| // |traffic_secret|. The version and cipher suite are determined from |session|. |
| // It returns true on success and false on error. |
| bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, |
| enum evp_aead_direction_t direction, |
| const SSL_SESSION *session, |
| Span<const uint8_t> traffic_secret); |
| |
| // tls13_derive_early_secret derives the early traffic secret. It returns true |
| // on success and false on error. |
| bool tls13_derive_early_secret(SSL_HANDSHAKE *hs); |
| |
| // tls13_derive_handshake_secrets derives the handshake traffic secret. It |
| // returns true on success and false on error. |
| bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); |
| |
| // tls13_rotate_traffic_key derives the next read or write traffic secret. It |
| // returns true on success and false on error. |
| bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); |
| |
| // tls13_derive_application_secrets derives the initial application data traffic |
| // and exporter secrets based on the handshake transcripts and |master_secret|. |
| // It returns true on success and false on error. |
| bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs); |
| |
| // tls13_derive_resumption_secret derives the |resumption_secret|. |
| bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); |
| |
| // tls13_export_keying_material provides an exporter interface to use the |
| // |exporter_secret|. |
| bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, |
| Span<const uint8_t> secret, |
| Span<const char> label, |
| Span<const uint8_t> context); |
| |
| // tls13_finished_mac calculates the MAC of the handshake transcript to verify |
| // the integrity of the Finished message, and stores the result in |out| and |
| // length in |out_len|. |is_server| is true if this is for the Server Finished |
| // and false for the Client Finished. |
| bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, |
| bool is_server); |
| |
| // tls13_derive_session_psk calculates the PSK for this session based on the |
| // resumption master secret and |nonce|. It returns true on success, and false |
| // on failure. |
| bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce, |
| bool is_dtls); |
| |
| // tls13_write_psk_binder calculates the PSK binder value over |transcript| and |
| // |msg|, and replaces the last bytes of |msg| with the resulting value. It |
| // returns true on success, and false on failure. If |out_binder_len| is |
| // non-NULL, it sets |*out_binder_len| to the length of the value computed. |
| bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs, |
| const SSLTranscript &transcript, Span<uint8_t> msg, |
| size_t *out_binder_len); |
| |
| // tls13_verify_psk_binder verifies that the handshake transcript, truncated up |
| // to the binders has a valid signature using the value of |session|'s |
| // resumption secret. It returns true on success, and false on failure. |
| bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs, |
| const SSL_SESSION *session, const SSLMessage &msg, |
| CBS *binders); |
| |
| |
| // Encrypted ClientHello. |
| |
| struct ECHConfig { |
| static constexpr bool kAllowUniquePtr = true; |
| // raw contains the serialized ECHConfig. |
| Array<uint8_t> raw; |
| // The following fields alias into |raw|. |
| Span<const uint8_t> public_key; |
| Span<const uint8_t> public_name; |
| Span<const uint8_t> cipher_suites; |
| uint16_t kem_id = 0; |
| uint8_t maximum_name_length = 0; |
| uint8_t config_id = 0; |
| }; |
| |
| class ECHServerConfig { |
| public: |
| static constexpr bool kAllowUniquePtr = true; |
| ECHServerConfig() = default; |
| ECHServerConfig(const ECHServerConfig &other) = delete; |
| ECHServerConfig &operator=(ECHServerConfig &&) = delete; |
| |
| // Init parses |ech_config| as an ECHConfig and saves a copy of |key|. |
| // It returns true on success and false on error. |
| bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key, |
| bool is_retry_config); |
| |
| // SetupContext sets up |ctx| for a new connection, given the specified |
| // HPKE ciphersuite and encapsulated KEM key. It returns true on success and |
| // false on error. This function may only be called on an initialized object. |
| bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id, |
| Span<const uint8_t> enc) const; |
| |
| const ECHConfig &ech_config() const { return ech_config_; } |
| bool is_retry_config() const { return is_retry_config_; } |
| |
| private: |
| ECHConfig ech_config_; |
| ScopedEVP_HPKE_KEY key_; |
| bool is_retry_config_ = false; |
| }; |
| |
| enum ssl_client_hello_type_t { |
| ssl_client_hello_unencrypted, |
| ssl_client_hello_inner, |
| ssl_client_hello_outer, |
| }; |
| |
| // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension. |
| #define ECH_CLIENT_OUTER 0 |
| #define ECH_CLIENT_INNER 1 |
| |
| // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the |
| // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its |
| // outer_extensions extension with the referenced extensions from the |
| // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered |
| // ClientHelloInner to |out_client_hello_inner|. It returns true on success and |
| // false on failure. |
| // |
| // This function is exported for fuzzing. |
| OPENSSL_EXPORT bool ssl_decode_client_hello_inner( |
| SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner, |
| Span<const uint8_t> encoded_client_hello_inner, |
| const SSL_CLIENT_HELLO *client_hello_outer); |
| |
| // ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It |
| // writes the result to |*out|. |payload| must point into |client_hello_outer|. |
| // It returns true on success and false on error. On error, it sets |
| // |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext. |
| bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| bool *out_is_decrypt_error, Array<uint8_t> *out, |
| const SSL_CLIENT_HELLO *client_hello_outer, |
| Span<const uint8_t> payload); |
| |
| #define ECH_CONFIRMATION_SIGNAL_LEN 8 |
| |
| // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH |
| // confirmation signal in a ServerHello message, including the handshake header. |
| size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl); |
| |
| // ssl_ech_accept_confirmation computes the server's ECH acceptance signal, |
| // writing it to |out|. The transcript portion is the concatenation of |
| // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from |
| // |offset| in |msg| are replaced with zeros before hashing. This function |
| // returns true on success, and false on failure. |
| bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out, |
| Span<const uint8_t> client_random, |
| const SSLTranscript &transcript, bool is_hrr, |
| Span<const uint8_t> msg, size_t offset); |
| |
| // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH |
| // public name and false otherwise. It is exported for testing. |
| OPENSSL_EXPORT bool ssl_is_valid_ech_public_name( |
| Span<const uint8_t> public_name); |
| |
| // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid |
| // ECHConfigList structure and false otherwise. |
| bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list); |
| |
| // ssl_select_ech_config selects an ECHConfig and associated parameters to offer |
| // on the client and updates |hs|. It returns true on success, whether an |
| // ECHConfig was found or not, and false on internal error. On success, the |
| // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the |
| // number of bytes written. If the function did not select an ECHConfig, the |
| // encapsulated key is the empty string. |
| bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc, |
| size_t *out_enc_len); |
| |
| // ssl_ech_extension_body_length returns the length of the body of a ClientHello |
| // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of |
| // length |enc_len|. The result does not include the four-byte extension header. |
| size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len, |
| size_t in_len); |
| |
| // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the |
| // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc| |
| // is the encapsulated key to include in the extension. It returns true on |
| // success and false on error. If not offering ECH, |enc| is ignored and the |
| // function will compute a GREASE ECH extension if necessary, and otherwise |
| // return success while doing nothing. |
| // |
| // Encrypting the ClientHelloInner incorporates all extensions in the |
| // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello| |
| // must already be computed. |
| bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc); |
| |
| |
| // Credentials. |
| |
| enum class SSLCredentialType { |
| kX509, |
| kDelegated, |
| }; |
| |
| BSSL_NAMESPACE_END |
| |
| // SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace. |
| struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> { |
| explicit ssl_credential_st(bssl::SSLCredentialType type); |
| ssl_credential_st(const ssl_credential_st &) = delete; |
| ssl_credential_st &operator=(const ssl_credential_st &) = delete; |
| |
| // Dup returns a copy of the credential, or nullptr on error. The |ex_data| |
| // values are not copied. This is only used on the legacy credential, whose |
| // |ex_data| is inaccessible. |
| bssl::UniquePtr<SSL_CREDENTIAL> Dup() const; |
| |
| // ClearCertAndKey erases any certificate and private key on the credential. |
| void ClearCertAndKey(); |
| |
| // UsesX509 returns true if the credential type uses an X.509 certificate. |
| bool UsesX509() const; |
| |
| // UsesPrivateKey returns true if the credential type uses an asymmetric |
| // private key. |
| bool UsesPrivateKey() const; |
| |
| // IsComplete returns whether all required fields in the credential have been |
| // filled in. |
| bool IsComplete() const; |
| |
| // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining |
| // certificates unmodified. It returns true on success and false on error. If |
| // |discard_key_on_mismatch| is true and the private key is inconsistent with |
| // the new leaf certificate, it is silently discarded. |
| bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf, |
| bool discard_key_on_mismatch); |
| |
| // ClearIntermediateCerts clears intermediate certificates in the certificate |
| // chain, while preserving the leaf. |
| void ClearIntermediateCerts(); |
| |
| // AppendIntermediateCert appends |cert| to the certificate chain. If there is |
| // no leaf certificate configured, it leaves a placeholder null in |chain|. It |
| // returns one on success and zero on error. |
| bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert); |
| |
| // ChainContainsIssuer returns true if |dn| is a byte for byte match with the |
| // issuer of any certificate in |chain|, false otherwise. |
| bool ChainContainsIssuer(bssl::Span<const uint8_t> dn) const; |
| |
| // type is the credential type and determines which other fields apply. |
| bssl::SSLCredentialType type; |
| |
| // pubkey is the cached public key of the credential. Unlike |privkey|, it is |
| // always present and is extracted from the certificate, delegated credential, |
| // etc. |
| bssl::UniquePtr<EVP_PKEY> pubkey; |
| |
| // privkey is the private key of the credential. It may be omitted in favor of |
| // |key_method|. |
| bssl::UniquePtr<EVP_PKEY> privkey; |
| |
| // key_method, if non-null, is a set of callbacks to call for private key |
| // operations. |
| const SSL_PRIVATE_KEY_METHOD *key_method = nullptr; |
| |
| // sigalgs, if non-empty, is the set of signature algorithms supported by the |
| // private key in decreasing order of preference. If empty, the default list |
| // is used. |
| // |
| // In delegated credentials, this field is not configurable and is instead |
| // computed from the dc_cert_verify_algorithm field. |
| bssl::Array<uint16_t> sigalgs; |
| |
| // chain contains the certificate chain, with the leaf at the beginning. The |
| // first element of |chain| may be nullptr to indicate that the leaf |
| // certificate has not yet been set. |
| // If |chain| != nullptr -> len(chain) >= 1 |
| // If |chain[0]| == nullptr -> len(chain) >= 2. |
| // |chain[1..]| != nullptr |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain; |
| |
| // dc is the DelegatedCredential structure, if this is a delegated credential. |
| bssl::UniquePtr<CRYPTO_BUFFER> dc; |
| |
| // dc_algorithm is the signature scheme of the signature over the delegated |
| // credential itself, made by the end-entity certificate's public key. |
| uint16_t dc_algorithm = 0; |
| |
| // Signed certificate timestamp list to be sent to the client, if requested |
| bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; |
| |
| // OCSP response to be sent to the client, if requested. |
| bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; |
| |
| CRYPTO_EX_DATA ex_data; |
| |
| // must_match_issuer is a flag indicating that this credential should be |
| // considered only when it matches a peer request for a particular issuer via |
| // a negotiation mechanism (such as the certificate_authorities extension). |
| bool must_match_issuer = false; |
| |
| private: |
| friend RefCounted; |
| ~ssl_credential_st(); |
| }; |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // ssl_get_credential_list computes |hs|'s credential list. On success, it |
| // writes it to |*out| and returns true. Otherwise, it returns false. The |
| // credential list may be empty, in which case this function will successfully |
| // return an empty array. |
| // |
| // The pointers in the result are only valid until |hs| is next mutated. |
| bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out); |
| |
| // ssl_credential_matches_requested_issuers returns true if |cred| is a |
| // usable match for any requested issuers in |hs|. |
| bool ssl_credential_matches_requested_issuers(SSL_HANDSHAKE *hs, |
| const SSL_CREDENTIAL *cred); |
| |
| // Handshake functions. |
| |
| enum ssl_hs_wait_t { |
| ssl_hs_error, |
| ssl_hs_ok, |
| ssl_hs_read_server_hello, |
| ssl_hs_read_message, |
| ssl_hs_flush, |
| ssl_hs_certificate_selection_pending, |
| ssl_hs_handoff, |
| ssl_hs_handback, |
| ssl_hs_x509_lookup, |
| ssl_hs_private_key_operation, |
| ssl_hs_pending_session, |
| ssl_hs_pending_ticket, |
| ssl_hs_early_return, |
| ssl_hs_early_data_rejected, |
| ssl_hs_read_end_of_early_data, |
| ssl_hs_read_change_cipher_spec, |
| ssl_hs_certificate_verify, |
| ssl_hs_hints_ready, |
| }; |
| |
| enum ssl_grease_index_t { |
| ssl_grease_cipher = 0, |
| ssl_grease_group, |
| ssl_grease_extension1, |
| ssl_grease_extension2, |
| ssl_grease_version, |
| ssl_grease_ticket_extension, |
| ssl_grease_ech_config_id, |
| ssl_grease_last_index = ssl_grease_ech_config_id, |
| }; |
| |
| enum tls12_server_hs_state_t { |
| state12_start_accept = 0, |
| state12_read_client_hello, |
| state12_read_client_hello_after_ech, |
| state12_cert_callback, |
| state12_tls13, |
| state12_select_parameters, |
| state12_send_server_hello, |
| state12_send_server_certificate, |
| state12_send_server_key_exchange, |
| state12_send_server_hello_done, |
| state12_read_client_certificate, |
| state12_verify_client_certificate, |
| state12_read_client_key_exchange, |
| state12_read_client_certificate_verify, |
| state12_read_change_cipher_spec, |
| state12_process_change_cipher_spec, |
| state12_read_next_proto, |
| state12_read_channel_id, |
| state12_read_client_finished, |
| state12_send_server_finished, |
| state12_finish_server_handshake, |
| state12_done, |
| }; |
| |
| enum tls13_server_hs_state_t { |
| state13_select_parameters = 0, |
| state13_select_session, |
| state13_send_hello_retry_request, |
| state13_read_second_client_hello, |
| state13_send_server_hello, |
| state13_send_server_certificate_verify, |
| state13_send_server_finished, |
| state13_send_half_rtt_ticket, |
| state13_read_second_client_flight, |
| state13_process_end_of_early_data, |
| state13_read_client_encrypted_extensions, |
| state13_read_client_certificate, |
| state13_read_client_certificate_verify, |
| state13_read_channel_id, |
| state13_read_client_finished, |
| state13_send_new_session_ticket, |
| state13_done, |
| }; |
| |
| // handback_t lists the points in the state machine where a handback can occur. |
| // These are the different points at which key material is no longer needed. |
| enum handback_t { |
| handback_after_session_resumption = 0, |
| handback_after_ecdhe = 1, |
| handback_after_handshake = 2, |
| handback_tls13 = 3, |
| handback_max_value = handback_tls13, |
| }; |
| |
| // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See |
| // |SSL_request_handshake_hints| and related functions. |
| struct SSL_HANDSHAKE_HINTS { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| Array<uint8_t> server_random_tls12; |
| Array<uint8_t> server_random_tls13; |
| |
| uint16_t key_share_group_id = 0; |
| Array<uint8_t> key_share_ciphertext; |
| Array<uint8_t> key_share_secret; |
| |
| uint16_t signature_algorithm = 0; |
| Array<uint8_t> signature_input; |
| Array<uint8_t> signature_spki; |
| Array<uint8_t> signature; |
| |
| Array<uint8_t> decrypted_psk; |
| bool ignore_psk = false; |
| |
| uint16_t cert_compression_alg_id = 0; |
| Array<uint8_t> cert_compression_input; |
| Array<uint8_t> cert_compression_output; |
| |
| uint16_t ecdhe_group_id = 0; |
| Array<uint8_t> ecdhe_public_key; |
| Array<uint8_t> ecdhe_private_key; |
| |
| Array<uint8_t> decrypted_ticket; |
| bool renew_ticket = false; |
| bool ignore_ticket = false; |
| }; |
| |
| struct SSL_HANDSHAKE { |
| explicit SSL_HANDSHAKE(SSL *ssl); |
| ~SSL_HANDSHAKE(); |
| static constexpr bool kAllowUniquePtr = true; |
| |
| // ssl is a non-owning pointer to the parent |SSL| object. |
| SSL *ssl; |
| |
| // config is a non-owning pointer to the handshake configuration. |
| SSL_CONFIG *config; |
| |
| // wait contains the operation the handshake is currently blocking on or |
| // |ssl_hs_ok| if none. |
| enum ssl_hs_wait_t wait = ssl_hs_ok; |
| |
| // state is the internal state for the TLS 1.2 and below handshake. Its |
| // values depend on |do_handshake| but the starting state is always zero. |
| int state = 0; |
| |
| // tls13_state is the internal state for the TLS 1.3 handshake. Its values |
| // depend on |do_handshake| but the starting state is always zero. |
| int tls13_state = 0; |
| |
| // min_version is the minimum accepted protocol version, taking account both |
| // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. |
| uint16_t min_version = 0; |
| |
| // max_version is the maximum accepted protocol version, taking account both |
| // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. |
| uint16_t max_version = 0; |
| |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> early_traffic_secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> client_handshake_secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> server_handshake_secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> client_traffic_secret_0; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> server_traffic_secret_0; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> expected_client_finished; |
| |
| // GetClientHello, on the server, returns either the normal ClientHello |
| // message or the ClientHelloInner if it has been serialized to |
| // |ech_client_hello_buf|. This function should only be called when the |
| // current message is a ClientHello. It returns true on success and false on |
| // error. |
| // |
| // Note that fields of the returned |out_msg| and |out_client_hello| point |
| // into a handshake-owned buffer, so their lifetimes should not exceed this |
| // SSL_HANDSHAKE. |
| bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello); |
| |
| union { |
| // sent is a bitset where the bits correspond to elements of kExtensions |
| // in extensions.cc. Each bit is set if that extension was sent in a |
| // ClientHello. It's not used by servers. |
| uint32_t sent = 0; |
| // received is a bitset, like |sent|, but is used by servers to record |
| // which extensions were received from a client. |
| uint32_t received; |
| } extensions; |
| |
| // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for |
| // the ClientHelloInner. |
| uint32_t inner_extensions_sent = 0; |
| |
| // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. |
| UniquePtr<ERR_SAVE_STATE> error; |
| |
| // key_shares are the current key exchange instances. The second is only used |
| // as a client if we believe that we should offer two key shares in a |
| // ClientHello. |
| UniquePtr<SSLKeyShare> key_shares[2]; |
| |
| // transcript is the current handshake transcript. |
| SSLTranscript transcript; |
| |
| // inner_transcript, on the client, is the handshake transcript for the |
| // ClientHelloInner handshake. It is moved to |transcript| if the server |
| // accepts ECH. |
| SSLTranscript inner_transcript; |
| |
| // inner_client_random is the ClientHello random value used with |
| // ClientHelloInner. |
| uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0}; |
| |
| // cookie is the value of the cookie in HelloRetryRequest, or empty if none |
| // was received. |
| Array<uint8_t> cookie; |
| |
| // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If |
| // empty, either none was received or HelloVerifyRequest contained an empty |
| // cookie. Check the received_hello_verify_request field to distinguish an |
| // empty cookie from no HelloVerifyRequest message being received. |
| Array<uint8_t> dtls_cookie; |
| |
| // ech_client_outer contains the outer ECH extension to send in the |
| // ClientHello, excluding the header and type byte. |
| Array<uint8_t> ech_client_outer; |
| |
| // ech_retry_configs, on the client, contains the retry configs from the |
| // server as a serialized ECHConfigList. |
| Array<uint8_t> ech_retry_configs; |
| |
| // ech_client_hello_buf, on the server, contains the bytes of the |
| // reconstructed ClientHelloInner message. |
| Array<uint8_t> ech_client_hello_buf; |
| |
| // key_share_bytes is the key_share extension that the client should send. |
| Array<uint8_t> key_share_bytes; |
| |
| // key_share_ciphertext, for servers, is encapsulated shared secret to be sent |
| // to the client in the TLS 1.3 key_share extension. |
| Array<uint8_t> key_share_ciphertext; |
| |
| // peer_sigalgs are the signature algorithms that the peer supports. These are |
| // taken from the contents of the signature algorithms extension for a server |
| // or from the CertificateRequest for a client. |
| Array<uint16_t> peer_sigalgs; |
| |
| // peer_supported_group_list contains the supported group IDs advertised by |
| // the peer. This is only set on the server's end. The server does not |
| // advertise this extension to the client. |
| Array<uint16_t> peer_supported_group_list; |
| |
| // peer_delegated_credential_sigalgs are the signature algorithms the peer |
| // supports with delegated credentials, or empty if the peer does not support |
| // delegated credentials. |
| Array<uint16_t> peer_delegated_credential_sigalgs; |
| |
| // peer_key is the peer's ECDH key for a TLS 1.2 client. |
| Array<uint8_t> peer_key; |
| |
| // extension_permutation is the permutation to apply to ClientHello |
| // extensions. It maps indices into the |kExtensions| table into other |
| // indices. |
| Array<uint8_t> extension_permutation; |
| |
| // cert_compression_alg_id, for a server, contains the negotiated certificate |
| // compression algorithm for this client. It is only valid if |
| // |cert_compression_negotiated| is true. |
| uint16_t cert_compression_alg_id; |
| |
| // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is |
| // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is |
| // initialized if |selected_ech_config| is not nullptr. |
| ScopedEVP_HPKE_CTX ech_hpke_ctx; |
| |
| // server_params, in a TLS 1.2 server, stores the ServerKeyExchange |
| // parameters. It has client and server randoms prepended for signing |
| // convenience. |
| Array<uint8_t> server_params; |
| |
| // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the |
| // server when using a TLS 1.2 PSK key exchange. |
| UniquePtr<char> peer_psk_identity_hint; |
| |
| // ca_names contains the list of CAs received via the Certificate Authorities |
| // extension in our peer's CertificateRequest or ClientHello message |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names; |
| |
| // cached_x509_ca_names contains a cache of parsed versions of the elements of |
| // |ca_names|. This pointer is left non-owning so only |
| // |ssl_crypto_x509_method| needs to link against crypto/x509. |
| STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; |
| |
| // certificate_types, on the client, contains the set of certificate types |
| // received in a CertificateRequest message. |
| Array<uint8_t> certificate_types; |
| |
| // credential is the credential we are using for the handshake. |
| UniquePtr<SSL_CREDENTIAL> credential; |
| |
| // peer_pubkey is the public key parsed from the peer's leaf certificate. |
| UniquePtr<EVP_PKEY> peer_pubkey; |
| |
| // new_session is the new mutable session being established by the current |
| // handshake. It should not be cached. |
| UniquePtr<SSL_SESSION> new_session; |
| |
| // early_session is the session corresponding to the current 0-RTT state on |
| // the client if |in_early_data| is true. |
| UniquePtr<SSL_SESSION> early_session; |
| |
| // ssl_ech_keys, for servers, is the set of ECH keys to use with this |
| // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as |
| // |SSL_CTX| rotates keys. |
| UniquePtr<SSL_ECH_KEYS> ech_keys; |
| |
| // selected_ech_config, for clients, is the ECHConfig the client uses to offer |
| // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx| |
| // will be initialized. |
| UniquePtr<ECHConfig> selected_ech_config; |
| |
| // new_cipher is the cipher being negotiated in this handshake. |
| const SSL_CIPHER *new_cipher = nullptr; |
| |
| // key_block is the record-layer key block for TLS 1.2 and earlier. |
| Array<uint8_t> key_block; |
| |
| // hints contains the handshake hints for this connection. If |
| // |hints_requested| is true, this field is non-null and contains the pending |
| // hints to filled as the predicted handshake progresses. Otherwise, this |
| // field, if non-null, contains hints configured by the caller and will |
| // influence the handshake on match. |
| UniquePtr<SSL_HANDSHAKE_HINTS> hints; |
| |
| // ech_is_inner, on the server, indicates whether the ClientHello contained an |
| // inner ECH extension. |
| bool ech_is_inner : 1; |
| |
| // ech_authenticated_reject, on the client, indicates whether an ECH rejection |
| // handshake has been authenticated. |
| bool ech_authenticated_reject : 1; |
| |
| // scts_requested is true if the SCT extension is in the ClientHello. |
| bool scts_requested : 1; |
| |
| // handshake_finalized is true once the handshake has completed, at which |
| // point accessors should use the established state. |
| bool handshake_finalized : 1; |
| |
| // accept_psk_mode stores whether the client's PSK mode is compatible with our |
| // preferences. |
| bool accept_psk_mode : 1; |
| |
| // cert_request is true if a client certificate was requested. |
| bool cert_request : 1; |
| |
| // certificate_status_expected is true if OCSP stapling was negotiated and the |
| // server is expected to send a CertificateStatus message. (This is used on |
| // both the client and server sides.) |
| bool certificate_status_expected : 1; |
| |
| // ocsp_stapling_requested is true if a client requested OCSP stapling. |
| bool ocsp_stapling_requested : 1; |
| |
| // should_ack_sni is used by a server and indicates that the SNI extension |
| // should be echoed in the ServerHello. |
| bool should_ack_sni : 1; |
| |
| // in_false_start is true if there is a pending client handshake in False |
| // Start. The client may write data at this point. |
| bool in_false_start : 1; |
| |
| // in_early_data is true if there is a pending handshake that has progressed |
| // enough to send and receive early data. |
| bool in_early_data : 1; |
| |
| // early_data_offered is true if the client sent the early_data extension. |
| bool early_data_offered : 1; |
| |
| // can_early_read is true if application data may be read at this point in the |
| // handshake. |
| bool can_early_read : 1; |
| |
| // can_early_write is true if application data may be written at this point in |
| // the handshake. |
| bool can_early_write : 1; |
| |
| // next_proto_neg_seen is one of NPN was negotiated. |
| bool next_proto_neg_seen : 1; |
| |
| // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent |
| // or received. |
| bool ticket_expected : 1; |
| |
| // extended_master_secret is true if the extended master secret extension is |
| // negotiated in this handshake. |
| bool extended_master_secret : 1; |
| |
| // pending_private_key_op is true if there is a pending private key operation |
| // in progress. |
| bool pending_private_key_op : 1; |
| |
| // handback indicates that a server should pause the handshake after |
| // finishing operations that require private key material, in such a way that |
| // |SSL_get_error| returns |SSL_ERROR_HANDBACK|. It is set by |
| // |SSL_apply_handoff|. |
| bool handback : 1; |
| |
| // hints_requested indicates the caller has requested handshake hints. Only |
| // the first round-trip of the handshake will complete, after which the |
| // |hints| structure can be serialized. |
| bool hints_requested : 1; |
| |
| // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid. |
| bool cert_compression_negotiated : 1; |
| |
| // apply_jdk11_workaround is true if the peer is probably a JDK 11 client |
| // which implemented TLS 1.3 incorrectly. |
| bool apply_jdk11_workaround : 1; |
| |
| // can_release_private_key is true if the private key will no longer be used |
| // in this handshake. |
| bool can_release_private_key : 1; |
| |
| // channel_id_negotiated is true if Channel ID should be used in this |
| // handshake. |
| bool channel_id_negotiated : 1; |
| |
| // received_hello_verify_request is true if we received a HelloVerifyRequest |
| // message from the server. |
| bool received_hello_verify_request : 1; |
| |
| // client_version is the value sent or received in the ClientHello version. |
| uint16_t client_version = 0; |
| |
| // early_data_read is the amount of early data that has been read by the |
| // record layer. |
| uint16_t early_data_read = 0; |
| |
| // early_data_written is the amount of early data that has been written by the |
| // record layer. |
| uint16_t early_data_written = 0; |
| |
| // signature_algorithm is the signature algorithm to be used in signing with |
| // the selected credential, or zero if not applicable or not yet selected. |
| uint16_t signature_algorithm = 0; |
| |
| // ech_config_id is the ECH config sent by the client. |
| uint8_t ech_config_id = 0; |
| |
| // session_id is the session ID in the ClientHello. |
| InplaceVector<uint8_t, SSL_MAX_SSL_SESSION_ID_LENGTH> session_id; |
| |
| // grease_seed is the entropy for GREASE values. |
| uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; |
| }; |
| |
| // kMaxTickets is the maximum number of tickets to send immediately after the |
| // handshake. We use a one-byte ticket nonce, and there is no point in sending |
| // so many tickets. |
| constexpr size_t kMaxTickets = 16; |
| |
| UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl); |
| |
| // ssl_check_message_type checks if |msg| has type |type|. If so it returns |
| // one. Otherwise, it sends an alert and returns zero. |
| bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); |
| |
| // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 |
| // on error. It sets |out_early_return| to one if we've completed the handshake |
| // early. |
| int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); |
| |
| // The following are implementations of |do_handshake| for the client and |
| // server. |
| enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); |
| enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); |
| enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); |
| enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); |
| |
| // The following functions return human-readable representations of the TLS |
| // handshake states for debugging. |
| const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); |
| const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); |
| const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); |
| const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); |
| |
| // tls13_add_key_update queues a KeyUpdate message on |ssl|. The |
| // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or |
| // |SSL_KEY_UPDATE_NOT_REQUESTED|. |
| bool tls13_add_key_update(SSL *ssl, int update_requested); |
| |
| // tls13_post_handshake processes a post-handshake message. It returns true on |
| // success and false on failure. |
| bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg); |
| |
| bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, |
| bool allow_anonymous); |
| bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); |
| |
| // tls13_process_finished processes |msg| as a Finished message from the |
| // peer. If |use_saved_value| is true, the verify_data is compared against |
| // |hs->expected_client_finished| rather than computed fresh. |
| bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, |
| bool use_saved_value); |
| |
| bool tls13_add_certificate(SSL_HANDSHAKE *hs); |
| |
| // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the |
| // handshake. If it returns |ssl_private_key_retry|, it should be called again |
| // to retry when the signing operation is completed. |
| enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); |
| |
| bool tls13_add_finished(SSL_HANDSHAKE *hs); |
| bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); |
| bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl, |
| CBS *body); |
| |
| // ssl_setup_extension_permutation computes a ClientHello extension permutation |
| // for |hs|, if applicable. It returns true on success and false on error. |
| bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs); |
| |
| // ssl_setup_key_shares computes client key shares and saves them in |hs|. It |
| // returns true on success and false on failure. If |override_group_id| is zero, |
| // it offers the default groups, including GREASE. If it is non-zero, it offers |
| // a single key share of the specified group. |
| bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id); |
| |
| bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, |
| Array<uint8_t> *out_secret, |
| uint8_t *out_alert, CBS *contents); |
| bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, |
| Span<const uint8_t> *out_peer_key, |
| uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello); |
| bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); |
| |
| bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, |
| uint8_t *out_alert, |
| CBS *contents); |
| bool ssl_ext_pre_shared_key_parse_clienthello( |
| SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, |
| uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello, CBS *contents); |
| bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); |
| |
| // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and |
| // returns whether it's valid. |
| bool ssl_is_sct_list_valid(const CBS *contents); |
| |
| // ssl_write_client_hello_without_extensions writes a ClientHello to |out|, |
| // up to the extensions field. |type| determines the type of ClientHello to |
| // write. If |omit_session_id| is true, the session ID is empty. |
| bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs, |
| CBB *cbb, |
| ssl_client_hello_type_t type, |
| bool empty_session_id); |
| |
| // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing |
| // flight. It returns true on success and false on error. |
| bool ssl_add_client_hello(SSL_HANDSHAKE *hs); |
| |
| struct ParsedServerHello { |
| CBS raw; |
| uint16_t legacy_version = 0; |
| CBS random; |
| CBS session_id; |
| uint16_t cipher_suite = 0; |
| uint8_t compression_method = 0; |
| CBS extensions; |
| }; |
| |
| // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes |
| // the result to |*out| and returns true. Otherwise, it returns false and sets |
| // |*out_alert| to an alert to send to the peer. |
| bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert, |
| const SSLMessage &msg); |
| |
| enum ssl_cert_verify_context_t { |
| ssl_cert_verify_server, |
| ssl_cert_verify_client, |
| ssl_cert_verify_channel_id, |
| }; |
| |
| // tls13_get_cert_verify_signature_input generates the message to be signed for |
| // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the |
| // type of signature. It sets |*out| to a newly allocated buffer containing the |
| // result. This function returns true on success and false on failure. |
| bool tls13_get_cert_verify_signature_input( |
| SSL_HANDSHAKE *hs, Array<uint8_t> *out, |
| enum ssl_cert_verify_context_t cert_verify_context); |
| |
| // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list. |
| bool ssl_is_valid_alpn_list(Span<const uint8_t> in); |
| |
| // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server |
| // selection for |hs->ssl|'s client preferences. |
| bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, |
| Span<const uint8_t> protocol); |
| |
| // ssl_alpn_list_contains_protocol returns whether |list|, a serialized ALPN |
| // protocol list, contains |protocol|. |
| bool ssl_alpn_list_contains_protocol(Span<const uint8_t> list, |
| Span<const uint8_t> protocol); |
| |
| // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns |
| // true on successful negotiation or if nothing was negotiated. It returns false |
| // and sets |*out_alert| to an alert on error. |
| bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello); |
| |
| // ssl_get_local_application_settings looks up the configured ALPS value for |
| // |protocol|. If found, it sets |*out_settings| to the value and returns true. |
| // Otherwise, it returns false. |
| bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs, |
| Span<const uint8_t> *out_settings, |
| Span<const uint8_t> protocol); |
| |
| // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns |
| // true on successful negotiation or if nothing was negotiated. It returns false |
| // and sets |*out_alert| to an alert on error. |
| bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello); |
| |
| struct SSLExtension { |
| SSLExtension(uint16_t type_arg, bool allowed_arg = true) |
| : type(type_arg), allowed(allowed_arg), present(false) { |
| CBS_init(&data, nullptr, 0); |
| } |
| |
| uint16_t type; |
| bool allowed; |
| bool present; |
| CBS data; |
| }; |
| |
| // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances |
| // it. It writes the parsed extensions to pointers in |extensions|. On success, |
| // it fills in the |present| and |data| fields and returns true. Otherwise, it |
| // sets |*out_alert| to an alert to send and returns false. Unknown extensions |
| // are rejected unless |ignore_unknown| is true. |
| bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, |
| std::initializer_list<SSLExtension *> extensions, |
| bool ignore_unknown); |
| |
| // ssl_verify_peer_cert verifies the peer certificate for |hs|. |
| enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); |
| // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a |
| // session. |
| enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs, |
| bool send_alert); |
| |
| enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); |
| |
| // ssl_send_finished adds a Finished message to the current flight of messages. |
| // It returns true on success and false on error. |
| bool ssl_send_finished(SSL_HANDSHAKE *hs); |
| |
| // ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current |
| // flight of messages. It returns true on success and false on error. |
| bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs); |
| |
| // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current |
| // handshake. Note, in TLS 1.2 resumptions, this session is immutable. |
| const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs); |
| |
| // ssl_done_writing_client_hello is called after the last ClientHello is written |
| // by |hs|. It releases some memory that is no longer needed. |
| void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs); |
| |
| |
| // SSLKEYLOGFILE functions. |
| |
| // ssl_log_secret logs |secret| with label |label|, if logging is enabled for |
| // |ssl|. It returns true on success and false on failure. |
| bool ssl_log_secret(const SSL *ssl, const char *label, |
| Span<const uint8_t> secret); |
| |
| |
| // ClientHello functions. |
| |
| // ssl_client_hello_init parses |body| as a ClientHello message, excluding the |
| // message header, and writes the result to |*out|. It returns true on success |
| // and false on error. This function is exported for testing. |
| OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out, |
| Span<const uint8_t> body); |
| |
| bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs, |
| SSL_CLIENT_HELLO *out); |
| |
| bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, |
| CBS *out, uint16_t extension_type); |
| |
| bool ssl_client_cipher_list_contains_cipher( |
| const SSL_CLIENT_HELLO *client_hello, uint16_t id); |
| |
| |
| // GREASE. |
| |
| // ssl_get_grease_value returns a GREASE value for |hs|. For a given |
| // connection, the values for each index will be deterministic. This allows the |
| // same ClientHello be sent twice for a HelloRetryRequest or the same group be |
| // advertised in both supported_groups and key_shares. |
| uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs, |
| enum ssl_grease_index_t index); |
| |
| |
| // Signature algorithms. |
| |
| // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature |
| // algorithms and saves them on |hs|. It returns true on success and false on |
| // error. |
| bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); |
| |
| // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm |
| // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on |
| // success and false if |pkey| may not be used at those versions. |
| bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); |
| |
| // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use |
| // with |cred| based on the peer's preferences and the algorithms supported. It |
| // returns true on success and false on error. |
| bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, |
| const SSL_CREDENTIAL *cred, uint16_t *out); |
| |
| // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the |
| // peer signature to |out|. It returns true on success and false on error. |
| bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out); |
| |
| // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer |
| // signature from |pkey|. It returns true on success and false on error, setting |
| // |*out_alert| to an alert to send. |
| bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| uint16_t sigalg, EVP_PKEY *pkey); |
| |
| |
| // Underdocumented functions. |
| // |
| // Functions below here haven't been touched up and may be underdocumented. |
| |
| #define TLSEXT_CHANNEL_ID_SIZE 128 |
| |
| // From RFC 4492, used in encoding the curve type in ECParameters |
| #define NAMED_CURVE_TYPE 3 |
| |
| struct CERT { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| explicit CERT(const SSL_X509_METHOD *x509_method); |
| ~CERT(); |
| |
| bool is_valid() const { return legacy_credential != nullptr; } |
| |
| // credentials is the list of credentials to select between. Elements of this |
| // array immutable. |
| Vector<UniquePtr<SSL_CREDENTIAL>> credentials; |
| |
| // legacy_credential is the credential configured by the legacy |
| // non-credential-based APIs. If IsComplete() returns true, it is appended to |
| // the list of credentials. |
| UniquePtr<SSL_CREDENTIAL> legacy_credential; |
| |
| // x509_method contains pointers to functions that might deal with |X509| |
| // compatibility, or might be a no-op, depending on the application. |
| const SSL_X509_METHOD *x509_method = nullptr; |
| |
| // x509_chain may contain a parsed copy of |chain[1..]| from the legacy |
| // credential. This is only used as a cache in order to implement “get0” |
| // functions that return a non-owning pointer to the certificate chain. |
| STACK_OF(X509) *x509_chain = nullptr; |
| |
| // x509_leaf may contain a parsed copy of the first element of |chain| from |
| // the legacy credential. This is only used as a cache in order to implement |
| // “get0” functions that return a non-owning pointer to the certificate chain. |
| X509 *x509_leaf = nullptr; |
| |
| // x509_stash contains the last |X509| object append to the legacy |
| // credential's chain. This is a workaround for some third-party code that |
| // continue to use an |X509| object even after passing ownership with an |
| // “add0” function. |
| X509 *x509_stash = nullptr; |
| |
| // Certificate setup callback: if set is called whenever a |
| // certificate may be required (client or server). the callback |
| // can then examine any appropriate parameters and setup any |
| // certificates required. This allows advanced applications |
| // to select certificates on the fly: for example based on |
| // supported signature algorithms or curves. |
| int (*cert_cb)(SSL *ssl, void *arg) = nullptr; |
| void *cert_cb_arg = nullptr; |
| |
| // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX |
| // store is used instead. |
| X509_STORE *verify_store = nullptr; |
| |
| // sid_ctx partitions the session space within a shared session cache or |
| // ticket key. Only sessions with a matching value will be accepted. |
| InplaceVector<uint8_t, SSL_MAX_SID_CTX_LENGTH> sid_ctx; |
| }; |
| |
| // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. |
| struct SSL_PROTOCOL_METHOD { |
| bool is_dtls; |
| bool (*ssl_new)(SSL *ssl); |
| void (*ssl_free)(SSL *ssl); |
| // get_message sets |*out| to the current handshake message and returns true |
| // if one has been received. It returns false if more input is needed. |
| bool (*get_message)(const SSL *ssl, SSLMessage *out); |
| // next_message is called to release the current handshake message. |
| void (*next_message)(SSL *ssl); |
| // has_unprocessed_handshake_data returns whether there is buffered |
| // handshake data that has not been consumed by |get_message|. |
| bool (*has_unprocessed_handshake_data)(const SSL *ssl); |
| // Use the |ssl_open_handshake| wrapper. |
| ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| // Use the |ssl_open_change_cipher_spec| wrapper. |
| ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in); |
| // Use the |ssl_open_app_data| wrapper. |
| ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| Span<uint8_t> in); |
| // write_app_data encrypts and writes |in| as application data. On success, it |
| // returns one and sets |*out_bytes_written| to the number of bytes of |in| |
| // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to |
| // whether the operation failed because the caller needs to drive the |
| // handshake. |
| int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, |
| size_t *out_bytes_written, Span<const uint8_t> in); |
| int (*dispatch_alert)(SSL *ssl); |
| // init_message begins a new handshake message of type |type|. |cbb| is the |
| // root CBB to be passed into |finish_message|. |*body| is set to a child CBB |
| // the caller should write to. It returns true on success and false on error. |
| bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); |
| // finish_message finishes a handshake message. It sets |*out_msg| to the |
| // serialized message. It returns true on success and false on error. |
| bool (*finish_message)(const SSL *ssl, CBB *cbb, |
| bssl::Array<uint8_t> *out_msg); |
| // add_message adds a handshake message to the pending flight. It returns |
| // true on success and false on error. |
| bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg); |
| // add_change_cipher_spec adds a ChangeCipherSpec record to the pending |
| // flight. It returns true on success and false on error. |
| bool (*add_change_cipher_spec)(SSL *ssl); |
| // flush_flight flushes the pending flight to the transport. It returns one on |
| // success and <= 0 on error. |
| int (*flush_flight)(SSL *ssl); |
| // on_handshake_complete is called when the handshake is complete. |
| void (*on_handshake_complete)(SSL *ssl); |
| // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and |
| // |level|. In QUIC, |aead_ctx| is a placeholder object. In TLS 1.3, |
| // |traffic_secret| is the original traffic secret. This function returns true |
| // on success and false on error. |
| // |
| // TODO(crbug.com/371998381): Take the traffic secrets as input and let the |
| // function create the SSLAEADContext. |
| bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level, |
| UniquePtr<SSLAEADContext> aead_ctx, |
| Span<const uint8_t> traffic_secret); |
| // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and |
| // |level|. In QUIC, |aead_ctx| is a placeholder object In TLS 1.3, |
| // |traffic_secret| is the original traffic secret. This function returns true |
| // on success and false on error. |
| // |
| // TODO(crbug.com/371998381): Take the traffic secrets as input and let the |
| // function create the SSLAEADContext. |
| bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level, |
| UniquePtr<SSLAEADContext> aead_ctx, |
| Span<const uint8_t> traffic_secret); |
| }; |
| |
| // The following wrappers call |open_*| but handle |read_shutdown| correctly. |
| |
| // ssl_open_handshake processes a record from |in| for reading a handshake |
| // message. |
| ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| |
| // ssl_open_change_cipher_spec processes a record from |in| for reading a |
| // ChangeCipherSpec. |
| ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in); |
| |
| // ssl_open_app_data processes a record from |in| for reading application data. |
| // On success, it returns |ssl_open_record_success| and sets |*out| to the |
| // input. If it encounters a post-handshake message, it returns |
| // |ssl_open_record_discard|. The caller should then retry, after processing any |
| // messages received with |get_message|. |
| ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| Span<uint8_t> in); |
| |
| struct SSL_X509_METHOD { |
| // check_CA_list returns one if |names| is a good list of X.509 distinguished |
| // names and zero otherwise. This is used to ensure that we can reject |
| // unparsable values at handshake time when using crypto/x509. |
| bool (*check_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); |
| |
| // cert_clear frees and NULLs all X509 certificate-related state. |
| void (*cert_clear)(CERT *cert); |
| // cert_free frees all X509-related state. |
| void (*cert_free)(CERT *cert); |
| // cert_flush_cached_chain drops any cached |X509|-based certificate chain |
| // from |cert|. |
| // cert_dup duplicates any needed fields from |cert| to |new_cert|. |
| void (*cert_dup)(CERT *new_cert, const CERT *cert); |
| void (*cert_flush_cached_chain)(CERT *cert); |
| // cert_flush_cached_chain drops any cached |X509|-based leaf certificate |
| // from |cert|. |
| void (*cert_flush_cached_leaf)(CERT *cert); |
| |
| // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| |
| // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns |
| // true on success or false on error. |
| bool (*session_cache_objects)(SSL_SESSION *session); |
| // session_dup duplicates any needed fields from |session| to |new_session|. |
| // It returns true on success or false on error. |
| bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); |
| // session_clear frees any X509-related state from |session|. |
| void (*session_clear)(SSL_SESSION *session); |
| // session_verify_cert_chain verifies the certificate chain in |session|, |
| // sets |session->verify_result| and returns true on success or false on |
| // error. |
| bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl, |
| uint8_t *out_alert); |
| |
| // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. |
| void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); |
| // ssl_new does any necessary initialisation of |hs|. It returns true on |
| // success or false on error. |
| bool (*ssl_new)(SSL_HANDSHAKE *hs); |
| // ssl_free frees anything created by |ssl_new|. |
| void (*ssl_config_free)(SSL_CONFIG *cfg); |
| // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. |
| void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg); |
| // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if |
| // necessary. On success, it updates |ssl|'s certificate configuration as |
| // needed and returns true. Otherwise, it returns false. |
| bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs); |
| // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on |
| // success or false on error. |
| bool (*ssl_ctx_new)(SSL_CTX *ctx); |
| // ssl_ctx_free frees anything created by |ssl_ctx_new|. |
| void (*ssl_ctx_free)(SSL_CTX *ctx); |
| // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. |
| void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); |
| }; |
| |
| // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using |
| // crypto/x509. |
| extern const SSL_X509_METHOD ssl_crypto_x509_method; |
| |
| // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid |
| // crypto/x509. |
| extern const SSL_X509_METHOD ssl_noop_x509_method; |
| |
| struct TicketKey { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0}; |
| uint8_t hmac_key[16] = {0}; |
| uint8_t aes_key[16] = {0}; |
| // next_rotation_tv_sec is the time (in seconds from the epoch) when the |
| // current key should be superseded by a new key, or the time when a previous |
| // key should be dropped. If zero, then the key should not be automatically |
| // rotated. |
| uint64_t next_rotation_tv_sec = 0; |
| }; |
| |
| struct CertCompressionAlg { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| ssl_cert_compression_func_t compress = nullptr; |
| ssl_cert_decompression_func_t decompress = nullptr; |
| uint16_t alg_id = 0; |
| }; |
| |
| BSSL_NAMESPACE_END |
| |
| DEFINE_LHASH_OF(SSL_SESSION) |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // An ssl_shutdown_t describes the shutdown state of one end of the connection, |
| // whether it is alive or has been shutdown via close_notify or fatal alert. |
| enum ssl_shutdown_t { |
| ssl_shutdown_none = 0, |
| ssl_shutdown_close_notify = 1, |
| ssl_shutdown_error = 2, |
| }; |
| |
| enum ssl_ech_status_t { |
| // ssl_ech_none indicates ECH was not offered, or we have not gotten far |
| // enough in the handshake to determine the status. |
| ssl_ech_none, |
| // ssl_ech_accepted indicates the server accepted ECH. |
| ssl_ech_accepted, |
| // ssl_ech_rejected indicates the server was offered ECH but rejected it. |
| ssl_ech_rejected, |
| }; |
| |
| struct SSL3_STATE { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| SSL3_STATE(); |
| ~SSL3_STATE(); |
| |
| uint64_t read_sequence = 0; |
| uint64_t write_sequence = 0; |
| |
| uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; |
| uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; |
| |
| // read_buffer holds data from the transport to be processed. |
| SSLBuffer read_buffer; |
| // write_buffer holds data to be written to the transport. |
| SSLBuffer write_buffer; |
| |
| // pending_app_data is the unconsumed application data. It points into |
| // |read_buffer|. |
| Span<uint8_t> pending_app_data; |
| |
| // unreported_bytes_written is the number of bytes successfully written to the |
| // transport, but not yet reported to the caller. The next |SSL_write| will |
| // skip this many bytes from the input. This is used if |
| // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only |
| // reports bytes written when the full caller input is written. |
| size_t unreported_bytes_written = 0; |
| |
| // pending_write, if |has_pending_write| is true, is the caller-supplied data |
| // corresponding to the current pending write. This is used to check the |
| // caller retried with a compatible buffer. |
| Span<const uint8_t> pending_write; |
| |
| // pending_write_type, if |has_pending_write| is true, is the record type |
| // for the current pending write. |
| // |
| // TODO(davidben): Remove this when alerts are moved out of this write path. |
| uint8_t pending_write_type = 0; |
| |
| // read_shutdown is the shutdown state for the read half of the connection. |
| enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; |
| |
| // write_shutdown is the shutdown state for the write half of the connection. |
| enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; |
| |
| // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for |
| // the receive half of the connection. |
| UniquePtr<ERR_SAVE_STATE> read_error; |
| |
| int total_renegotiations = 0; |
| |
| // This holds a variable that indicates what we were doing when a 0 or -1 is |
| // returned. This is needed for non-blocking IO so we know what request |
| // needs re-doing when in SSL_accept or SSL_connect |
| int rwstate = SSL_ERROR_NONE; |
| |
| enum ssl_encryption_level_t read_level = ssl_encryption_initial; |
| enum ssl_encryption_level_t write_level = ssl_encryption_initial; |
| |
| // version is the protocol version, or zero if the version has not yet been |
| // set. In clients offering 0-RTT, this version will initially be set to the |
| // early version, then switched to the final version. |
| uint16_t version = 0; |
| |
| // early_data_skipped is the amount of early data that has been skipped by the |
| // record layer. |
| uint16_t early_data_skipped = 0; |
| |
| // empty_record_count is the number of consecutive empty records received. |
| uint8_t empty_record_count = 0; |
| |
| // warning_alert_count is the number of consecutive warning alerts |
| // received. |
| uint8_t warning_alert_count = 0; |
| |
| // key_update_count is the number of consecutive KeyUpdates received. |
| uint8_t key_update_count = 0; |
| |
| // ech_status indicates whether ECH was accepted by the server. |
| ssl_ech_status_t ech_status = ssl_ech_none; |
| |
| // skip_early_data instructs the record layer to skip unexpected early data |
| // messages when 0RTT is rejected. |
| bool skip_early_data : 1; |
| |
| // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled |
| // and future messages should use the record layer. |
| bool v2_hello_done : 1; |
| |
| // is_v2_hello is true if the current handshake message was derived from a |
| // V2ClientHello rather than received from the peer directly. |
| bool is_v2_hello : 1; |
| |
| // has_message is true if the current handshake message has been returned |
| // at least once by |get_message| and false otherwise. |
| bool has_message : 1; |
| |
| // initial_handshake_complete is true if the initial handshake has |
| // completed. |
| bool initial_handshake_complete : 1; |
| |
| // session_reused indicates whether a session was resumed. |
| bool session_reused : 1; |
| |
| bool send_connection_binding : 1; |
| |
| // channel_id_valid is true if, on the server, the client has negotiated a |
| // Channel ID and the |channel_id| field is filled in. |
| bool channel_id_valid : 1; |
| |
| // key_update_pending is true if we have a KeyUpdate acknowledgment |
| // outstanding. |
| bool key_update_pending : 1; |
| |
| // early_data_accepted is true if early data was accepted by the server. |
| bool early_data_accepted : 1; |
| |
| // alert_dispatch is true there is an alert in |send_alert| to be sent. |
| bool alert_dispatch : 1; |
| |
| // renegotiate_pending is whether the read half of the channel is blocked on a |
| // HelloRequest. |
| bool renegotiate_pending : 1; |
| |
| // used_hello_retry_request is whether the handshake used a TLS 1.3 |
| // HelloRetryRequest message. |
| bool used_hello_retry_request : 1; |
| |
| // was_key_usage_invalid is whether the handshake succeeded despite using a |
| // TLS mode which was incompatible with the leaf certificate's keyUsage |
| // extension. |
| bool was_key_usage_invalid : 1; |
| |
| // hs_buf is the buffer of handshake data to process. |
| UniquePtr<BUF_MEM> hs_buf; |
| |
| // pending_hs_data contains the pending handshake data that has not yet |
| // been encrypted to |pending_flight|. This allows packing the handshake into |
| // fewer records. |
| UniquePtr<BUF_MEM> pending_hs_data; |
| |
| // pending_flight is the pending outgoing flight. This is used to flush each |
| // handshake flight in a single write. |write_buffer| must be written out |
| // before this data. |
| UniquePtr<BUF_MEM> pending_flight; |
| |
| // pending_flight_offset is the number of bytes of |pending_flight| which have |
| // been successfully written. |
| uint32_t pending_flight_offset = 0; |
| |
| // ticket_age_skew is the difference, in seconds, between the client-sent |
| // ticket age and the server-computed value in TLS 1.3 server connections |
| // which resumed a session. |
| int32_t ticket_age_skew = 0; |
| |
| // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected. |
| enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown; |
| |
| // aead_read_ctx is the current read cipher state. |
| UniquePtr<SSLAEADContext> aead_read_ctx; |
| |
| // aead_write_ctx is the current write cipher state. |
| UniquePtr<SSLAEADContext> aead_write_ctx; |
| |
| // hs is the handshake state for the current handshake or NULL if there isn't |
| // one. |
| UniquePtr<SSL_HANDSHAKE> hs; |
| |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> write_traffic_secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> read_traffic_secret; |
| InplaceVector<uint8_t, SSL_MAX_MD_SIZE> exporter_secret; |
| |
| // Connection binding to prevent renegotiation attacks |
| InplaceVector<uint8_t, 12> previous_client_finished; |
| InplaceVector<uint8_t, 12> previous_server_finished; |
| |
| uint8_t send_alert[2] = {0}; |
| |
| // established_session is the session established by the connection. This |
| // session is only filled upon the completion of the handshake and is |
| // immutable. |
| UniquePtr<SSL_SESSION> established_session; |
| |
| // Next protocol negotiation. For the client, this is the protocol that we |
| // sent in NextProtocol and is set when handling ServerHello extensions. |
| // |
| // For a server, this is the client's selected_protocol from NextProtocol and |
| // is set when handling the NextProtocol message, before the Finished |
| // message. |
| Array<uint8_t> next_proto_negotiated; |
| |
| // ALPN information |
| // (we are in the process of transitioning from NPN to ALPN.) |
| |
| // In a server these point to the selected ALPN protocol after the |
| // ClientHello has been processed. In a client these contain the protocol |
| // that the server selected once the ServerHello has been processed. |
| Array<uint8_t> alpn_selected; |
| |
| // hostname, on the server, is the value of the SNI extension. |
| UniquePtr<char> hostname; |
| |
| // For a server: |
| // If |channel_id_valid| is true, then this contains the |
| // verified Channel ID from the client: a P256 point, (x,y), where |
| // each are big-endian values. |
| uint8_t channel_id[64] = {0}; |
| |
| // Contains the QUIC transport params received by the peer. |
| Array<uint8_t> peer_quic_transport_params; |
| |
| // srtp_profile is the selected SRTP protection profile for |
| // DTLS-SRTP. |
| const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr; |
| }; |
| |
| // lengths of messages |
| #define DTLS1_RT_MAX_HEADER_LENGTH 13 |
| |
| // DTLS_PLAINTEXT_RECORD_HEADER_LENGTH is the length of the DTLS record header |
| // for plaintext records (in DTLS 1.3) or DTLS versions <= 1.2. |
| #define DTLS_PLAINTEXT_RECORD_HEADER_LENGTH 13 |
| |
| // DTLS1_3_RECORD_HEADER_LENGTH is the length of the DTLS 1.3 record header |
| // sent by BoringSSL for encrypted records. Note that received encrypted DTLS |
| // 1.3 records might have a different length header. |
| #define DTLS1_3_RECORD_HEADER_WRITE_LENGTH 5 |
| |
| static_assert(DTLS1_RT_MAX_HEADER_LENGTH >= DTLS_PLAINTEXT_RECORD_HEADER_LENGTH, |
| "DTLS1_RT_MAX_HEADER_LENGTH must not be smaller than defined " |
| "record header lengths"); |
| static_assert(DTLS1_RT_MAX_HEADER_LENGTH >= DTLS1_3_RECORD_HEADER_WRITE_LENGTH, |
| "DTLS1_RT_MAX_HEADER_LENGTH must not be smaller than defined " |
| "record header lengths"); |
| |
| #define DTLS1_HM_HEADER_LENGTH 12 |
| |
| #define DTLS1_CCS_HEADER_LENGTH 1 |
| |
| #define DTLS1_AL_HEADER_LENGTH 2 |
| |
| struct hm_header_st { |
| uint8_t type; |
| uint32_t msg_len; |
| uint16_t seq; |
| uint32_t frag_off; |
| uint32_t frag_len; |
| }; |
| |
| // An hm_fragment is an incoming DTLS message, possibly not yet assembled. |
| struct hm_fragment { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| hm_fragment() {} |
| hm_fragment(const hm_fragment &) = delete; |
| hm_fragment &operator=(const hm_fragment &) = delete; |
| |
| ~hm_fragment(); |
| |
| // type is the type of the message. |
| uint8_t type = 0; |
| // seq is the sequence number of this message. |
| uint16_t seq = 0; |
| // msg_len is the length of the message body. |
| uint32_t msg_len = 0; |
| // data is a pointer to the message, including message header. It has length |
| // |DTLS1_HM_HEADER_LENGTH| + |msg_len|. |
| uint8_t *data = nullptr; |
| // reassembly is a bitmask of |msg_len| bits corresponding to which parts of |
| // the message have been received. It is NULL if the message is complete. |
| uint8_t *reassembly = nullptr; |
| }; |
| |
| struct OPENSSL_timeval { |
| uint64_t tv_sec; |
| uint32_t tv_usec; |
| }; |
| |
| // DTLS_MAX_EXTRA_WRITE_EPOCHS is the maximum number of additional write epochs |
| // that DTLS may need to retain. |
| // |
| // The maximum is, as a DTLS 1.3 server, immediately after sending Finished. At |
| // this point, the current epoch is the application write keys (epoch 3), but we |
| // may have ServerHello (epoch 0) and EncryptedExtensions (epoch 1) to |
| // retransmit. KeyUpdate does not increase this count. If the server were to |
| // initiate KeyUpdate from this state, it would not apply the new epoch until |
| // the client's ACKs have caught up. At that point, epochs 0 and 1 can be |
| // discarded. |
| #define DTLS_MAX_EXTRA_WRITE_EPOCHS 2 |
| |
| struct DTLS1_STATE { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| DTLS1_STATE(); |
| ~DTLS1_STATE(); |
| |
| bool Init(); |
| |
| // has_change_cipher_spec is true if we have received a ChangeCipherSpec from |
| // the peer in this epoch. |
| bool has_change_cipher_spec : 1; |
| |
| // outgoing_messages_complete is true if |outgoing_messages| has been |
| // completed by an attempt to flush it. Future calls to |add_message| and |
| // |add_change_cipher_spec| will start a new flight. |
| bool outgoing_messages_complete : 1; |
| |
| // flight_has_reply is true if the current outgoing flight is complete and has |
| // processed at least one message. This is used to detect whether we or the |
| // peer sent the final flight. |
| bool flight_has_reply : 1; |
| |
| uint16_t handshake_write_seq = 0; |
| uint16_t handshake_read_seq = 0; |
| |
| // read_epoch is the current DTLS read epoch. |
| // TODO(crbug.com/42290594): DTLS 1.3 will require that we also store the next |
| // epoch, and switch over on the first record from the new epoch. |
| DTLSReadEpoch read_epoch; |
| |
| // write_epoch is the current DTLS write epoch. Non-retransmit records will |
| // generally use this epoch. |
| // TODO(crbug.com/42290594): 0-RTT will be the exception, when implemented. |
| DTLSWriteEpoch write_epoch; |
| |
| // extra_write_epochs is the collection available write epochs. |
| InplaceVector<UniquePtr<DTLSWriteEpoch>, DTLS_MAX_EXTRA_WRITE_EPOCHS> |
| extra_write_epochs; |
| |
| // incoming_messages is a ring buffer of incoming handshake messages that have |
| // yet to be processed. The front of the ring buffer is message number |
| // |handshake_read_seq|, at position |handshake_read_seq| % |
| // |SSL_MAX_HANDSHAKE_FLIGHT|. |
| UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; |
| |
| // outgoing_messages is the queue of outgoing messages from the last handshake |
| // flight. |
| InplaceVector<DTLS_OUTGOING_MESSAGE, SSL_MAX_HANDSHAKE_FLIGHT> |
| outgoing_messages; |
| |
| // outgoing_written is the number of outgoing messages that have been |
| // written. |
| uint8_t outgoing_written = 0; |
| // outgoing_offset is the number of bytes of the next outgoing message have |
| // been written. |
| uint32_t outgoing_offset = 0; |
| |
| unsigned mtu = 0; // max DTLS packet size |
| |
| // num_timeouts is the number of times the retransmit timer has fired since |
| // the last time it was reset. |
| unsigned num_timeouts = 0; |
| |
| // Indicates when the last handshake msg or heartbeat sent will |
| // timeout. |
| struct OPENSSL_timeval next_timeout = {0, 0}; |
| |
| // timeout_duration_ms is the timeout duration in milliseconds. |
| unsigned timeout_duration_ms = 0; |
| }; |
| |
| // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS. |
| struct ALPSConfig { |
| Array<uint8_t> protocol; |
| Array<uint8_t> settings; |
| }; |
| |
| // SSL_CONFIG contains configuration bits that can be shed after the handshake |
| // completes. Objects of this type are not shared; they are unique to a |
| // particular |SSL|. |
| // |
| // See SSL_shed_handshake_config() for more about the conditions under which |
| // configuration can be shed. |
| struct SSL_CONFIG { |
| static constexpr bool kAllowUniquePtr = true; |
| |
| explicit SSL_CONFIG(SSL *ssl_arg); |
| ~SSL_CONFIG(); |
| |
| // ssl is a non-owning pointer to the parent |SSL| object. |
| SSL *const ssl = nullptr; |
| |
| // conf_max_version is the maximum acceptable version configured by |
| // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS |
| // and is further constrained by |SSL_OP_NO_*|. |
| uint16_t conf_max_version = 0; |
| |
| // conf_min_version is the minimum acceptable version configured by |
| // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS |
| // and is further constrained by |SSL_OP_NO_*|. |
| uint16_t conf_min_version = 0; |
| |
| X509_VERIFY_PARAM *param = nullptr; |
| |
| // crypto |
| UniquePtr<SSLCipherPreferenceList> cipher_list; |
| |
| // This is used to hold the local certificate used (i.e. the server |
| // certificate for a server or the client certificate for a client). |
| UniquePtr<CERT> cert; |
| |
| int (*verify_callback)(int ok, |
| X509_STORE_CTX *ctx) = |
| nullptr; // fail if callback returns 0 |
| |
| enum ssl_verify_result_t (*custom_verify_callback)( |
| SSL *ssl, uint8_t *out_alert) = nullptr; |
| // Server-only: psk_identity_hint is the identity hint to send in |
| // PSK-based key exchanges. |
| UniquePtr<char> psk_identity_hint; |
| |
| unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, |
| unsigned max_identity_len, uint8_t *psk, |
| unsigned max_psk_len) = nullptr; |
| unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, |
| unsigned max_psk_len) = nullptr; |
| |
| // for server side, keep the list of CA_dn we can use |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; |
| |
| // cached_x509_client_CA is a cache of parsed versions of the elements of |
| // |client_CA|. |
| STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; |
| |
| // For client side, keep the list of CA distinguished names we can use |
| // for the Certificate Authorities extension. |
| // TODO(bbe) having this separate from the client side (above) is mildly |
| // silly, but OpenSSL has *_client_CA API's for this exposed, and for the |
| // moment we are not crossing those streams. |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> CA_names; |
| |
| Array<uint16_t> supported_group_list; // our list |
| |
| // channel_id_private is the client's Channel ID private key, or null if |
| // Channel ID should not be offered on this connection. |
| UniquePtr<EVP_PKEY> channel_id_private; |
| |
| // For a client, this contains the list of supported protocols in wire |
| // format. |
| Array<uint8_t> alpn_client_proto_list; |
| |
| // alps_configs contains the list of supported protocols to use with ALPS, |
| // along with their corresponding ALPS values. |
| Vector<ALPSConfig> alps_configs; |
| |
| // Contains the QUIC transport params that this endpoint will send. |
| Array<uint8_t> quic_transport_params; |
| |
| // Contains the context used to decide whether to accept early data in QUIC. |
| Array<uint8_t> quic_early_data_context; |
| |
| // verify_sigalgs, if not empty, is the set of signature algorithms |
| // accepted from the peer in decreasing order of preference. |
| Array<uint16_t> verify_sigalgs; |
| |
| // srtp_profiles is the list of configured SRTP protection profiles for |
| // DTLS-SRTP. |
| UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; |
| |
| // client_ech_config_list, if not empty, is a serialized ECHConfigList |
| // structure for the client to use when negotiating ECH. |
| Array<uint8_t> client_ech_config_list; |
| |
| // tls13_cipher_policy limits the set of ciphers that can be selected when |
| // negotiating a TLS 1.3 connection. |
| enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none; |
| |
| // verify_mode is a bitmask of |SSL_VERIFY_*| values. |
| uint8_t verify_mode = SSL_VERIFY_NONE; |
| |
| // ech_grease_enabled controls whether ECH GREASE may be sent in the |
| // ClientHello. |
| bool ech_grease_enabled : 1; |
| |
| // Enable signed certificate time stamps. Currently client only. |
| bool signed_cert_timestamps_enabled : 1; |
| |
| // ocsp_stapling_enabled is only used by client connections and indicates |
| // whether OCSP stapling will be requested. |
| bool ocsp_stapling_enabled : 1; |
| |
| // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means |
| // that we'll accept Channel IDs from clients. It is ignored on the client. |
| bool channel_id_enabled : 1; |
| |
| // If enforce_rsa_key_usage is true, the handshake will fail if the |
| // keyUsage extension is present and incompatible with the TLS usage. |
| // This field is not read until after certificate verification. |
| bool enforce_rsa_key_usage : 1; |
| |
| // retain_only_sha256_of_client_certs is true if we should compute the SHA256 |
| // hash of the peer's certificate and then discard it to save memory and |
| // session space. Only effective on the server side. |
| bool retain_only_sha256_of_client_certs : 1; |
| |
| // handoff indicates that a server should stop after receiving the |
| // ClientHello and pause the handshake in such a way that |SSL_get_error| |
| // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| |
| // element of the same name and may be cleared if the handoff is declined. |
| bool handoff : 1; |
| |
| // shed_handshake_config indicates that the handshake config (this object!) |
| // should be freed after the handshake completes. |
| bool shed_handshake_config : 1; |
| |
| // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a |
| // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806. |
| bool jdk11_workaround : 1; |
| |
| // QUIC drafts up to and including 32 used a different TLS extension |
| // codepoint to convey QUIC's transport parameters. |
| bool quic_use_legacy_codepoint : 1; |
| |
| // permute_extensions is whether to permute extensions when sending messages. |
| bool permute_extensions : 1; |
| |
| // aes_hw_override if set indicates we should override checking for aes |
| // hardware support, and use the value in aes_hw_override_value instead. |
| bool aes_hw_override : 1; |
| |
| // aes_hw_override_value is used for testing to indicate the support or lack |
| // of support for AES hw. The value is only considered if |aes_hw_override| is |
| // true. |
| bool aes_hw_override_value : 1; |
| |
| // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint |
| // to negotiate and convey application settings. |
| bool alps_use_new_codepoint : 1; |
| |
| // check_client_certificate_type indicates whether the client, in TLS 1.2 and |
| // below, will check its certificate against the server's requested |
| // certificate types. |
| bool check_client_certificate_type : 1; |
| |
| // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will |
| // check its certificate against the client's supported ECDSA curves. |
| bool check_ecdsa_curve : 1; |
| }; |
| |
| // From RFC 8446, used in determining PSK modes. |
| #define SSL_PSK_DHE_KE 0x1 |
| |
| // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early |
| // data that will be accepted. This value should be slightly below |
| // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. |
| static const size_t kMaxEarlyDataAccepted = 14336; |
| |
| UniquePtr<CERT> ssl_cert_dup(CERT *cert); |
| bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer); |
| bool ssl_is_key_type_supported(int key_type); |
| // ssl_compare_public_and_private_key returns true if |pubkey| is the public |
| // counterpart to |privkey|. Otherwise it returns false and pushes a helpful |
| // message on the error queue. |
| bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, |
| const EVP_PKEY *privkey); |
| bool ssl_get_new_session(SSL_HANDSHAKE *hs); |
| bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, |
| const SSL_SESSION *session); |
| bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); |
| |
| // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on |
| // error. |
| UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method); |
| |
| // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table |
| // keyed on session IDs. |
| uint32_t ssl_hash_session_id(Span<const uint8_t> session_id); |
| |
| // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over |
| // the parsed data. |
| OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse( |
| CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool); |
| |
| // ssl_session_serialize writes |in| to |cbb| as if it were serialising a |
| // session for Session-ID resumption. It returns true on success and false on |
| // error. |
| OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); |
| |
| // ssl_session_is_context_valid returns whether |session|'s session ID context |
| // matches the one set on |hs|. |
| bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, |
| const SSL_SESSION *session); |
| |
| // ssl_session_is_time_valid returns true if |session| is still valid and false |
| // if it has expired. |
| bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); |
| |
| // ssl_session_is_resumable returns whether |session| is resumable for |hs|. |
| bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs, |
| const SSL_SESSION *session); |
| |
| // ssl_session_protocol_version returns the protocol version associated with |
| // |session|. Note that despite the name, this is not the same as |
| // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. |
| uint16_t ssl_session_protocol_version(const SSL_SESSION *session); |
| |
| // ssl_session_get_digest returns the digest used in |session|. |
| const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); |
| |
| void ssl_set_session(SSL *ssl, SSL_SESSION *session); |
| |
| // ssl_get_prev_session looks up the previous session based on |client_hello|. |
| // On success, it sets |*out_session| to the session or nullptr if none was |
| // found. If the session could not be looked up synchronously, it returns |
| // |ssl_hs_pending_session| and should be called again. If a ticket could not be |
| // decrypted immediately it returns |ssl_hs_pending_ticket| and should also |
| // be called again. Otherwise, it returns |ssl_hs_error|. |
| enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, |
| UniquePtr<SSL_SESSION> *out_session, |
| bool *out_tickets_supported, |
| bool *out_renew_ticket, |
| const SSL_CLIENT_HELLO *client_hello); |
| |
| // The following flags determine which parts of the session are duplicated. |
| #define SSL_SESSION_DUP_AUTH_ONLY 0x0 |
| #define SSL_SESSION_INCLUDE_TICKET 0x1 |
| #define SSL_SESSION_INCLUDE_NONAUTH 0x2 |
| #define SSL_SESSION_DUP_ALL \ |
| (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) |
| |
| // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the |
| // fields in |session| or nullptr on error. The new session is non-resumable and |
| // must be explicitly marked resumable once it has been filled in. |
| OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session, |
| int dup_flags); |
| |
| // ssl_session_rebase_time updates |session|'s start time to the current time, |
| // adjusting the timeout so the expiration time is unchanged. |
| void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); |
| |
| // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews |
| // |session|'s timeout to |timeout| (measured from the current time). The |
| // renewal is clamped to the session's auth_timeout. |
| void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, |
| uint32_t timeout); |
| |
| void ssl_update_cache(SSL *ssl); |
| |
| void ssl_send_alert(SSL *ssl, int level, int desc); |
| int ssl_send_alert_impl(SSL *ssl, int level, int desc); |
| bool tls_get_message(const SSL *ssl, SSLMessage *out); |
| ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| void tls_next_message(SSL *ssl); |
| |
| int tls_dispatch_alert(SSL *ssl); |
| ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| Span<uint8_t> in); |
| ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in); |
| int tls_write_app_data(SSL *ssl, bool *out_needs_handshake, |
| size_t *out_bytes_written, Span<const uint8_t> in); |
| |
| bool tls_new(SSL *ssl); |
| void tls_free(SSL *ssl); |
| |
| bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); |
| bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); |
| bool tls_add_message(SSL *ssl, Array<uint8_t> msg); |
| bool tls_add_change_cipher_spec(SSL *ssl); |
| int tls_flush_flight(SSL *ssl); |
| |
| bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); |
| bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); |
| bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg); |
| bool dtls1_add_change_cipher_spec(SSL *ssl); |
| int dtls1_flush_flight(SSL *ssl); |
| |
| // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to |
| // the pending flight. It returns true on success and false on error. |
| bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); |
| |
| // ssl_hash_message incorporates |msg| into the handshake hash. It returns true |
| // on success and false on allocation failure. |
| bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); |
| |
| ssl_open_record_t dtls1_process_ack(SSL *ssl, uint8_t *out_alert); |
| ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| Span<uint8_t> in); |
| ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in); |
| |
| int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, |
| size_t *out_bytes_written, Span<const uint8_t> in); |
| |
| // dtls1_write_record sends a record. It returns one on success and <= 0 on |
| // error. |
| int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in, |
| uint16_t epoch); |
| |
| int dtls1_retransmit_outgoing_messages(SSL *ssl); |
| bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, |
| CBS *out_body); |
| bool dtls1_check_timeout_num(SSL *ssl); |
| |
| void dtls1_start_timer(SSL *ssl); |
| void dtls1_stop_timer(SSL *ssl); |
| bool dtls1_is_timer_expired(SSL *ssl); |
| unsigned int dtls1_min_mtu(void); |
| |
| bool dtls1_new(SSL *ssl); |
| void dtls1_free(SSL *ssl); |
| |
| bool dtls1_process_handshake_fragments(SSL *ssl, uint8_t *out_alert, |
| Span<uint8_t> record); |
| bool dtls1_get_message(const SSL *ssl, SSLMessage *out); |
| ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in); |
| void dtls1_next_message(SSL *ssl); |
| int dtls1_dispatch_alert(SSL *ssl); |
| |
| // tls1_configure_aead configures either the read or write direction AEAD (as |
| // determined by |direction|) using the keys generated by the TLS KDF. The |
| // |key_block_cache| argument is used to store the generated key block, if |
| // empty. Otherwise it's assumed that the key block is already contained within |
| // it. It returns true on success or false on error. |
| bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, |
| Array<uint8_t> *key_block_cache, |
| const SSL_SESSION *session, |
| Span<const uint8_t> iv_override); |
| |
| bool tls1_change_cipher_state(SSL_HANDSHAKE *hs, |
| evp_aead_direction_t direction); |
| |
| // tls1_generate_master_secret computes the master secret from |premaster| and |
| // writes it to |out|. |out| must have size |SSL3_MASTER_SECRET_SIZE|. |
| bool tls1_generate_master_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out, |
| Span<const uint8_t> premaster); |
| |
| // tls1_get_grouplist returns the locally-configured group preference list. |
| Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl); |
| |
| // tls1_check_group_id returns whether |group_id| is consistent with locally- |
| // configured group preferences. |
| bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id); |
| |
| // tls1_get_shared_group sets |*out_group_id| to the first preferred shared |
| // group between client and server preferences and returns true. If none may be |
| // found, it returns false. |
| bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); |
| |
| // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|. |
| // It returns true on success and false on failure. The |header_len| argument is |
| // the length of the ClientHello written so far and is used to compute the |
| // padding length. (It does not include the record header or handshake headers.) |
| // |
| // If |type| is |ssl_client_hello_inner|, this function also writes the |
| // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be |
| // nullptr. |
| // |
| // On success, the function sets |*out_needs_psk_binder| to whether the last |
| // ClientHello extension was the pre_shared_key extension and needs a PSK binder |
| // filled in. The caller should then update |out| and, if applicable, |
| // |out_encoded| with the binder after completing the whole message. |
| bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded, |
| bool *out_needs_psk_binder, |
| ssl_client_hello_type_t type, |
| size_t header_len); |
| |
| bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); |
| bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, |
| const SSL_CLIENT_HELLO *client_hello); |
| bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions); |
| |
| #define tlsext_tick_md EVP_sha256 |
| |
| // ssl_process_ticket processes a session ticket from the client. It returns |
| // one of: |
| // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and |
| // |*out_renew_ticket| is set to whether the ticket should be renewed. |
| // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a |
| // fresh ticket should be sent, but the given ticket cannot be used. |
| // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. |
| // Retry later. |
| // |ssl_ticket_aead_error|: an error occured that is fatal to the connection. |
| enum ssl_ticket_aead_result_t ssl_process_ticket( |
| SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session, |
| bool *out_renew_ticket, Span<const uint8_t> ticket, |
| Span<const uint8_t> session_id); |
| |
| // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies |
| // the signature. If the key is valid, it saves the Channel ID and returns true. |
| // Otherwise, it returns false. |
| bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); |
| |
| // tls1_write_channel_id generates a Channel ID message and puts the output in |
| // |cbb|. |ssl->channel_id_private| must already be set before calling. This |
| // function returns true on success and false on error. |
| bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); |
| |
| // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes |
| // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns |
| // true on success and false on failure. |
| bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); |
| |
| // tls1_record_handshake_hashes_for_channel_id records the current handshake |
| // hashes in |hs->new_session| so that Channel ID resumptions can sign that |
| // data. |
| bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); |
| |
| // ssl_can_write returns whether |ssl| is allowed to write. |
| bool ssl_can_write(const SSL *ssl); |
| |
| // ssl_can_read returns wheter |ssl| is allowed to read. |
| bool ssl_can_read(const SSL *ssl); |
| |
| void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); |
| void ssl_ctx_get_current_time(const SSL_CTX *ctx, |
| struct OPENSSL_timeval *out_clock); |
| |
| // ssl_reset_error_state resets state for |SSL_get_error|. |
| void ssl_reset_error_state(SSL *ssl); |
| |
| // ssl_set_read_error sets |ssl|'s read half into an error state, saving the |
| // current state of the error queue. |
| void ssl_set_read_error(SSL *ssl); |
| |
| BSSL_NAMESPACE_END |
| |
| |
| // Opaque C types. |
| // |
| // The following types are exported to C code as public typedefs, so they must |
| // be defined outside of the namespace. |
| |
| // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility |
| // structure to support the legacy version-locked methods. |
| struct ssl_method_st { |
| // version, if non-zero, is the only protocol version acceptable to an |
| // SSL_CTX initialized from this method. |
| uint16_t version; |
| // method is the underlying SSL_PROTOCOL_METHOD that initializes the |
| // SSL_CTX. |
| const bssl::SSL_PROTOCOL_METHOD *method; |
| // x509_method contains pointers to functions that might deal with |X509| |
| // compatibility, or might be a no-op, depending on the application. |
| const bssl::SSL_X509_METHOD *x509_method; |
| }; |
| |
| struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> { |
| explicit ssl_ctx_st(const SSL_METHOD *ssl_method); |
| ssl_ctx_st(const ssl_ctx_st &) = delete; |
| ssl_ctx_st &operator=(const ssl_ctx_st &) = delete; |
| |
| const bssl::SSL_PROTOCOL_METHOD *method = nullptr; |
| const bssl::SSL_X509_METHOD *x509_method = nullptr; |
| |
| // lock is used to protect various operations on this object. |
| CRYPTO_MUTEX lock; |
| |
| // conf_max_version is the maximum acceptable protocol version configured by |
| // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS |
| // and is further constrainted by |SSL_OP_NO_*|. |
| uint16_t conf_max_version = 0; |
| |
| // conf_min_version is the minimum acceptable protocol version configured by |
| // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS |
| // and is further constrainted by |SSL_OP_NO_*|. |
| uint16_t conf_min_version = 0; |
| |
| // num_tickets is the number of tickets to send immediately after the TLS 1.3 |
| // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two |
| /// in case the client makes several connections before getting a renewal. |
| uint8_t num_tickets = 2; |
| |
| // quic_method is the method table corresponding to the QUIC hooks. |
| const SSL_QUIC_METHOD *quic_method = nullptr; |
| |
| bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list; |
| |
| X509_STORE *cert_store = nullptr; |
| LHASH_OF(SSL_SESSION) *sessions = nullptr; |
| // Most session-ids that will be cached, default is |
| // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. |
| unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; |
| SSL_SESSION *session_cache_head = nullptr; |
| SSL_SESSION *session_cache_tail = nullptr; |
| |
| // handshakes_since_cache_flush is the number of successful handshakes since |
| // the last cache flush. |
| int handshakes_since_cache_flush = 0; |
| |
| // This can have one of 2 values, ored together, |
| // SSL_SESS_CACHE_CLIENT, |
| // SSL_SESS_CACHE_SERVER, |
| // Default is SSL_SESSION_CACHE_SERVER, which means only |
| // SSL_accept which cache SSL_SESSIONS. |
| int session_cache_mode = SSL_SESS_CACHE_SERVER; |
| |
| // session_timeout is the default lifetime for new sessions in TLS 1.2 and |
| // earlier, in seconds. |
| uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; |
| |
| // session_psk_dhe_timeout is the default lifetime for new sessions in TLS |
| // 1.3, in seconds. |
| uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT; |
| |
| // If this callback is not null, it will be called each time a session id is |
| // added to the cache. If this function returns 1, it means that the |
| // callback will do a SSL_SESSION_free() when it has finished using it. |
| // Otherwise, on 0, it means the callback has finished with it. If |
| // remove_session_cb is not null, it will be called when a session-id is |
| // removed from the cache. After the call, OpenSSL will SSL_SESSION_free() |
| // it. |
| int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr; |
| void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr; |
| SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, |
| int *copy) = nullptr; |
| |
| // if defined, these override the X509_verify_cert() calls |
| int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr; |
| void *app_verify_arg = nullptr; |
| |
| ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, |
| uint8_t *out_alert) = nullptr; |
| |
| // Default password callback. |
| pem_password_cb *default_passwd_callback = nullptr; |
| |
| // Default password callback user data. |
| void *default_passwd_callback_userdata = nullptr; |
| |
| // get client cert callback |
| int (*client_cert_cb)(SSL *ssl, X509 **out_x509, |
| EVP_PKEY **out_pkey) = nullptr; |
| |
| CRYPTO_EX_DATA ex_data; |
| |
| // Default values used when no per-SSL value is defined follow |
| |
| void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; |
| |
| // what we put in client cert requests |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; |
| |
| // cached_x509_client_CA is a cache of parsed versions of the elements of |
| // |client_CA|. |
| STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; |
| |
| // What we put in client hello in the CA extension. |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> CA_names; |
| |
| // Default values to use in SSL structures follow (these are copied by |
| // SSL_new) |
| |
| uint32_t options = 0; |
| // Disable the auto-chaining feature by default. wpa_supplicant relies on this |
| // feature, but require callers opt into it. |
| uint32_t mode = SSL_MODE_NO_AUTO_CHAIN; |
| uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; |
| |
| bssl::UniquePtr<bssl::CERT> cert; |
| |
| // callback that allows applications to peek at protocol messages |
| void (*msg_callback)(int is_write, int version, int content_type, |
| const void *buf, size_t len, SSL *ssl, |
| void *arg) = nullptr; |
| void *msg_callback_arg = nullptr; |
| |
| int verify_mode = SSL_VERIFY_NONE; |
| int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) = |
| nullptr; // called 'verify_callback' in the SSL |
| |
| X509_VERIFY_PARAM *param = nullptr; |
| |
| // select_certificate_cb is called before most ClientHello processing and |
| // before the decision whether to resume a session is made. See |
| // |ssl_select_cert_result_t| for details of the return values. |
| ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) = |
| nullptr; |
| |
| // dos_protection_cb is called once the resumption decision for a ClientHello |
| // has been made. It returns one to continue the handshake or zero to |
| // abort. |
| int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr; |
| |
| // Controls whether to verify certificates when resuming connections. They |
| // were already verified when the connection was first made, so the default is |
| // false. For now, this is only respected on clients, not servers. |
| bool reverify_on_resume = false; |
| |
| // Maximum amount of data to send in one fragment. actual record size can be |
| // more than this due to padding and MAC overheads. |
| uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; |
| |
| // TLS extensions servername callback |
| int (*servername_callback)(SSL *, int *, void *) = nullptr; |
| void *servername_arg = nullptr; |
| |
| // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the |
| // first handshake and |ticket_key_prev| may be NULL at any time. |
| // Automatically generated ticket keys are rotated as needed at handshake |
| // time. Hence, all access must be synchronized through |lock|. |
| bssl::UniquePtr<bssl::TicketKey> ticket_key_current; |
| bssl::UniquePtr<bssl::TicketKey> ticket_key_prev; |
| |
| // Callback to support customisation of ticket key setting |
| int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, |
| EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr; |
| |
| // Server-only: psk_identity_hint is the default identity hint to send in |
| // PSK-based key exchanges. |
| bssl::UniquePtr<char> psk_identity_hint; |
| |
| unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, |
| unsigned max_identity_len, uint8_t *psk, |
| unsigned max_psk_len) = nullptr; |
| unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, |
| unsigned max_psk_len) = nullptr; |
| |
| |
| // Next protocol negotiation information |
| // (for experimental NPN extension). |
| |
| // For a server, this contains a callback function by which the set of |
| // advertised protocols can be provided. |
| int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, |
| unsigned *out_len, void *arg) = nullptr; |
| void *next_protos_advertised_cb_arg = nullptr; |
| // For a client, this contains a callback function that selects the |
| // next protocol from the list provided by the server. |
| int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, |
| const uint8_t *in, unsigned in_len, |
| void *arg) = nullptr; |
| void *next_proto_select_cb_arg = nullptr; |
| |
| // ALPN information |
| // (we are in the process of transitioning from NPN to ALPN.) |
| |
| // For a server, this contains a callback function that allows the |
| // server to select the protocol for the connection. |
| // out: on successful return, this must point to the raw protocol |
| // name (without the length prefix). |
| // outlen: on successful return, this contains the length of |*out|. |
| // in: points to the client's list of supported protocols in |
| // wire-format. |
| // inlen: the length of |in|. |
| int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, |
| const uint8_t *in, unsigned in_len, |
| void *arg) = nullptr; |
| void *alpn_select_cb_arg = nullptr; |
| |
| // For a client, this contains the list of supported protocols in wire |
| // format. |
| bssl::Array<uint8_t> alpn_client_proto_list; |
| |
| // SRTP profiles we are willing to do from RFC 5764 |
| bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; |
| |
| // Defined compression algorithms for certificates. |
| bssl::Vector<bssl::CertCompressionAlg> cert_compression_algs; |
| |
| // Supported group values inherited by SSL structure |
| bssl::Array<uint16_t> supported_group_list; |
| |
| // channel_id_private is the client's Channel ID private key, or null if |
| // Channel ID should not be offered on this connection. |
| bssl::UniquePtr<EVP_PKEY> channel_id_private; |
| |
| // ech_keys contains the server's list of ECHConfig values and associated |
| // private keys. This list may be swapped out at any time, so all access must |
| // be synchronized through |lock|. |
| bssl::UniquePtr<SSL_ECH_KEYS> ech_keys; |
| |
| // keylog_callback, if not NULL, is the key logging callback. See |
| // |SSL_CTX_set_keylog_callback|. |
| void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr; |
| |
| // current_time_cb, if not NULL, is the function to use to get the current |
| // time. It sets |*out_clock| to the current time. The |ssl| argument is |
| // always NULL. See |SSL_CTX_set_current_time_cb|. |
| void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr; |
| |
| // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate |
| // memory. |
| CRYPTO_BUFFER_POOL *pool = nullptr; |
| |
| // ticket_aead_method contains function pointers for opening and sealing |
| // session tickets. |
| const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr; |
| |
| // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL |
| // compatibility. |
| int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr; |
| void *legacy_ocsp_callback_arg = nullptr; |
| |
| // tls13_cipher_policy limits the set of ciphers that can be selected when |
| // negotiating a TLS 1.3 connection. |
| enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none; |
| |
| // verify_sigalgs, if not empty, is the set of signature algorithms |
| // accepted from the peer in decreasing order of preference. |
| bssl::Array<uint16_t> verify_sigalgs; |
| |
| // retain_only_sha256_of_client_certs is true if we should compute the SHA256 |
| // hash of the peer's certificate and then discard it to save memory and |
| // session space. Only effective on the server side. |
| bool retain_only_sha256_of_client_certs : 1; |
| |
| // quiet_shutdown is true if the connection should not send a close_notify on |
| // shutdown. |
| bool quiet_shutdown : 1; |
| |
| // ocsp_stapling_enabled is only used by client connections and indicates |
| // whether OCSP stapling will be requested. |
| bool ocsp_stapling_enabled : 1; |
| |
| // If true, a client will request certificate timestamps. |
| bool signed_cert_timestamps_enabled : 1; |
| |
| // channel_id_enabled is whether Channel ID is enabled. For a server, means |
| // that we'll accept Channel IDs from clients. For a client, means that we'll |
| // advertise support. |
| bool channel_id_enabled : 1; |
| |
| // grease_enabled is whether GREASE (RFC 8701) is enabled. |
| bool grease_enabled : 1; |
| |
| // permute_extensions is whether to permute extensions when sending messages. |
| bool permute_extensions : 1; |
| |
| // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN |
| // protocols from the peer. |
| bool allow_unknown_alpn_protos : 1; |
| |
| // false_start_allowed_without_alpn is whether False Start (if |
| // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. |
| bool false_start_allowed_without_alpn : 1; |
| |
| // handoff indicates that a server should stop after receiving the |
| // ClientHello and pause the handshake in such a way that |SSL_get_error| |
| // returns |SSL_ERROR_HANDOFF|. |
| bool handoff : 1; |
| |
| // If enable_early_data is true, early data can be sent and accepted. |
| bool enable_early_data : 1; |
| |
| // aes_hw_override if set indicates we should override checking for AES |
| // hardware support, and use the value in aes_hw_override_value instead. |
| bool aes_hw_override : 1; |
| |
| // aes_hw_override_value is used for testing to indicate the support or lack |
| // of support for AES hardware. The value is only considered if |
| // |aes_hw_override| is true. |
| bool aes_hw_override_value : 1; |
| |
| private: |
| friend RefCounted; |
| ~ssl_ctx_st(); |
| }; |
| |
| struct ssl_st { |
| explicit ssl_st(SSL_CTX *ctx_arg); |
| ssl_st(const ssl_st &) = delete; |
| ssl_st &operator=(const ssl_st &) = delete; |
| ~ssl_st(); |
| |
| // method is the method table corresponding to the current protocol (DTLS or |
| // TLS). |
| const bssl::SSL_PROTOCOL_METHOD *method = nullptr; |
| |
| // config is a container for handshake configuration. Accesses to this field |
| // should check for nullptr, since configuration may be shed after the |
| // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use |
| // that instead, and skip the null check.) |
| bssl::UniquePtr<bssl::SSL_CONFIG> config; |
| |
| uint16_t max_send_fragment = 0; |
| |
| // There are 2 BIO's even though they are normally both the same. This is so |
| // data can be read and written to different handlers |
| |
| bssl::UniquePtr<BIO> rbio; // used by SSL_read |
| bssl::UniquePtr<BIO> wbio; // used by SSL_write |
| |
| // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. |
| // Otherwise, it returns a value corresponding to what operation is needed to |
| // progress. |
| bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr; |
| |
| bssl::SSL3_STATE *s3 = nullptr; // TLS variables |
| bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables |
| |
| // callback that allows applications to peek at protocol messages |
| void (*msg_callback)(int write_p, int version, int content_type, |
| const void *buf, size_t len, SSL *ssl, |
| void *arg) = nullptr; |
| void *msg_callback_arg = nullptr; |
| |
| // session info |
| |
| // initial_timeout_duration_ms is the default DTLS timeout duration in |
| // milliseconds. It's used to initialize the timer any time it's restarted. |
| // |
| // RFC 6347 states that implementations SHOULD use an initial timer value of 1 |
| // second. |
| unsigned initial_timeout_duration_ms = 1000; |
| |
| // session is the configured session to be offered by the client. This session |
| // is immutable. |
| bssl::UniquePtr<SSL_SESSION> session; |
| |
| void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; |
| |
| bssl::UniquePtr<SSL_CTX> ctx; |
| |
| // session_ctx is the |SSL_CTX| used for the session cache and related |
| // settings. |
| bssl::UniquePtr<SSL_CTX> session_ctx; |
| |
| // extra application data |
| CRYPTO_EX_DATA ex_data; |
| |
| uint32_t options = 0; // protocol behaviour |
| uint32_t mode = 0; // API behaviour |
| uint32_t max_cert_list = 0; |
| bssl::UniquePtr<char> hostname; |
| |
| // quic_method is the method table corresponding to the QUIC hooks. |
| const SSL_QUIC_METHOD *quic_method = nullptr; |
| |
| // renegotiate_mode controls how peer renegotiation attempts are handled. |
| ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never; |
| |
| // server is true iff the this SSL* is the server half. Note: before the SSL* |
| // is initialized by either SSL_set_accept_state or SSL_set_connect_state, |
| // the side is not determined. In this state, server is always false. |
| bool server : 1; |
| |
| // quiet_shutdown is true if the connection should not send a close_notify on |
| // shutdown. |
| bool quiet_shutdown : 1; |
| |
| // If enable_early_data is true, early data can be sent and accepted. |
| bool enable_early_data : 1; |
| }; |
| |
| struct ssl_session_st : public bssl::RefCounted<ssl_session_st> { |
| explicit ssl_session_st(const bssl::SSL_X509_METHOD *method); |
| ssl_session_st(const ssl_session_st &) = delete; |
| ssl_session_st &operator=(const ssl_session_st &) = delete; |
| |
| // ssl_version is the (D)TLS version that established the session. |
| uint16_t ssl_version = 0; |
| |
| // group_id is the ID of the ECDH group used to establish this session or zero |
| // if not applicable or unknown. |
| uint16_t group_id = 0; |
| |
| // peer_signature_algorithm is the signature algorithm used to authenticate |
| // the peer, or zero if not applicable or unknown. |
| uint16_t peer_signature_algorithm = 0; |
| |
| // secret, in TLS 1.2 and below, is the master secret associated with the |
| // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to |
| // the caller, but it stores the resumption secret when stored on |SSL| |
| // objects. |
| bssl::InplaceVector<uint8_t, SSL_MAX_MASTER_KEY_LENGTH> secret; |
| |
| bssl::InplaceVector<uint8_t, SSL_MAX_SSL_SESSION_ID_LENGTH> session_id; |
| |
| // this is used to determine whether the session is being reused in |
| // the appropriate context. It is up to the application to set this, |
| // via SSL_new |
| bssl::InplaceVector<uint8_t, SSL_MAX_SID_CTX_LENGTH> sid_ctx; |
| |
| bssl::UniquePtr<char> psk_identity; |
| |
| // certs contains the certificate chain from the peer, starting with the leaf |
| // certificate. |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs; |
| |
| const bssl::SSL_X509_METHOD *x509_method = nullptr; |
| |
| // x509_peer is the peer's certificate. |
| X509 *x509_peer = nullptr; |
| |
| // x509_chain is the certificate chain sent by the peer. NOTE: for historical |
| // reasons, when a client (so the peer is a server), the chain includes |
| // |peer|, but when a server it does not. |
| STACK_OF(X509) *x509_chain = nullptr; |
| |
| // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that |
| // omits the leaf certificate. This exists because OpenSSL, historically, |
| // didn't include the leaf certificate in the chain for a server, but did for |
| // a client. The |x509_chain| always includes it and, if an API call requires |
| // a chain without, it is stored here. |
| STACK_OF(X509) *x509_chain_without_leaf = nullptr; |
| |
| // verify_result is the result of certificate verification in the case of |
| // non-fatal certificate errors. |
| long verify_result = X509_V_ERR_INVALID_CALL; |
| |
| // timeout is the lifetime of the session in seconds, measured from |time|. |
| // This is renewable up to |auth_timeout|. |
| uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT; |
| |
| // auth_timeout is the non-renewable lifetime of the session in seconds, |
| // measured from |time|. |
| uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT; |
| |
| // time is the time the session was issued, measured in seconds from the UNIX |
| // epoch. |
| uint64_t time = 0; |
| |
| const SSL_CIPHER *cipher = nullptr; |
| |
| CRYPTO_EX_DATA ex_data; // application specific data |
| |
| // These are used to make removal of session-ids more efficient and to |
| // implement a maximum cache size. |
| SSL_SESSION *prev = nullptr, *next = nullptr; |
| |
| bssl::Array<uint8_t> ticket; |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; |
| |
| // The OCSP response that came with the session. |
| bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; |
| |
| // peer_sha256 contains the SHA-256 hash of the peer's certificate if |
| // |peer_sha256_valid| is true. |
| uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0}; |
| |
| // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or |
| // SHA-2, depending on TLS version) for the original, full handshake that |
| // created a session. This is used by Channel IDs during resumption. |
| bssl::InplaceVector<uint8_t, EVP_MAX_MD_SIZE> original_handshake_hash; |
| |
| uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds |
| |
| uint32_t ticket_age_add = 0; |
| |
| // ticket_max_early_data is the maximum amount of data allowed to be sent as |
| // early data. If zero, 0-RTT is disallowed. |
| uint32_t ticket_max_early_data = 0; |
| |
| // early_alpn is the ALPN protocol from the initial handshake. This is only |
| // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT |
| // resumptions. For the current connection's ALPN protocol, see |
| // |alpn_selected| on |SSL3_STATE|. |
| bssl::Array<uint8_t> early_alpn; |
| |
| // local_application_settings, if |has_application_settings| is true, is the |
| // local ALPS value for this connection. |
| bssl::Array<uint8_t> local_application_settings; |
| |
| // peer_application_settings, if |has_application_settings| is true, is the |
| // peer ALPS value for this connection. |
| bssl::Array<uint8_t> peer_application_settings; |
| |
| // extended_master_secret is whether the master secret in this session was |
| // generated using EMS and thus isn't vulnerable to the Triple Handshake |
| // attack. |
| bool extended_master_secret : 1; |
| |
| // peer_sha256_valid is whether |peer_sha256| is valid. |
| bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid |
| |
| // not_resumable is used to indicate that session resumption is disallowed. |
| bool not_resumable : 1; |
| |
| // ticket_age_add_valid is whether |ticket_age_add| is valid. |
| bool ticket_age_add_valid : 1; |
| |
| // is_server is whether this session was created by a server. |
| bool is_server : 1; |
| |
| // is_quic indicates whether this session was created using QUIC. |
| bool is_quic : 1; |
| |
| // has_application_settings indicates whether ALPS was negotiated in this |
| // session. |
| bool has_application_settings : 1; |
| |
| // quic_early_data_context is used to determine whether early data must be |
| // rejected when performing a QUIC handshake. |
| bssl::Array<uint8_t> quic_early_data_context; |
| |
| private: |
| friend RefCounted; |
| ~ssl_session_st(); |
| }; |
| |
| struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> { |
| ssl_ech_keys_st() : RefCounted(CheckSubClass()) {} |
| |
| bssl::Vector<bssl::UniquePtr<bssl::ECHServerConfig>> configs; |
| |
| private: |
| friend RefCounted; |
| ~ssl_ech_keys_st() = default; |
| }; |
| |
| #endif // OPENSSL_HEADER_SSL_INTERNAL_H |